keras-hub-nightly 0.23.0.dev202510080414__py3-none-any.whl → 0.24.0.dev202511080419__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (52) hide show
  1. keras_hub/layers/__init__.py +6 -0
  2. keras_hub/models/__init__.py +36 -0
  3. keras_hub/src/layers/modeling/reversible_embedding.py +6 -0
  4. keras_hub/src/models/causal_lm.py +5 -0
  5. keras_hub/src/models/depth_anything/depth_anything_presets.py +38 -1
  6. keras_hub/src/models/dinov2/dinov2_layers.py +3 -1
  7. keras_hub/src/models/dinov3/__init__.py +5 -0
  8. keras_hub/src/models/dinov3/dinov3_backbone.py +263 -0
  9. keras_hub/src/models/dinov3/dinov3_image_converter.py +8 -0
  10. keras_hub/src/models/dinov3/dinov3_layers.py +1013 -0
  11. keras_hub/src/models/dinov3/dinov3_presets.py +4 -0
  12. keras_hub/src/models/gemma/gemma_presets.py +22 -0
  13. keras_hub/src/models/gemma3/gemma3_presets.py +39 -0
  14. keras_hub/src/models/image_to_image.py +5 -0
  15. keras_hub/src/models/inpaint.py +5 -0
  16. keras_hub/src/models/mobilenetv5/__init__.py +9 -0
  17. keras_hub/src/models/mobilenetv5/mobilenetv5_attention.py +699 -0
  18. keras_hub/src/models/mobilenetv5/mobilenetv5_backbone.py +396 -0
  19. keras_hub/src/models/mobilenetv5/mobilenetv5_blocks.py +890 -0
  20. keras_hub/src/models/mobilenetv5/mobilenetv5_builder.py +436 -0
  21. keras_hub/src/models/mobilenetv5/mobilenetv5_image_classifier.py +157 -0
  22. keras_hub/src/models/mobilenetv5/mobilenetv5_image_classifier_preprocessor.py +16 -0
  23. keras_hub/src/models/mobilenetv5/mobilenetv5_image_converter.py +10 -0
  24. keras_hub/src/models/mobilenetv5/mobilenetv5_layers.py +462 -0
  25. keras_hub/src/models/mobilenetv5/mobilenetv5_presets.py +15 -0
  26. keras_hub/src/models/mobilenetv5/mobilenetv5_utils.py +146 -0
  27. keras_hub/src/models/parseq/__init__.py +5 -0
  28. keras_hub/src/models/parseq/parseq_presets.py +15 -0
  29. keras_hub/src/models/qwen3_moe/__init__.py +5 -0
  30. keras_hub/src/models/qwen3_moe/qwen3_moe_presets.py +30 -0
  31. keras_hub/src/models/siglip/siglip_presets.py +15 -0
  32. keras_hub/src/models/smollm3/smollm3_backbone.py +211 -0
  33. keras_hub/src/models/smollm3/smollm3_causal_lm.py +310 -0
  34. keras_hub/src/models/smollm3/smollm3_causal_lm_preprocessor.py +84 -0
  35. keras_hub/src/models/smollm3/smollm3_layers.py +757 -0
  36. keras_hub/src/models/smollm3/smollm3_tokenizer.py +60 -0
  37. keras_hub/src/models/smollm3/smollm3_utils.py +56 -0
  38. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +3 -3
  39. keras_hub/src/models/text_to_image.py +5 -0
  40. keras_hub/src/utils/preset_utils.py +9 -2
  41. keras_hub/src/utils/tensor_utils.py +3 -1
  42. keras_hub/src/utils/timm/convert_mobilenetv5.py +321 -0
  43. keras_hub/src/utils/timm/preset_loader.py +8 -4
  44. keras_hub/src/utils/transformers/convert_dinov3.py +106 -0
  45. keras_hub/src/utils/transformers/convert_smollm3.py +139 -0
  46. keras_hub/src/utils/transformers/preset_loader.py +6 -0
  47. keras_hub/src/version.py +1 -1
  48. keras_hub/tokenizers/__init__.py +6 -0
  49. {keras_hub_nightly-0.23.0.dev202510080414.dist-info → keras_hub_nightly-0.24.0.dev202511080419.dist-info}/METADATA +1 -1
  50. {keras_hub_nightly-0.23.0.dev202510080414.dist-info → keras_hub_nightly-0.24.0.dev202511080419.dist-info}/RECORD +52 -24
  51. {keras_hub_nightly-0.23.0.dev202510080414.dist-info → keras_hub_nightly-0.24.0.dev202511080419.dist-info}/WHEEL +0 -0
  52. {keras_hub_nightly-0.23.0.dev202510080414.dist-info → keras_hub_nightly-0.24.0.dev202511080419.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,139 @@
1
+ import numpy as np
2
+
3
+ from keras_hub.src.models.smollm3.smollm3_backbone import SmolLM3Backbone
4
+ from keras_hub.src.utils.preset_utils import load_json
5
+
6
+ backbone_cls = SmolLM3Backbone
7
+
8
+
9
