keras-hub-nightly 0.23.0.dev202510150419__py3-none-any.whl → 0.24.0.dev202511080419__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (37) hide show
  1. keras_hub/layers/__init__.py +3 -0
  2. keras_hub/models/__init__.py +27 -0
  3. keras_hub/src/layers/modeling/reversible_embedding.py +6 -0
  4. keras_hub/src/models/causal_lm.py +5 -0
  5. keras_hub/src/models/depth_anything/depth_anything_presets.py +38 -1
  6. keras_hub/src/models/dinov2/dinov2_layers.py +3 -1
  7. keras_hub/src/models/dinov3/__init__.py +5 -0
  8. keras_hub/src/models/dinov3/dinov3_backbone.py +263 -0
  9. keras_hub/src/models/dinov3/dinov3_image_converter.py +8 -0
  10. keras_hub/src/models/dinov3/dinov3_layers.py +1013 -0
  11. keras_hub/src/models/dinov3/dinov3_presets.py +4 -0
  12. keras_hub/src/models/gemma/gemma_presets.py +22 -0
  13. keras_hub/src/models/gemma3/gemma3_presets.py +39 -0
  14. keras_hub/src/models/image_to_image.py +5 -0
  15. keras_hub/src/models/inpaint.py +5 -0
  16. keras_hub/src/models/mobilenetv5/__init__.py +9 -0
  17. keras_hub/src/models/mobilenetv5/mobilenetv5_presets.py +15 -0
  18. keras_hub/src/models/parseq/__init__.py +5 -0
  19. keras_hub/src/models/parseq/parseq_presets.py +15 -0
  20. keras_hub/src/models/siglip/siglip_presets.py +15 -0
  21. keras_hub/src/models/smollm3/smollm3_backbone.py +211 -0
  22. keras_hub/src/models/smollm3/smollm3_causal_lm.py +310 -0
  23. keras_hub/src/models/smollm3/smollm3_causal_lm_preprocessor.py +84 -0
  24. keras_hub/src/models/smollm3/smollm3_layers.py +757 -0
  25. keras_hub/src/models/smollm3/smollm3_tokenizer.py +60 -0
  26. keras_hub/src/models/smollm3/smollm3_utils.py +56 -0
  27. keras_hub/src/models/text_to_image.py +5 -0
  28. keras_hub/src/utils/tensor_utils.py +3 -1
  29. keras_hub/src/utils/transformers/convert_dinov3.py +106 -0
  30. keras_hub/src/utils/transformers/convert_smollm3.py +139 -0
  31. keras_hub/src/utils/transformers/preset_loader.py +6 -0
  32. keras_hub/src/version.py +1 -1
  33. keras_hub/tokenizers/__init__.py +6 -0
  34. {keras_hub_nightly-0.23.0.dev202510150419.dist-info → keras_hub_nightly-0.24.0.dev202511080419.dist-info}/METADATA +1 -1
  35. {keras_hub_nightly-0.23.0.dev202510150419.dist-info → keras_hub_nightly-0.24.0.dev202511080419.dist-info}/RECORD +37 -22
  36. {keras_hub_nightly-0.23.0.dev202510150419.dist-info → keras_hub_nightly-0.24.0.dev202511080419.dist-info}/WHEEL +0 -0
  37. {keras_hub_nightly-0.23.0.dev202510150419.dist-info → keras_hub_nightly-0.24.0.dev202511080419.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,60 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.models.smollm3.smollm3_backbone import SmolLM3Backbone
3
+ from keras_hub.src.tokenizers.byte_pair_tokenizer import BytePairTokenizer
4
+
5
+
6
+ @keras_hub_export(
7
+ [
8
+ "keras_hub.tokenizers.SmolLM3Tokenizer",
9
+ "keras_hub.tokenizers.SmolLMTokenizer",
10
+ "keras_hub.models.SmolLM3Tokenizer",
11
+ "keras_hub.models.SmolLMTokenizer",
12
+ ]
13
+ )
14
+ class SmolLM3Tokenizer(BytePairTokenizer):
15
+ """Tokenizer for SmolLM3 models.
16
+
17
+ This tokenizer implements byte-pair encoding (BPE) for SmolLM3 models,
18
+ handling special tokens like BOS (beginning of sequence) and EOS (end of
19
+ sequence).
20
+
21
+ Args:
22
+ vocabulary: Dictionary mapping tokens to token IDs, or path to
23
+ vocabulary file.
24
+ merges: List of BPE merges, or path to merges file.
25
+ bos_token: Beginning of sequence token. Defaults to None.
26
+ eos_token: End of sequence token. Defaults to "<|endoftext|>".
27
+ misc_special_tokens: Set of additional special tokens. Defaults to
28
+ empty set.
29
+ """
30
+
31
+ backbone_cls = SmolLM3Backbone
32
+
33
+ def __init__(
34
+ self,
35
+ vocabulary=None,
36
+ merges=None,
37
+ **kwargs,
38
+ ):
39
+ # Add EOS token
40
+ eos_token = "<|end_of_text|>"
41
+ self._add_special_token(eos_token, "end_token")
42
+
43
+ bos_token = "<|begin_of_text|>"
44
+ self._add_special_token(bos_token, "bos_token")
45
+
46
+ start_think_token = "<think>"
47
+ self._add_special_token(start_think_token, "start_think_token")
48
+
49
+ end_think_token = "</think>"
50
+ self._add_special_token(end_think_token, "end_think_token")
51
+
52
+ self.start_token_id = None
53
+ self.start_token = None
54
+ self.pad_token_id = 0
55
+
56
+ super().__init__(
57
+ vocabulary=vocabulary,
58
+ merges=merges,
59
+ **kwargs,
60
+ )
@@ -0,0 +1,56 @@
1
+ from keras import ops
2
+
3
+
4
+ def rotate_half(x):
5
+ x1 = x[..., : ops.shape(x)[-1] // 2]
6
+ x2 = x[..., ops.shape(x)[-1] // 2 :]
7
+ return ops.concatenate((-x2, x1), axis=-1)
8
+
9
+
10
+ def apply_rotary_pos_emb(q, k, cos, sin, expansion_axis=1):
11
+ cos = ops.expand_dims(cos, expansion_axis)
12
+ sin = ops.expand_dims(sin, expansion_axis)
13
+ q_embed = (q * cos) + (rotate_half(q) * sin)
14
+ k_embed = (k * cos) + (rotate_half(k) * sin)
15
+ return q_embed, k_embed
16
+
17
+
18
+ def apply_rotary_pos_single(tensor, cos, sin, expansion_axis=1):
19
+ cos = ops.expand_dims(cos, expansion_axis)
20
+ sin = ops.expand_dims(sin, expansion_axis)
21
+ tensor_embed = (tensor * cos) + (rotate_half(tensor) * sin)
22
+ return tensor_embed
23
+
24
+
25
+ def repeat_kv(hidden_states, n_rep):
26
+ batch, num_key_value_heads, slen, head_dim = ops.shape(hidden_states)
27
+ if n_rep == 1:
28
+ return hidden_states
29
+ hidden_states = ops.expand_dims(hidden_states, axis=2)
30
+ target_shape = (batch, num_key_value_heads, n_rep, slen, head_dim)
31
+ hidden_states = ops.broadcast_to(hidden_states, target_shape)
32
+ return ops.reshape(
33
+ hidden_states, [batch, num_key_value_heads * n_rep, slen, head_dim]
34
+ )
35
+
36
+
37
+ def rope_init(rope_theta, partial_rotary_factor, head_dim):
38
+ """Initialize RoPE (Rotary Position Embedding) parameters.