+ def convert_backbone_config(transformers_config):
10
+ return {
11
+ "vocabulary_size": transformers_config["vocab_size"],
12
+ "hidden_dim": transformers_config["hidden_size"],
13
+ "num_layers": transformers_config["num_hidden_layers"],
14
+ "num_attention_heads": transformers_config["num_attention_heads"],
15
+ "num_key_value_heads": transformers_config["num_key_value_heads"],
16
+ "intermediate_dim": transformers_config["intermediate_size"],
17
+ "layer_norm_epsilon": transformers_config[
18
+ "rms_norm_eps"
19
+ ], # Using rms_norm_eps as layer_norm_epsilon
20
+ "max_position_embeddings": transformers_config[
21
+ "max_position_embeddings"
22
+ ],
23
+ "rope_theta": transformers_config["rope_theta"],
24
+ # partial_rotary_factor is not explicitly in config.json
25
+ # but is inherited from the default value in the
26
+ # `_compute_default_rope_parameters()` function
27
+ "partial_rotary_factor": 1.0,
28
+ "attention_bias": transformers_config["attention_bias"],
29
+ "attention_dropout": transformers_config["attention_dropout"],
30
+ # Despite the name, no_rope_layers: 1 = HAS RoPE, 0 = NO RoPE
31
+ "rope_layer_enabled_list": [
32
+ bool(x) for x in transformers_config["no_rope_layers"]
33
+ ],
34
+ "layer_types": transformers_config["layer_types"],
35
+ "mlp_bias": transformers_config["mlp_bias"],
36
+ }
37
+
38
+
39
+ def convert_weights(backbone, loader, transformers_config):
40
+ loader.port_weight(
41
+ keras_variable=backbone.get_layer("token_embedding").embeddings,
42
+ hf_weight_key="model.embed_tokens.weight",
43
+ )
44
+
45
+ def transpose_and_reshape(x, shape):
46
+ return np.reshape(np.transpose(x), shape)
47
+
48
+ for i in range(backbone.num_layers):
49
+ decoder_layer = backbone.get_layer(f"transformer_layer_{i}")
50
+
51
+ # Input layernorm
52
+ loader.port_weight(
53
+ keras_variable=decoder_layer.input_layernorm.scale,
54
+ hf_weight_key=f"model.layers.{i}.input_layernorm.weight",
55
+ )
56
+
57
+ # Attention layers
58
+ ## Query
59
+ loader.port_weight(
60
+ keras_variable=decoder_layer.self_attn.q_proj.kernel,
61
+ hf_weight_key=f"model.layers.{i}.self_attn.q_proj.weight",
62
+ hook_fn=transpose_and_reshape,
63
+ )
64
+ ## Key
65
+ loader.port_weight(
66
+ keras_variable=decoder_layer.self_attn.k_proj.kernel,
67
+ hf_weight_key=f"model.layers.{i}.self_attn.k_proj.weight",
68
+ hook_fn=transpose_and_reshape,
69
+ )
70
+ ## Value
71
+ loader.port_weight(
72
+ keras_variable=decoder_layer.self_attn.v_proj.kernel,
73
+ hf_weight_key=f"model.layers.{i}.self_attn.v_proj.weight",
74
+ hook_fn=transpose_and_reshape,
75
+ )
76
+ ## Output
77
+ loader.port_weight(
78
+ keras_variable=decoder_layer.self_attn.o_proj.kernel,
79
+ hf_weight_key=f"model.layers.{i}.self_attn.o_proj.weight",
80
+ hook_fn=transpose_and_reshape,
81
+ )
82
+
83
+ # MLP layers
84
+ loader.port_weight(
85
+ keras_variable=decoder_layer.mlp.up_proj.kernel,
86
+ hf_weight_key=f"model.layers.{i}.mlp.up_proj.weight",
87
+ # rearrange_patterns="b a -> a b",
88
+ hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
89
+ )
90
+ loader.port_weight(
91
+ keras_variable=decoder_layer.mlp.down_proj.kernel,
92
+ hf_weight_key=f"model.layers.{i}.mlp.down_proj.weight",
93
+ # rearrange_patterns="b a -> a b",
94
+ hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
95
+ )
96
+ loader.port_weight(
97
+ keras_variable=decoder_layer.mlp.gate_proj.kernel,
98
+ hf_weight_key=f"model.layers.{i}.mlp.gate_proj.weight",
99
+ # rearrange_patterns="b a -> a b",
100
+ hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
101
+ )
102
+
103
+ # Feedforward layernorm
104
+ loader.port_weight(
105
+ keras_variable=decoder_layer.post_attention_layernorm.scale,
106
+ hf_weight_key=f"model.layers.{i}.post_attention_layernorm.weight",
107
+ )
108
+
109
+ # Final normalization layer
110
+ loader.port_weight(
111
+ keras_variable=backbone.get_layer("sequence_output_layernorm").scale,
112
+ hf_weight_key="model.norm.weight",
113
+ )
114
+
115
+ backbone.training = False
116
+
117
+ return backbone
118
+
119
+
120
+ def convert_tokenizer(cls, preset, **kwargs):
121
+ tokenizer_config = load_json(preset, "tokenizer.json")
122
+ vocab = tokenizer_config["model"]["vocab"]
123
+ merges = tokenizer_config["model"]["merges"]
124
+ merges = [" ".join(item) for item in merges]
125
+
126
+ # Load all special tokens with the exception of "reserved" ones.
127
+ special_tokens = set()
128
+ for token in tokenizer_config["added_tokens"]:
129
+ if not token["content"].startswith("<|reserved_special_token_"):
130
+ vocab[token["content"]] = token["id"]
131
+ special_tokens.add(token["content"])
132
+
133
+ kwargs.update(
134
+ {
135
+ "unsplittable_tokens": list(special_tokens),
136
+ }
137
+ )
138
+
139
+ return cls(vocabulary=vocab, merges=merges, **kwargs)
@@ -8,6 +8,7 @@ from keras_hub.src.utils.transformers import convert_bart
8
8
  from keras_hub.src.utils.transformers import convert_bert
9
9
  from keras_hub.src.utils.transformers import convert_deit
10
10
  from keras_hub.src.utils.transformers import convert_dinov2
11
+ from keras_hub.src.utils.transformers import convert_dinov3
11
12
  from keras_hub.src.utils.transformers import convert_distilbert
12
13
  from keras_hub.src.utils.transformers import convert_esm
13
14
  from keras_hub.src.utils.transformers import convert_gemma
@@ -20,6 +21,7 @@ from keras_hub.src.utils.transformers import convert_qwen
20
21
  from keras_hub.src.utils.transformers import convert_qwen3
21
22
  from keras_hub.src.utils.transformers import convert_qwen3_moe
22
23
  from keras_hub.src.utils.transformers import convert_qwen_moe
24
+ from keras_hub.src.utils.transformers import convert_smollm3
23
25
  from keras_hub.src.utils.transformers import convert_t5gemma
24
26
  from keras_hub.src.utils.transformers import convert_vit
25
27
  from keras_hub.src.utils.transformers.safetensor_utils import SafetensorLoader
@@ -41,6 +43,8 @@ class TransformersPresetLoader(PresetLoader):
41
43
  self.converter = convert_distilbert
42
44
  elif model_type in ("dinov2", "dinov2_with_registers"):
43
45
  self.converter = convert_dinov2
46
+ elif model_type == "dinov3_vit":
47
+ self.converter = convert_dinov3
44
48
  elif model_type == "esm":
45
49
  self.converter = convert_esm
46
50
  elif model_type in ("gemma", "gemma2"):
@@ -66,6 +70,8 @@ class TransformersPresetLoader(PresetLoader):
66
70
  self.converter = convert_qwen3_moe
67
71
  elif model_type == "qwen3":
68
72
  self.converter = convert_qwen3
73
+ elif model_type == "smollm3":
74
+ self.converter = convert_smollm3
69
75
  elif model_type == "t5gemma":
70
76
  self.converter = convert_t5gemma
71
77
  else:
keras_hub/src/version.py CHANGED
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.23.0.dev202510080414"
4
+ __version__ = "0.24.0.dev202511080419"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -93,6 +93,12 @@ from keras_hub.src.models.roformer_v2.roformer_v2_tokenizer import (
93
93
  from keras_hub.src.models.siglip.siglip_tokenizer import (
94
94
  SigLIPTokenizer as SigLIPTokenizer,
95
95
  )
96
+ from keras_hub.src.models.smollm3.smollm3_tokenizer import (
97
+ SmolLM3Tokenizer as SmolLM3Tokenizer,
98
+ )
99
+ from keras_hub.src.models.smollm3.smollm3_tokenizer import (
100
+ SmolLM3Tokenizer as SmolLMTokenizer,
101
+ )
96
102
  from keras_hub.src.models.t5.t5_tokenizer import T5Tokenizer as T5Tokenizer
97
103
  from keras_hub.src.models.t5gemma.t5gemma_tokenizer import (
98
104
  T5GemmaTokenizer as T5GemmaTokenizer,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.23.0.dev202510080414
3
+ Version: 0.24.0.dev202511080419
4
4
  Summary: Pretrained models for Keras.