39
+
40
+ Args:
41
+ rope_theta: float. The theta value for RoPE.
42
+ partial_rotary_factor: float. The factor for partial rotary embedding.
43
+ head_dim: int. The dimension of each attention head.
44
+
45
+ Returns:
46
+ A tuple of (inv_freq, attention_scaling) where inv_freq is the inverse
47
+ frequency tensor and attention_scaling is the scaling factor.
48
+ """
49
+ base = rope_theta
50
+ dim = int(head_dim * partial_rotary_factor)
51
+
52
+ inv_freq = 1.0 / (
53
+ ops.power(base, ops.arange(0, dim, 2, dtype="float32") / dim)
54
+ )
55
+ attention_scaling = 1.0
56
+ return inv_freq, attention_scaling
@@ -345,3 +345,8 @@ class TextToImage(Task):
345
345
  # Text-to-image.
346
346
  outputs = [generate(x) for x in inputs]
347
347
  return self._normalize_generate_outputs(outputs, input_is_scalar)
348
+
349
+ def _post_quantize(self, mode, **kwargs):
350
+ super()._post_quantize(mode, **kwargs)
351
+ # Reset the compiled generate function.
352
+ self.generate_function = None
@@ -12,9 +12,11 @@ from packaging import version
12
12
 
13
13
  try:
14
14
  import tensorflow as tf
15
- import tensorflow_text as tf_text
16
15
  except ImportError:
17
16
  tf = None
17
+ try:
18
+ import tensorflow_text as tf_text
19
+ except ImportError:
18
20
  tf_text = None
19
21
 
20
22
 
@@ -0,0 +1,106 @@
1
+ import numpy as np
2
+
3
+ from keras_hub.src.models.dinov3.dinov3_backbone import DINOV3Backbone
4
+
5
+ backbone_cls = DINOV3Backbone
6
+
7
+
8
+ def convert_backbone_config(transformers_config):
9
+ image_size = transformers_config["image_size"]
10
+ return {
11
+ "patch_size": transformers_config["patch_size"],
12
+ "num_layers": transformers_config["num_hidden_layers"],
13
+ "hidden_dim": transformers_config["hidden_size"],
14
+ "num_heads": transformers_config["num_attention_heads"],
15
+ "intermediate_dim": transformers_config["intermediate_size"],
16
+ "layer_scale_init_value": transformers_config["layerscale_value"],
17
+ "num_register_tokens": transformers_config["num_register_tokens"],
18
+ "use_mask_token": True,
19
+ "hidden_activation": transformers_config["hidden_act"],
20
+ "use_gated_mlp": transformers_config["use_gated_mlp"],
21
+ "use_query_bias": transformers_config["query_bias"],
22
+ "use_key_bias": transformers_config["key_bias"],
23
+ "use_value_bias": transformers_config["value_bias"],
24
+ "use_proj_bias": transformers_config["proj_bias"],
25
+ "use_mlp_bias": transformers_config["mlp_bias"],
26
+ "attention_dropout": transformers_config["attention_dropout"],
27
+ "drop_path_rate": transformers_config["drop_path_rate"],
28
+ "layer_norm_eps": transformers_config["layer_norm_eps"],
29
+ "image_shape": (image_size, image_size, 3),
30
+ "rope_theta": transformers_config["rope_theta"],
31
+ "apply_layernorm": False,
32
+ }
33
+
34
+
35
+ def convert_weights(backbone, loader, transformers_config):
36
+ if not isinstance(backbone, DINOV3Backbone):
37
+ raise ValueError(
38
+ "The provided backbone must be an instance of DINOV3Backbone. "
39
+ f"Received: {type(backbone)}"
40
+ )
41
+
42
+ def port_ln(keras_variable, weight_key):
43
+ loader.port_weight(keras_variable.gamma, f"{weight_key}.weight")
44
+ loader.port_weight(keras_variable.beta, f"{weight_key}.bias")
45
+
46
+ def port_dense(keras_variable, weight_key):
47
+ loader.port_weight(
48
+ keras_variable.kernel,
49
+ f"{weight_key}.weight",
50
+ hook_fn=lambda x, _: x.T,
51
+ )
52
+ if keras_variable.bias is not None:
53
+ loader.port_weight(keras_variable.bias, f"{weight_key}.bias")
54
+
55
+ # Embedding.
56
+ loader.port_weight(
57
+ keras_variable=backbone.embeddings.cls_token,
58
+ hf_weight_key="embeddings.cls_token",
59
+ )
60
+ if backbone.use_mask_token:
61
+ loader.port_weight(
62
+ keras_variable=backbone.embeddings.mask_token,
63
+ hf_weight_key="embeddings.mask_token",
64
+ )
65
+ if backbone.num_register_tokens > 0:
66
+ loader.port_weight(
67
+ keras_variable=backbone.embeddings.register_tokens,
68
+ hf_weight_key="embeddings.register_tokens",
69
+ )
70
+ loader.port_weight(
71
+ keras_variable=backbone.embeddings.patch_embeddings.projection.kernel,
72
+ hf_weight_key="embeddings.patch_embeddings.weight",
73
+ hook_fn=lambda x, _: np.transpose(x, (2, 3, 1, 0)),
74
+ )
75
+ loader.port_weight(
76
+ keras_variable=backbone.embeddings.patch_embeddings.projection.bias,
77
+ hf_weight_key="embeddings.patch_embeddings.bias",
78
+ )
79
+
80
+ # Encoder.
81
+ for i, layer in enumerate(backbone.encoder.layers):
82
+ prefix = f"layer.{i}"
83
+ port_ln(layer.norm1, f"{prefix}.norm1")
84
+ port_dense(layer.attention.query_dense, f"{prefix}.attention.q_proj")
85
+ port_dense(layer.attention.key_dense, f"{prefix}.attention.k_proj")
86
+ port_dense(layer.attention.value_dense, f"{prefix}.attention.v_proj")
87
+ port_dense(layer.attention.output_dense, f"{prefix}.attention.o_proj")
88
+
89
+ loader.port_weight(
90
+ keras_variable=layer.layer_scale1.lambda1,
91
+ hf_weight_key=f"{prefix}.layer_scale1.lambda1",
92
+ )
93
+ port_ln(layer.norm2, f"{prefix}.norm2")
94
+ if backbone.use_gated_mlp:
95
+ port_dense(layer.mlp.gate_proj, f"{prefix}.mlp.gate_proj")
96
+ port_dense(layer.mlp.up_proj, f"{prefix}.mlp.up_proj")
97
+ port_dense(layer.mlp.down_proj, f"{prefix}.mlp.down_proj")
98
+ else:
99
+ port_dense(layer.mlp.up_proj, f"{prefix}.mlp.up_proj")
100
+ port_dense(layer.mlp.down_proj, f"{prefix}.mlp.down_proj")
101
+ loader.port_weight(
102
+ keras_variable=layer.layer_scale2.lambda1,
103
+ hf_weight_key=f"{prefix}.layer_scale2.lambda1",
104
+ )
105
+
106
+ port_ln(backbone.layernorm, "norm")
@@ -0,0 +1,139 @@
1
+ import numpy as np
2
+
3
+ from keras_hub.src.models.smollm3.smollm3_backbone import SmolLM3Backbone
4
+ from keras_hub.src.utils.preset_utils import load_json
5
+
6
+ backbone_cls = SmolLM3Backbone
7
+
8
+
9
+ def convert_backbone_config(transformers_config):
10
+ return {
11
+ "vocabulary_size": transformers_config["vocab_size"],
12
+ "hidden_dim": transformers_config["hidden_size"],
13
+ "num_layers": transformers_config["num_hidden_layers"],
14
+ "num_attention_heads": transformers_config["num_attention_heads"],
15
+ "num_key_value_heads": transformers_config["num_key_value_heads"],
16
+ "intermediate_dim": transformers_config["intermediate_size"],
17
+ "layer_norm_epsilon": transformers_config[
18
+ "rms_norm_eps"
19
+ ], # Using rms_norm_eps as layer_norm_epsilon
20
+ "max_position_embeddings": transformers_config[
21
+ "max_position_embeddings"
22
+ ],
23
+ "rope_theta": transformers_config["rope_theta"],
24
+ # partial_rotary_factor is not explicitly in config.json
25
+ # but is inherited from the default value in the
26
+ # `_compute_default_rope_parameters()` function
27
+ "partial_rotary_factor": 1.0,
28
+ "attention_bias": transformers_config["attention_bias"],
29
+ "attention_dropout": transformers_config["attention_dropout"],
30
+ # Despite the name, no_rope_layers: 1 = HAS RoPE, 0 = NO RoPE
31
+ "rope_layer_enabled_list": [
32
+ bool(x) for x in transformers_config["no_rope_layers"]
33
+ ],
34
+ "layer_types": transformers_config["layer_types"],
35
+ "mlp_bias": transformers_config["mlp_bias"],
36
+ }
37
+
38
+
39
+ def convert_weights(backbone, loader, transformers_config):
40
+ loader.port_weight(
41
+ keras_variable=backbone.get_layer("token_embedding").embeddings,
42
+ hf_weight_key="model.embed_tokens.weight",
43
+ )
44
+
45
+ def transpose_and_reshape(x, shape):
46
+ return np.reshape(np.transpose(x), shape)
47
+
48
+ for i in range(backbone.num_layers):
49
+ decoder_layer = backbone.get_layer(f"transformer_layer_{i}")
50
+
51
+ # Input layernorm
52
+ loader.port_weight(
53
+ keras_variable=decoder_layer.input_layernorm.scale,
54
+ hf_weight_key=f"model.layers.{i}.input_layernorm.weight",
55
+ )
56
+
57
+ # Attention layers
58
+ ## Query
59
+ loader.port_weight(
60
+ keras_variable=decoder_layer.self_attn.q_proj.kernel,
61
+ hf_weight_key=f"model.layers.{i}.self_attn.q_proj.weight",
62
+ hook_fn=transpose_and_reshape,
63
+ )
64
+ ## Key
65
+ loader.port_weight(
66
+ keras_variable=decoder_layer.self_attn.k_proj.kernel,
67
+ hf_weight_key=f"model.layers.{i}.self_attn.k_proj.weight",
68
+ hook_fn=transpose_and_reshape,
69
+ )
70
+ ## Value
71
+ loader.port_weight(
72
+ keras_variable=decoder_layer.self_attn.v_proj.kernel,
73
+ hf_weight_key=f"model.layers.{i}.self_attn.v_proj.weight",
74
+ hook_fn=transpose_and_reshape,
75
+ )
76
+ ## Output
77
+ loader.port_weight(
78
+ keras_variable=decoder_layer.self_attn.o_proj.kernel,
79
+ hf_weight_key=f"model.layers.{i}.self_attn.o_proj.weight",
80
+ hook_fn=transpose_and_reshape,
81
+ )
82
+
83
+ # MLP layers
84
+ loader.port_weight(
85
+ keras_variable=decoder_layer.mlp.up_proj.kernel,
86
+ hf_weight_key=f"model.layers.{i}.mlp.up_proj.weight",
87
+ # rearrange_patterns="b a -> a b",
88
+ hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
89
+ )
90
+ loader.port_weight(
91
+ keras_variable=decoder_layer.mlp.down_proj.kernel,
92
+ hf_weight_key=f"model.layers.{i}.mlp.down_proj.weight",
93
+ # rearrange_patterns="b a -> a b",
94
+ hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
95
+ )
96
+ loader.port_weight(
97
+ keras_variable=decoder_layer.mlp.gate_proj.kernel,
98
+ hf_weight_key=f"model.layers.{i}.mlp.gate_proj.weight",
99
+ # rearrange_patterns="b a -> a b",
100
+ hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
101
+ )
102
+
103
+ # Feedforward layernorm
104
+ loader.port_weight(
105
+ keras_variable=decoder_layer.post_attention_layernorm.scale,
106
+ hf_weight_key=f"model.layers.{i}.post_attention_layernorm.weight",
107
+ )
108
+
109
+ # Final normalization layer
110
+ loader.port_weight(
111
+ keras_variable=backbone.get_layer("sequence_output_layernorm").scale,
112
+ hf_weight_key="model.norm.weight",
113
+ )
114
+
115
+ backbone.training = False
116
+
117
+ return backbone
118
+
119
+
120
+ def convert_tokenizer(cls, preset, **kwargs):
121
+ tokenizer_config = load_json(preset, "tokenizer.json")
122
+ vocab = tokenizer_config["model"]["vocab"]
123
+ merges = tokenizer_config["model"]["merges"]
124
+ merges = [" ".join(item) for item in merges]
125
+
126
+ # Load all special tokens with the exception of "reserved" ones.