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License-Expression: Apache-2.0
@@ -1,11 +1,11 @@
1
1
  keras_hub/__init__.py,sha256=bJbUZkqwhZvTb1Tqx1fbkq6mzBYiEyq-Hin3oQIkhdE,558
2
- keras_hub/layers/__init__.py,sha256=8FTy8HwjgFdBvbl_QKTxXmOc13TXjUUBgLYrSTtkc0M,5807
2
+ keras_hub/layers/__init__.py,sha256=hY5hZX5oOxRTFxfPe2hGhrHWJwF1kB7QiwITSS4Xp2A,6061
3
3
  keras_hub/metrics/__init__.py,sha256=KYalsMPBnfwim9BdGHFfJ5WxUKFXOQ1QoKIMT_0lwlM,439
4
- keras_hub/models/__init__.py,sha256=wy75CGuTVxRIEXSCqmXgMyf23vUbuRbByWrlAaPWXB0,30737
4
+ keras_hub/models/__init__.py,sha256=XGYkwfBVZiPw5ZjSV5S_n3FnkPf06yYNzxZjXMhiX70,32166
5
5
  keras_hub/samplers/__init__.py,sha256=aFQIkiqbZpi8vjrPp2MVII4QUfE-eQjra5fMeHsoy7k,886
6
6
  keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
7
  keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
8
- keras_hub/src/version.py,sha256=aKLGM4XgAQe-vXwGPqbAw1auq51nWvQ5ft_VmhQ2w5Q,222
8
+ keras_hub/src/version.py,sha256=2MZs2VoTZ2fpUxnyzQ5IyB-9fpBkude4IPhTHxT_H_4,222
9
9
  keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
10
  keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
11
  keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
@@ -16,7 +16,7 @@ keras_hub/src/layers/modeling/f_net_encoder.py,sha256=zkVeO5Nk_kBZCUGq2LeDGmPEIM
16
16
  keras_hub/src/layers/modeling/masked_lm_head.py,sha256=no6XQb76KB2cUiksYC0MSdyeDOK7pn8MY6cmdCDxpKs,9015
17
17
  keras_hub/src/layers/modeling/non_max_supression.py,sha256=yAkAH1CCj_tYXgQTav39IRr_Uxn8hmzJgIxqbYQyZY8,22565
18
18
  keras_hub/src/layers/modeling/position_embedding.py,sha256=vqmmUbMU-41Ns6qwR_4N1IvVsV0arGlkiTD7D7NMS2s,4562
19
- keras_hub/src/layers/modeling/reversible_embedding.py,sha256=aBruxDo3nHWUpQxcS2kSLUGhV_obUPKpZKXv281AzzQ,10898
19
+ keras_hub/src/layers/modeling/reversible_embedding.py,sha256=PVZ3G-2pIYp7fU4d6GAB9OpMUPcNGRye0hg_7XG2QBY,11096
20
20
  keras_hub/src/layers/modeling/rms_normalization.py,sha256=Ylnc9vkDw1A_ZqiKpQ09jVTAGumS5rspjdQOkH-mxf4,1084
21
21
  keras_hub/src/layers/modeling/rotary_embedding.py,sha256=uKcEyidierqdEs67QYPMQrJ1u0gxqJYT22_YGnhkQ-I,6546
22
22
  keras_hub/src/layers/modeling/sine_position_encoding.py,sha256=aLoadvQW1eeivac8gzymP740NXppblZ2C_OlErLMfN4,4063
@@ -44,7 +44,7 @@ keras_hub/src/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hS
44
44
  keras_hub/src/models/audio_to_text.py,sha256=XoOjXtKBX6K1fz-zOXcdVo3FpjuxCMnJZh2LQcYXb_0,2726