127
+ special_tokens = set()
128
+ for token in tokenizer_config["added_tokens"]:
129
+ if not token["content"].startswith("<|reserved_special_token_"):
130
+ vocab[token["content"]] = token["id"]
131
+ special_tokens.add(token["content"])
132
+
133
+ kwargs.update(
134
+ {
135
+ "unsplittable_tokens": list(special_tokens),
136
+ }
137
+ )
138
+
139
+ return cls(vocabulary=vocab, merges=merges, **kwargs)
@@ -8,6 +8,7 @@ from keras_hub.src.utils.transformers import convert_bart
8
8
  from keras_hub.src.utils.transformers import convert_bert
9
9
  from keras_hub.src.utils.transformers import convert_deit
10
10
  from keras_hub.src.utils.transformers import convert_dinov2
11
+ from keras_hub.src.utils.transformers import convert_dinov3
11
12
  from keras_hub.src.utils.transformers import convert_distilbert
12
13
  from keras_hub.src.utils.transformers import convert_esm
13
14
  from keras_hub.src.utils.transformers import convert_gemma
@@ -20,6 +21,7 @@ from keras_hub.src.utils.transformers import convert_qwen
20
21
  from keras_hub.src.utils.transformers import convert_qwen3
21
22
  from keras_hub.src.utils.transformers import convert_qwen3_moe
22
23
  from keras_hub.src.utils.transformers import convert_qwen_moe
24
+ from keras_hub.src.utils.transformers import convert_smollm3
23
25
  from keras_hub.src.utils.transformers import convert_t5gemma
24
26
  from keras_hub.src.utils.transformers import convert_vit
25
27
  from keras_hub.src.utils.transformers.safetensor_utils import SafetensorLoader
@@ -41,6 +43,8 @@ class TransformersPresetLoader(PresetLoader):
41
43
  self.converter = convert_distilbert
42
44
  elif model_type in ("dinov2", "dinov2_with_registers"):
43
45
  self.converter = convert_dinov2
46
+ elif model_type == "dinov3_vit":
47
+ self.converter = convert_dinov3
44
48
  elif model_type == "esm":
45
49
  self.converter = convert_esm
46
50
  elif model_type in ("gemma", "gemma2"):
@@ -66,6 +70,8 @@ class TransformersPresetLoader(PresetLoader):
66
70
  self.converter = convert_qwen3_moe
67
71
  elif model_type == "qwen3":
68
72
  self.converter = convert_qwen3
73
+ elif model_type == "smollm3":
74
+ self.converter = convert_smollm3
69
75
  elif model_type == "t5gemma":
70
76
  self.converter = convert_t5gemma
71
77
  else:
keras_hub/src/version.py CHANGED
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.23.0.dev202510150419"
4
+ __version__ = "0.24.0.dev202511080419"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -93,6 +93,12 @@ from keras_hub.src.models.roformer_v2.roformer_v2_tokenizer import (
93
93
  from keras_hub.src.models.siglip.siglip_tokenizer import (
94
94
  SigLIPTokenizer as SigLIPTokenizer,
95
95
  )
96
+ from keras_hub.src.models.smollm3.smollm3_tokenizer import (
97
+ SmolLM3Tokenizer as SmolLM3Tokenizer,
98
+ )
99
+ from keras_hub.src.models.smollm3.smollm3_tokenizer import (
100
+ SmolLM3Tokenizer as SmolLMTokenizer,
101
+ )
96
102
  from keras_hub.src.models.t5.t5_tokenizer import T5Tokenizer as T5Tokenizer
97
103
  from keras_hub.src.models.t5gemma.t5gemma_tokenizer import (
98
104
  T5GemmaTokenizer as T5GemmaTokenizer,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.23.0.dev202510150419
3
+ Version: 0.24.0.dev202511080419
4
4
  Summary: Pretrained models for Keras.
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License-Expression: Apache-2.0
@@ -1,11 +1,11 @@
1
1
  keras_hub/__init__.py,sha256=bJbUZkqwhZvTb1Tqx1fbkq6mzBYiEyq-Hin3oQIkhdE,558
2
- keras_hub/layers/__init__.py,sha256=ufJKHxMTFhwp--E3ixfGCZqq89pZOUOxCQYgI5pEUA8,5944
2
+ keras_hub/layers/__init__.py,sha256=hY5hZX5oOxRTFxfPe2hGhrHWJwF1kB7QiwITSS4Xp2A,6061
3
3
  keras_hub/metrics/__init__.py,sha256=KYalsMPBnfwim9BdGHFfJ5WxUKFXOQ1QoKIMT_0lwlM,439
4
- keras_hub/models/__init__.py,sha256=E9_kQFlM75iKRiSUFEF7F8e9aqMo89-88XSSLy2sbtY,31172
4
+ keras_hub/models/__init__.py,sha256=XGYkwfBVZiPw5ZjSV5S_n3FnkPf06yYNzxZjXMhiX70,32166
5
5
  keras_hub/samplers/__init__.py,sha256=aFQIkiqbZpi8vjrPp2MVII4QUfE-eQjra5fMeHsoy7k,886
6
6
  keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
7
  keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
8
- keras_hub/src/version.py,sha256=vcYjts3nZw0ZkBM-3v2E7wVWH_dIHZfR9h7rV9Wl2tw,222
8
+ keras_hub/src/version.py,sha256=2MZs2VoTZ2fpUxnyzQ5IyB-9fpBkude4IPhTHxT_H_4,222
9
9
  keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
10
  keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
11
  keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
@@ -16,7 +16,7 @@ keras_hub/src/layers/modeling/f_net_encoder.py,sha256=zkVeO5Nk_kBZCUGq2LeDGmPEIM
16
16
  keras_hub/src/layers/modeling/masked_lm_head.py,sha256=no6XQb76KB2cUiksYC0MSdyeDOK7pn8MY6cmdCDxpKs,9015
17
17
  keras_hub/src/layers/modeling/non_max_supression.py,sha256=yAkAH1CCj_tYXgQTav39IRr_Uxn8hmzJgIxqbYQyZY8,22565
18
18
  keras_hub/src/layers/modeling/position_embedding.py,sha256=vqmmUbMU-41Ns6qwR_4N1IvVsV0arGlkiTD7D7NMS2s,4562
19
- keras_hub/src/layers/modeling/reversible_embedding.py,sha256=aBruxDo3nHWUpQxcS2kSLUGhV_obUPKpZKXv281AzzQ,10898
19
+ keras_hub/src/layers/modeling/reversible_embedding.py,sha256=PVZ3G-2pIYp7fU4d6GAB9OpMUPcNGRye0hg_7XG2QBY,11096
20
20
  keras_hub/src/layers/modeling/rms_normalization.py,sha256=Ylnc9vkDw1A_ZqiKpQ09jVTAGumS5rspjdQOkH-mxf4,1084
21
21
  keras_hub/src/layers/modeling/rotary_embedding.py,sha256=uKcEyidierqdEs67QYPMQrJ1u0gxqJYT22_YGnhkQ-I,6546
22
22
  keras_hub/src/layers/modeling/sine_position_encoding.py,sha256=aLoadvQW1eeivac8gzymP740NXppblZ2C_OlErLMfN4,4063
@@ -44,7 +44,7 @@ keras_hub/src/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hS
44
44
  keras_hub/src/models/audio_to_text.py,sha256=XoOjXtKBX6K1fz-zOXcdVo3FpjuxCMnJZh2LQcYXb_0,2726
45
45
  keras_hub/src/models/audio_to_text_preprocessor.py,sha256=GS-WWyJ6aSsPRxi_0bxvxA00h2mT2FEwSdAoQXAUYVI,3249
46
46
  keras_hub/src/models/backbone.py,sha256=BdqPsne7lIITIxn6jY6AN4vZ-Rc9VnpqTxvVNR3CS7M,12210
47
- keras_hub/src/models/causal_lm.py,sha256=FHGpbyFrDrnPSv5eRLfDgcpvjS6jDhSokMRl-kuumyg,18164
47
+ keras_hub/src/models/causal_lm.py,sha256=x86PTAzoBpAdJyenPRNNBAkazUjcRLr4wb2hMs5SrQ0,18344
48
48
  keras_hub/src/models/causal_lm_preprocessor.py,sha256=nxl-sfmCfkfl6JmVRASa878QbaZUgWSA6Jdu48x4-dY,7155
49
49
  keras_hub/src/models/depth_estimator.py,sha256=JR7wtunOPrfEoDkLspoZnL2ItWhZFDeAxxw2vue5QLs,8992
50
50
  keras_hub/src/models/depth_estimator_preprocessor.py,sha256=2iE8NAUyiD2AvjZwNoXKUaOUogcE1fRzTNXLQ75GZpQ,2822
@@ -53,8 +53,8 @@ keras_hub/src/models/image_classifier.py,sha256=yt6cjhPfqs8A_eWXBsXdXFzn-aRgH2rV
53
53
  keras_hub/src/models/image_classifier_preprocessor.py,sha256=Bf7jSqHB1hX2ZWoWQS4GcXNOY_EjeoJi-_vtzCAqw4o,2690
54
54
  keras_hub/src/models/image_segmenter.py,sha256=C1bzIO59pG58iist5GLn_qnlotDpcAVxPV_8a68BkAc,2876
55
55
  keras_hub/src/models/image_segmenter_preprocessor.py,sha256=d7I2Hk0SKWyKpjRS6WYccmh_CYQBpWoj0JF5RRrU6rw,3748
56
- keras_hub/src/models/image_to_image.py,sha256=IJLZ6svgvcQvypwF6oe4SbJj_Zuk2-CrgHFBQcsY7n8,16753
57
- keras_hub/src/models/inpaint.py,sha256=fxZZrheYIK1rI6BjqZsxt9G2U0afMZR62Z87ZzuSNrQ,20815
56
+ keras_hub/src/models/image_to_image.py,sha256=nblRd-16n5_JxKIH6IJU7bHTFRGxyCpKUilg6VjWuek,16933
57
+ keras_hub/src/models/inpaint.py,sha256=oqdj0Q9dNG54g6sNQ5foto8saPd5Sx8kYZuHCZPBqrY,20995
58
58
  keras_hub/src/models/masked_lm.py,sha256=uXO_dE_hILlOC9jNr6oK6IHi9IGUqLyNGvr6nMt8Rk0,3576
59
59
  keras_hub/src/models/masked_lm_preprocessor.py,sha256=g8vrnyYwqdnSw5xppROM1Gzo_jmMWKYZoQCsKdfrFKk,5656
60
60
  keras_hub/src/models/object_detector.py,sha256=oAK42fFBKuN0G_WM-DhygFkgQ0KsEwU_ZiU4umHywqc,3757
@@ -65,7 +65,7 @@ keras_hub/src/models/seq_2_seq_lm_preprocessor.py,sha256=DJmm4VTt8AdLtq1k9YKl_VR
65
65
  keras_hub/src/models/task.py,sha256=e9zK2zHgeOkjNACcCmAf-lGuEGF_eRoP_lKlirdIXuk,14817
66
66
  keras_hub/src/models/text_classifier.py,sha256=B6cTYDbDZW8vRvenXrLwgMMVIYMb7Pr14GvX8C_wclQ,4159
67
67
  keras_hub/src/models/text_classifier_preprocessor.py,sha256=EoWp-GHnaLnAKTdAzDmC-soAV92ATF3QozdubdV2WXI,4722
68
- keras_hub/src/models/text_to_image.py,sha256=NIy4S6Fh8MsbNiskAFhjmFXgRiiFqn_rOvpGOO6LlF0,13390
68
+ keras_hub/src/models/text_to_image.py,sha256=Y2JcTBLb_l6_nnzASOXDziqP91tCPFN6m9wv6dlSe00,13570
69
69
  keras_hub/src/models/text_to_image_preprocessor.py,sha256=SKMxEABl5sy1QIA3irHTZKs7VgMdx9Cxy4IaxDU6faM,1211
70
70
  keras_hub/src/models/albert/__init__.py,sha256=rR6q_-8FujB1FXp6r4KOI7xi4gFjtAhQwXjp-MIhiyg,257
71
71
  keras_hub/src/models/albert/albert_backbone.py,sha256=4NQFo8lhv8rFiNIwQeZxxKxFwT3nKcCt36FUa6oPGok,10073
@@ -169,13 +169,18 @@ keras_hub/src/models/depth_anything/depth_anything_depth_estimator_preprocessor.
169
169
  keras_hub/src/models/depth_anything/depth_anything_image_converter.py,sha256=Xutwc8IyklFilDcc4psNBwPGRDcFlzalWXsHvEz7rUc,395
170
170
  keras_hub/src/models/depth_anything/depth_anything_layers.py,sha256=_43iEE7F8P7BL4xssjpPeFyhiDk4gGLu-wPxuqQ-nT8,27739
171
171
  keras_hub/src/models/depth_anything/depth_anything_loss.py,sha256=GJqzvLkCZrWsMDO6T2Gt_9-TYJqorfNnyOXSNgLUjQg,3389
172
- keras_hub/src/models/depth_anything/depth_anything_presets.py,sha256=mJ1Kg6J5lP1GkrEDH_qS1XJ__98Tjt5noRZVZaHCn9k,121
172
+ keras_hub/src/models/depth_anything/depth_anything_presets.py,sha256=A3Afr06IRL02u-9EPNTTiGb6DgzjQavSwVmWHz0OoMc,1536
173
173
  keras_hub/src/models/depth_anything/interpolate.py,sha256=qwrPGP6wA4jZ-XcSeulhkyxPDiMRxHlC92EqSd0H5Tk,2041
174
174
  keras_hub/src/models/dinov2/__init__.py,sha256=qacZi82EfAloVND4gDLZjqgR5_yVdz_dc4mMKyCsjOA,257
175
175
  keras_hub/src/models/dinov2/dinov2_backbone.py,sha256=QH3lzE1EnxTcOSii9KS1Qx3lq0XcZMsvElB7AL_ejZY,10672
176
176
  keras_hub/src/models/dinov2/dinov2_image_converter.py,sha256=gfFROdYV5rOzo3kJFlRvRHYjek8z9YirKfrFwlVJO3g,342
177
- keras_hub/src/models/dinov2/dinov2_layers.py,sha256=UCcia2kWA1O37SMmUbyhUcSXmUpLfNjk1E6mPTPDrF0,33647
177
+ keras_hub/src/models/dinov2/dinov2_layers.py,sha256=wo80Re043Gjly-XE-sT01QAYq3h793zhmU-Nb6SFN4g,33702
178
178
  keras_hub/src/models/dinov2/dinov2_presets.py,sha256=ho493GPH98K4LH1E54UV2qZZ4h7Un9ylbBmMQjNoKh4,2937
179
+ keras_hub/src/models/dinov3/__init__.py,sha256=AI7vTZJBG6Ygb48o6pXtHzxKk0Rek3p7-HffD-Y48cc,257
180
+ keras_hub/src/models/dinov3/dinov3_backbone.py,sha256=WDHipJSG10seRzYG_hARifF52wqhj9enkhuZ6mgJmjw,10511
181
+ keras_hub/src/models/dinov3/dinov3_image_converter.py,sha256=_oHDcI2CoxjbSLxLfkK1zEPcf4Goy0S66igmrXt58cQ,342
182
+ keras_hub/src/models/dinov3/dinov3_layers.py,sha256=w5K2btblrgrULqzPQdbvtkyR5Px2UZkqcZQ7jq2K3Uk,37169
183
+ keras_hub/src/models/dinov3/dinov3_presets.py,sha256=AXXdrgrs9WBrsGlac0TgWV0DIPnvKdlxD3kUhbii1sk,114
179
184
  keras_hub/src/models/distil_bert/__init__.py,sha256=3Z0w-Mt3aOR0u9RGzjHQ7B3J3qBF2pGjupDGQ9yyzoc,303
180
185
  keras_hub/src/models/distil_bert/distil_bert_backbone.py,sha256=rnAf_GokB3wAeJwVZtgUKQO_bKJIa8RavhL_ykTJpNw,6440
181
186
  keras_hub/src/models/distil_bert/distil_bert_masked_lm.py,sha256=axeZd5UcxFr3_Q8H4yG10CINh93wbcyjlPLauqe5N9E,4289
@@ -236,7 +241,7 @@ keras_hub/src/models/gemma/gemma_backbone.py,sha256=pAAVaVKB6nlA0PncVnFXvNgJV7Se
236
241
  keras_hub/src/models/gemma/gemma_causal_lm.py,sha256=3OXaIXlrKqMIuUnBk-bUz-0SYFL-XkkQTWm8qRY2YII,16770
237
242
  keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py,sha256=bpKkEurWIfa6Kp9s4pz84-sBDSA6ZFNHP8nXG1fFQrg,2912
238
243
  keras_hub/src/models/gemma/gemma_decoder_block.py,sha256=f5UsRO-VNsKJfm_WHVJWK4UahhzYm3sKprJ8jjr-zm4,7628
239
- keras_hub/src/models/gemma/gemma_presets.py,sha256=6Okl8USxHhp8EvVebNgo7JDkO527fx0aHdcRy9WNm9k,7467
244
+ keras_hub/src/models/gemma/gemma_presets.py,sha256=wAH7mjz9tbQqqdwajU2dilGytnWK1qc-aTIVLtjpTWg,8263
240
245
  keras_hub/src/models/gemma/gemma_tokenizer.py,sha256=FhcyNL4lo63MqOhTQPFr07-u3BddL0fVM4TmOm8ku-I,2622
241
246
  keras_hub/src/models/gemma/rms_normalization.py,sha256=fku-JEo2sNy-ytX7ySD1sRzdhRAPmYex_z8oFk1NiG8,833
242
247
  keras_hub/src/models/gemma3/__init__.py,sha256=oPFadkdK5DRLD6sYx83iTetY5daWuSzmJilLjokHcbU,257
@@ -247,7 +252,7 @@ keras_hub/src/models/gemma3/gemma3_causal_lm_preprocessor.py,sha256=vjt4N-zr0Eb5
247
252
  keras_hub/src/models/gemma3/gemma3_decoder_block.py,sha256=CYwYazqwakLNfhOLBl_8Q2TVZcMcOxMtiZtuVlk_hoo,11470
248
253
  keras_hub/src/models/gemma3/gemma3_image_converter.py,sha256=czi5JrTyKiK0nFzvonviBIX8jjvLHqvGNA9RyheB31k,536
249
254
  keras_hub/src/models/gemma3/gemma3_interleave_embeddings.py,sha256=CfYdudk5En9iU6vEnrcrEWIztloD1r8VzF2extqAhAM,4616
250
- keras_hub/src/models/gemma3/gemma3_presets.py,sha256=FGAHYE4HTLuiceuiCKBJtc1aNd7OgMB59KD0s6Ba_Fg,6105
255
+ keras_hub/src/models/gemma3/gemma3_presets.py,sha256=1GZSwsGRA19RllhZPR-kFjH5y9A6308V3TYfqHAnXUw,7744
251
256
  keras_hub/src/models/gemma3/gemma3_tokenizer.py,sha256=ZaBclFIwzJkSXDuZMBQLHUKV8RWEdZ_dsJMvMcc3qXw,3215
252
257
  keras_hub/src/models/gemma3/gemma3_vision_encoder.py,sha256=7XI0oBjIfJItV5w90t5bWb3C2KzjhvDnIC7wjIq4Cns,20850
253
258
  keras_hub/src/models/gemma3/rms_normalization.py,sha256=fku-JEo2sNy-ytX7ySD1sRzdhRAPmYex_z8oFk1NiG8,833
@@ -321,7 +326,7 @@ keras_hub/src/models/mobilenet/mobilenet_image_classifier_preprocessor.py,sha256
321
326
  keras_hub/src/models/mobilenet/mobilenet_image_converter.py,sha256=a3Ka0UYYK5wHSOjf2oMHSgofRazTAeUfttklVefq14w,360
322
327
  keras_hub/src/models/mobilenet/mobilenet_presets.py,sha256=hR_3xxI_PigE8UprXW4lAuKRa3LFGdidBaN8LklxwRQ,1895
323
328