45
45
  keras_hub/src/models/audio_to_text_preprocessor.py,sha256=GS-WWyJ6aSsPRxi_0bxvxA00h2mT2FEwSdAoQXAUYVI,3249
46
46
  keras_hub/src/models/backbone.py,sha256=BdqPsne7lIITIxn6jY6AN4vZ-Rc9VnpqTxvVNR3CS7M,12210
47
- keras_hub/src/models/causal_lm.py,sha256=FHGpbyFrDrnPSv5eRLfDgcpvjS6jDhSokMRl-kuumyg,18164
47
+ keras_hub/src/models/causal_lm.py,sha256=x86PTAzoBpAdJyenPRNNBAkazUjcRLr4wb2hMs5SrQ0,18344
48
48
  keras_hub/src/models/causal_lm_preprocessor.py,sha256=nxl-sfmCfkfl6JmVRASa878QbaZUgWSA6Jdu48x4-dY,7155
49
49
  keras_hub/src/models/depth_estimator.py,sha256=JR7wtunOPrfEoDkLspoZnL2ItWhZFDeAxxw2vue5QLs,8992
50
50
  keras_hub/src/models/depth_estimator_preprocessor.py,sha256=2iE8NAUyiD2AvjZwNoXKUaOUogcE1fRzTNXLQ75GZpQ,2822
@@ -53,8 +53,8 @@ keras_hub/src/models/image_classifier.py,sha256=yt6cjhPfqs8A_eWXBsXdXFzn-aRgH2rV
53
53
  keras_hub/src/models/image_classifier_preprocessor.py,sha256=Bf7jSqHB1hX2ZWoWQS4GcXNOY_EjeoJi-_vtzCAqw4o,2690
54
54
  keras_hub/src/models/image_segmenter.py,sha256=C1bzIO59pG58iist5GLn_qnlotDpcAVxPV_8a68BkAc,2876
55
55
  keras_hub/src/models/image_segmenter_preprocessor.py,sha256=d7I2Hk0SKWyKpjRS6WYccmh_CYQBpWoj0JF5RRrU6rw,3748
56
- keras_hub/src/models/image_to_image.py,sha256=IJLZ6svgvcQvypwF6oe4SbJj_Zuk2-CrgHFBQcsY7n8,16753
57
- keras_hub/src/models/inpaint.py,sha256=fxZZrheYIK1rI6BjqZsxt9G2U0afMZR62Z87ZzuSNrQ,20815
56
+ keras_hub/src/models/image_to_image.py,sha256=nblRd-16n5_JxKIH6IJU7bHTFRGxyCpKUilg6VjWuek,16933
57
+ keras_hub/src/models/inpaint.py,sha256=oqdj0Q9dNG54g6sNQ5foto8saPd5Sx8kYZuHCZPBqrY,20995
58
58
  keras_hub/src/models/masked_lm.py,sha256=uXO_dE_hILlOC9jNr6oK6IHi9IGUqLyNGvr6nMt8Rk0,3576
59
59
  keras_hub/src/models/masked_lm_preprocessor.py,sha256=g8vrnyYwqdnSw5xppROM1Gzo_jmMWKYZoQCsKdfrFKk,5656
60
60
  keras_hub/src/models/object_detector.py,sha256=oAK42fFBKuN0G_WM-DhygFkgQ0KsEwU_ZiU4umHywqc,3757
@@ -65,7 +65,7 @@ keras_hub/src/models/seq_2_seq_lm_preprocessor.py,sha256=DJmm4VTt8AdLtq1k9YKl_VR
65
65
  keras_hub/src/models/task.py,sha256=e9zK2zHgeOkjNACcCmAf-lGuEGF_eRoP_lKlirdIXuk,14817
66
66
  keras_hub/src/models/text_classifier.py,sha256=B6cTYDbDZW8vRvenXrLwgMMVIYMb7Pr14GvX8C_wclQ,4159
67
67
  keras_hub/src/models/text_classifier_preprocessor.py,sha256=EoWp-GHnaLnAKTdAzDmC-soAV92ATF3QozdubdV2WXI,4722
68
- keras_hub/src/models/text_to_image.py,sha256=NIy4S6Fh8MsbNiskAFhjmFXgRiiFqn_rOvpGOO6LlF0,13390
68