  keras_hub/src/models/mobilenet/util.py,sha256=S7j4UacmVIJ3fU8cymyAoK49eHcpWIKTOyUQiEjcbzQ,721
324
- keras_hub/src/models/mobilenetv5/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
329
+ keras_hub/src/models/mobilenetv5/__init__.py,sha256=UBySIjlMZeXRpef3FJMpA8w--XbPDcO-up-4zwYJQG0,305
325
330
  keras_hub/src/models/mobilenetv5/mobilenetv5_attention.py,sha256=rH4cp1B5_r8g7gKvDdMvfEGfmMHUB2OMEbWQbX9yUMg,26499
326
331
  keras_hub/src/models/mobilenetv5/mobilenetv5_backbone.py,sha256=y19FpVh0M3w9jSmP34E-GixdjMsU2cEJKrtjLcFfGZU,17167
327
332
  keras_hub/src/models/mobilenetv5/mobilenetv5_blocks.py,sha256=aw2H-duaCkxGSHB-nKnG8nQhAPxNkmlPUn0FHDb_cTs,34026
@@ -330,6 +335,7 @@ keras_hub/src/models/mobilenetv5/mobilenetv5_image_classifier.py,sha256=BvL0yCla
330
335
  keras_hub/src/models/mobilenetv5/mobilenetv5_image_classifier_preprocessor.py,sha256=4yhM71JqOzQWiCXTidWAMCNaaIO8QVq5vXl_129ylsI,602
331
336
  keras_hub/src/models/mobilenetv5/mobilenetv5_image_converter.py,sha256=HroX3OOwajIz9CIqlcGf9K9MYUEQ86wifABy9ZGRql4,381
332
337
  keras_hub/src/models/mobilenetv5/mobilenetv5_layers.py,sha256=wLyR_gTcqiNLUt86fhxhEbbhZH3YA9CbvMSPnA4vTvg,15889
338
+ keras_hub/src/models/mobilenetv5/mobilenetv5_presets.py,sha256=fkWhfnoXxalYFLCsnuT1_aMrP_A5txx8s41MgMVe_ro,481
333
339
  keras_hub/src/models/mobilenetv5/mobilenetv5_utils.py,sha256=ij2Dfguotb6RGSXuX-MsxF8JBXBWLdSi0LfDOKGp2rk,4868
334
340
  keras_hub/src/models/moonshine/__init__.py,sha256=WK_9Cy1dp5KplNAaTsaJbd-2DGLsiHQsIL5ZnXuCbDQ,275
335
341
  keras_hub/src/models/moonshine/moonshine_audio_converter.py,sha256=FnvR7SP44uVOsA3g9azUhQjsVg809eJ5nqoJZQ-DAq0,11854
@@ -357,12 +363,13 @@ keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=5yM_jUtrFsW
357
363
  keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=Q_zfHEjGTtXEiCwjoJc2g6HjmoNoLgSDRNfRvIsf0dA,12989
358
364
  keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=ljTiADHo0Ok88q-jVzwJIle2C8xcxnudLTsBLzIySaM,2415
359
365
  keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=SbWanwCoONSwgiWQsc6lFdvhqKZ-zDW42XzQt8CNMtU,18311
360
- keras_hub/src/models/parseq/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
366
+ keras_hub/src/models/parseq/__init__.py,sha256=BedkGhH5vJ-sm0gxGi3xfDiS0JN-CkOvGGQUBeYFwV4,257
361
367
  keras_hub/src/models/parseq/parseq_backbone.py,sha256=FX28p7VZerjoHwlyfrvht3Pibl9GlTczDxo1iXtO6cA,4767
362
368
  keras_hub/src/models/parseq/parseq_causal_lm.py,sha256=fhxhXCOgrIfe5aFimWz_w31VOZj5nb6w9Mx0kuzm718,17187
363
369
  keras_hub/src/models/parseq/parseq_causal_lm_preprocessor.py,sha256=2pVdqEepiSQf8Z01J1qKoTRbLeQGhWtomjKw1Gaxrhk,6057
364
370
  keras_hub/src/models/parseq/parseq_decoder.py,sha256=R9yRlfwkk0q-HEchn5bW34qqTcEnCRDsD3Ru7ENi4F4,14442
365
371
  keras_hub/src/models/parseq/parseq_image_converter.py,sha256=cEFXRICZQ5lEf3qpgmfSBMMiDZI7PC-0kO5wb-kLYx4,342
372
+ keras_hub/src/models/parseq/parseq_presets.py,sha256=DAZuTCWcWe_1kxI8edhlYQ9xcwHNCtlDg4cTjg5GY8M,405
366
373
  keras_hub/src/models/parseq/parseq_tokenizer.py,sha256=SEbeYRxU7VzHuyTWKJK5hOhqq_DZqXvGALnG8MNCN3I,8164
367
374
  keras_hub/src/models/phi3/__init__.py,sha256=zIbf1MU-ks91mEkjTRJAsk51N3BBnXDF2JM1vO-13PQ,245
368
375
  keras_hub/src/models/phi3/phi3_attention.py,sha256=pojx23rG2NPqy0MRo_OspnxipJCZvexZ2V25xucimHY,9980
@@ -465,10 +472,16 @@ keras_hub/src/models/siglip/siglip_image_converter.py,sha256=yjYc0XOyL37WLlr-X6V
465
472
  keras_hub/src/models/siglip/siglip_layers.py,sha256=c20n6v3cFsI-Im9GBVTknhj_IpX79I4a-fajBKRMzQA,19893
466
473
  keras_hub/src/models/siglip/siglip_loss.py,sha256=n6zmOeL0o7Nwb5iaoEZfrxiAsQoqZ9yLIlaCJsAfTg4,1442
467
474
  keras_hub/src/models/siglip/siglip_preprocessor.py,sha256=r1Ej7hVwr5BudFYTHkjW5yc3lk4OYZD1s3t32lKkuec,5660
468
- keras_hub/src/models/siglip/siglip_presets.py,sha256=gOzSVhLskAthfzq8jWOtQWv14euaqS2ywcZlNfivDOI,13164
475
+ keras_hub/src/models/siglip/siglip_presets.py,sha256=jtIQrNcq14othG1QgwBEfozEmoHdXXW270qylQEmA8E,13864
469
476
  keras_hub/src/models/siglip/siglip_text_encoder.py,sha256=xOVvzyQHLX9ne30y4ussar99gNMXPXHYKlkbCX_On2Y,5380
470
477
  keras_hub/src/models/siglip/siglip_tokenizer.py,sha256=j_67JbIHJDRk-CbiemG2dgAO6lp3_0_JdnfroZ90G18,2579
471
478
  keras_hub/src/models/siglip/siglip_vision_encoder.py,sha256=CaNaFq5thBC3TUXXOf2qknk5vWsauM20ZoaDPYRnXcs,5927
479
+ keras_hub/src/models/smollm3/smollm3_backbone.py,sha256=9e8ydwy7X0stVEWgIJYt69vt6JYSCiYpM73w6oLxyoQ,7949
480
+ keras_hub/src/models/smollm3/smollm3_causal_lm.py,sha256=PWn2zPu0YS3uRvmjksmXKXpxehl8lvEHAXaO0u7nweM,12641
481
+ keras_hub/src/models/smollm3/smollm3_causal_lm_preprocessor.py,sha256=gbj7IhDbgA30AM80uG6BeI1yZmGd5yQ2VEaPWWyS9M4,3121
482
+ keras_hub/src/models/smollm3/smollm3_layers.py,sha256=lR33IynX-1G42L3hNzOBnnIx-INOzJguSQDAwIPaSIQ,26632
483