+ keras_hub/src/models/text_to_image.py,sha256=Y2JcTBLb_l6_nnzASOXDziqP91tCPFN6m9wv6dlSe00,13570
69
69
  keras_hub/src/models/text_to_image_preprocessor.py,sha256=SKMxEABl5sy1QIA3irHTZKs7VgMdx9Cxy4IaxDU6faM,1211
70
70
  keras_hub/src/models/albert/__init__.py,sha256=rR6q_-8FujB1FXp6r4KOI7xi4gFjtAhQwXjp-MIhiyg,257
71
71
  keras_hub/src/models/albert/albert_backbone.py,sha256=4NQFo8lhv8rFiNIwQeZxxKxFwT3nKcCt36FUa6oPGok,10073
@@ -169,13 +169,18 @@ keras_hub/src/models/depth_anything/depth_anything_depth_estimator_preprocessor.
169
169
  keras_hub/src/models/depth_anything/depth_anything_image_converter.py,sha256=Xutwc8IyklFilDcc4psNBwPGRDcFlzalWXsHvEz7rUc,395
170
170
  keras_hub/src/models/depth_anything/depth_anything_layers.py,sha256=_43iEE7F8P7BL4xssjpPeFyhiDk4gGLu-wPxuqQ-nT8,27739
171
171
  keras_hub/src/models/depth_anything/depth_anything_loss.py,sha256=GJqzvLkCZrWsMDO6T2Gt_9-TYJqorfNnyOXSNgLUjQg,3389
172
- keras_hub/src/models/depth_anything/depth_anything_presets.py,sha256=mJ1Kg6J5lP1GkrEDH_qS1XJ__98Tjt5noRZVZaHCn9k,121
172
+ keras_hub/src/models/depth_anything/depth_anything_presets.py,sha256=A3Afr06IRL02u-9EPNTTiGb6DgzjQavSwVmWHz0OoMc,1536
173
173
  keras_hub/src/models/depth_anything/interpolate.py,sha256=qwrPGP6wA4jZ-XcSeulhkyxPDiMRxHlC92EqSd0H5Tk,2041
174
174
  keras_hub/src/models/dinov2/__init__.py,sha256=qacZi82EfAloVND4gDLZjqgR5_yVdz_dc4mMKyCsjOA,257
175
175
  keras_hub/src/models/dinov2/dinov2_backbone.py,sha256=QH3lzE1EnxTcOSii9KS1Qx3lq0XcZMsvElB7AL_ejZY,10672
176
176
  keras_hub/src/models/dinov2/dinov2_image_converter.py,sha256=gfFROdYV5rOzo3kJFlRvRHYjek8z9YirKfrFwlVJO3g,342
177
- keras_hub/src/models/dinov2/dinov2_layers.py,sha256=UCcia2kWA1O37SMmUbyhUcSXmUpLfNjk1E6mPTPDrF0,33647
177
+ keras_hub/src/models/dinov2/dinov2_layers.py,sha256=wo80Re043Gjly-XE-sT01QAYq3h793zhmU-Nb6SFN4g,33702
178
178
  keras_hub/src/models/dinov2/dinov2_presets.py,sha256=ho493GPH98K4LH1E54UV2qZZ4h7Un9ylbBmMQjNoKh4,2937
179
+ keras_hub/src/models/dinov3/__init__.py,sha256=AI7vTZJBG6Ygb48o6pXtHzxKk0Rek3p7-HffD-Y48cc,257
180
+ keras_hub/src/models/dinov3/dinov3_backbone.py,sha256=WDHipJSG10seRzYG_hARifF52wqhj9enkhuZ6mgJmjw,10511
181
+ keras_hub/src/models/dinov3/dinov3_image_converter.py,sha256=_oHDcI2CoxjbSLxLfkK1zEPcf4Goy0S66igmrXt58cQ,342
182
+ keras_hub/src/models/dinov3/dinov3_layers.py,sha256=w5K2btblrgrULqzPQdbvtkyR5Px2UZkqcZQ7jq2K3Uk,37169
183