+ keras_hub/src/models/smollm3/smollm3_tokenizer.py,sha256=evOVM8pgZUkWLoXAwWiYRSNNFZ7KBv1WtFdLqpHdCQU,1877
484
+ keras_hub/src/models/smollm3/smollm3_utils.py,sha256=zAqtZTv1G--k-Dbjvk886OcmsuIxyYicRiUQXcpyud0,1904
472
485
  keras_hub/src/models/stable_diffusion_3/__init__.py,sha256=ZKYQuaRObyhKq8GVAHmoRvlXp6FpU8ChvutVCHyXKuc,343
473
486
  keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py,sha256=1K_B3d3fNn50eY84OgxVHyIHHZhmlJY03b71pMSmE9s,3246
474
487
  keras_hub/src/models/stable_diffusion_3/mmdit.py,sha256=emyDmtpJiFU_9crSDBC5CaXoZnM1Eti8uAQtwv2v8B0,42794
@@ -570,7 +583,7 @@ keras_hub/src/utils/openvino_utils.py,sha256=P1ZvedLv91LZD-UAgAo2dy6WC5305elh1qv
570
583
  keras_hub/src/utils/pipeline_model.py,sha256=jgzB6NQPSl0KOu08N-TazfOnXnUJbZjH2EXXhx25Ftg,9084
571
584
  keras_hub/src/utils/preset_utils.py,sha256=lyCg_PRcYH1Jy8lGKaO8sgpIbMrP-Ik66EbjGD4gizc,37677
572
585
  keras_hub/src/utils/python_utils.py,sha256=N8nWeO3san4YnGkffRXG3Ix7VEIMTKSN21FX5TuL7G8,202
573
- keras_hub/src/utils/tensor_utils.py,sha256=bGM0pK-x0R4640emul49GfSZ3p4OSvOaVzZZPlm6eiM,16957
586
+ keras_hub/src/utils/tensor_utils.py,sha256=tULr53SZLCczN_BD7XvbAq9c9bFVZTn7aYcLbqmbfx8,16982
574
587
  keras_hub/src/utils/coco/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
575
588
  keras_hub/src/utils/coco/coco_utils.py,sha256=x_QnUUvZ92zoFzMJugiInHORc4NrMdWVBkpp8BAYF6s,2586
576
589
  keras_hub/src/utils/imagenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -590,6 +603,7 @@ keras_hub/src/utils/transformers/convert_bart.py,sha256=Tk4h9Md9rwN5wjQbGIVrC7qz
590
603
  keras_hub/src/utils/transformers/convert_bert.py,sha256=4gQqXCJzC9QWdLPDUAq741K8t_kjPIET050YjUnLeDA,5977
591
604
  keras_hub/src/utils/transformers/convert_deit.py,sha256=ubcqYzMlhWTCE2S_TsXICCMmqjN9RsQPaw_70vArnjo,5306
592
605
  keras_hub/src/utils/transformers/convert_dinov2.py,sha256=Zmxz33hKJCcykQOcW8XhG_Yy1l8XqIYam1cjzM69-Mk,6986
606
+ keras_hub/src/utils/transformers/convert_dinov3.py,sha256=rZqowTASKSAQQ1HrwlD9_tY7VAQHY_C4_61ky5wUbvE,4448
593
607
  keras_hub/src/utils/transformers/convert_distilbert.py,sha256=SlfIRhSRk5c1ir2HGiDPiXa5XdOId_DbcnZO9lbwyZ8,6498
594
608
  keras_hub/src/utils/transformers/convert_esm.py,sha256=rOgGnNY37ZbYnoVC3L-Y-yGGAxTRmYtQV0nJoandH2Y,6214
595
609
  keras_hub/src/utils/transformers/convert_gemma.py,sha256=ElCgwBpSN5Q7rV5PJawTsoytPzs5ZjuwoY60YAe8y_A,6533
@@ -602,15 +616,16 @@ keras_hub/src/utils/transformers/convert_qwen.py,sha256=WUxMAEFVqRs7TRw7QU5TH3_e
602
616
  keras_hub/src/utils/transformers/convert_qwen3.py,sha256=LIormvCMWPq6X9Wo2eNbADjtFZ0nI7tFGZFBxmo4GKw,5700
603
617
  keras_hub/src/utils/transformers/convert_qwen3_moe.py,sha256=4Cr2haS20VNHF1iqKRpKeZ47baV0TAXg87zkCfl-JTg,8876
604
618
  keras_hub/src/utils/transformers/convert_qwen_moe.py,sha256=a7R28aln-PdAcNuKAXdrtzvslho2Co6GypChxLMKPpc,10618
619
+ keras_hub/src/utils/transformers/convert_smollm3.py,sha256=V2vWES85YSNXNx39I8OwAcOvSpb9KxUscrDr7ra-LPA,5281
605
620
  keras_hub/src/utils/transformers/convert_t5gemma.py,sha256=DPOwd61UhjspKuCsk3_EaNvSADGP_f8KLcZARHYVk5Y,9490
606
621
  keras_hub/src/utils/transformers/convert_vit.py,sha256=YAmXh519ecSgEO5B4g-aEQg1Bb_6ifFafLMqDTfLn_c,5259
607
- keras_hub/src/utils/transformers/preset_loader.py,sha256=_NX7T6ecEQ8I01FkaZApJf-u8JUymNplixR8vcriRlQ,5075
622
+ keras_hub/src/utils/transformers/preset_loader.py,sha256=alzuIEhDI6gLpEw05wPJVbOJ2LhwmLB_s7JhDqkb4ec,5364
608
623
  keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
609
624
  keras_hub/src/utils/transformers/export/gemma.py,sha256=xX_vfQwvFZ_-lQX4kgMNOGKL7fL_1yk7QyGYV2Qyly4,4699
610
625
  keras_hub/src/utils/transformers/export/hf_exporter.py,sha256=Qk52c6LIA2eMHUNY9Vy4STJSpnhLMdJ_t-3ljqhSr4k,5081
611
- keras_hub/tokenizers/__init__.py,sha256=kyFWYm4mb--U4xYU-2Gb1COM8xEFWNK6LcKxr8h9Ivc,4561
626
+ keras_hub/tokenizers/__init__.py,sha256=XFOxDmM1Mz9TxiE8ICZK_-yTTyRFywUUiVwRIzz2QZ8,4770
612
627
  keras_hub/utils/__init__.py,sha256=jXPqVGBpJr_PpYmqD8aDG-fRMlxH-ulqCR2SZMn288Y,646
613
- keras_hub_nightly-0.23.0.dev202510150419.dist-info/METADATA,sha256=kplsqZ2jhRdxM0KN1cXDibhuSWMWu2f3Mt41vZhyHv8,7395
614
- keras_hub_nightly-0.23.0.dev202510150419.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
615
- keras_hub_nightly-0.23.0.dev202510150419.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
616
- keras_hub_nightly-0.23.0.dev202510150419.dist-info/RECORD,,
628
+ keras_hub_nightly-0.24.0.dev202511080419.dist-info/METADATA,sha256=saL0T6V_Dp7dtdpj1eFLovEcieSzxdMePvkYHKgrqRg,7395
629
+ keras_hub_nightly-0.24.0.dev202511080419.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
630
+ keras_hub_nightly-0.24.0.dev202511080419.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
631
+ keras_hub_nightly-0.24.0.dev202511080419.dist-info/RECORD,,