+ keras_hub/src/models/dinov3/dinov3_presets.py,sha256=AXXdrgrs9WBrsGlac0TgWV0DIPnvKdlxD3kUhbii1sk,114
179
184
  keras_hub/src/models/distil_bert/__init__.py,sha256=3Z0w-Mt3aOR0u9RGzjHQ7B3J3qBF2pGjupDGQ9yyzoc,303
180
185
  keras_hub/src/models/distil_bert/distil_bert_backbone.py,sha256=rnAf_GokB3wAeJwVZtgUKQO_bKJIa8RavhL_ykTJpNw,6440
181
186
  keras_hub/src/models/distil_bert/distil_bert_masked_lm.py,sha256=axeZd5UcxFr3_Q8H4yG10CINh93wbcyjlPLauqe5N9E,4289
@@ -236,7 +241,7 @@ keras_hub/src/models/gemma/gemma_backbone.py,sha256=pAAVaVKB6nlA0PncVnFXvNgJV7Se
236
241
  keras_hub/src/models/gemma/gemma_causal_lm.py,sha256=3OXaIXlrKqMIuUnBk-bUz-0SYFL-XkkQTWm8qRY2YII,16770
237
242
  keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py,sha256=bpKkEurWIfa6Kp9s4pz84-sBDSA6ZFNHP8nXG1fFQrg,2912
238
243
  keras_hub/src/models/gemma/gemma_decoder_block.py,sha256=f5UsRO-VNsKJfm_WHVJWK4UahhzYm3sKprJ8jjr-zm4,7628
239
- keras_hub/src/models/gemma/gemma_presets.py,sha256=6Okl8USxHhp8EvVebNgo7JDkO527fx0aHdcRy9WNm9k,7467
244
+ keras_hub/src/models/gemma/gemma_presets.py,sha256=wAH7mjz9tbQqqdwajU2dilGytnWK1qc-aTIVLtjpTWg,8263
240
245
  keras_hub/src/models/gemma/gemma_tokenizer.py,sha256=FhcyNL4lo63MqOhTQPFr07-u3BddL0fVM4TmOm8ku-I,2622
241
246
  keras_hub/src/models/gemma/rms_normalization.py,sha256=fku-JEo2sNy-ytX7ySD1sRzdhRAPmYex_z8oFk1NiG8,833
242
247
  keras_hub/src/models/gemma3/__init__.py,sha256=oPFadkdK5DRLD6sYx83iTetY5daWuSzmJilLjokHcbU,257
@@ -247,7 +252,7 @@ keras_hub/src/models/gemma3/gemma3_causal_lm_preprocessor.py,sha256=vjt4N-zr0Eb5
247
252
  keras_hub/src/models/gemma3/gemma3_decoder_block.py,sha256=CYwYazqwakLNfhOLBl_8Q2TVZcMcOxMtiZtuVlk_hoo,11470
248
253
  keras_hub/src/models/gemma3/gemma3_image_converter.py,sha256=czi5JrTyKiK0nFzvonviBIX8jjvLHqvGNA9RyheB31k,536
249
254
  keras_hub/src/models/gemma3/gemma3_interleave_embeddings.py,sha256=CfYdudk5En9iU6vEnrcrEWIztloD1r8VzF2extqAhAM,4616
250
- keras_hub/src/models/gemma3/gemma3_presets.py,sha256=FGAHYE4HTLuiceuiCKBJtc1aNd7OgMB59KD0s6Ba_Fg,6105
255
+ keras_hub/src/models/gemma3/gemma3_presets.py,sha256=1GZSwsGRA19RllhZPR-kFjH5y9A6308V3TYfqHAnXUw,7744
251
256
  keras_hub/src/models/gemma3/gemma3_tokenizer.py,sha256=ZaBclFIwzJkSXDuZMBQLHUKV8RWEdZ_dsJMvMcc3qXw,3215
252
257
  keras_hub/src/models/gemma3/gemma3_vision_encoder.py,sha256=7XI0oBjIfJItV5w90t5bWb3C2KzjhvDnIC7wjIq4Cns,20850
253
258
  keras_hub/src/models/gemma3/rms_normalization.py,sha256=fku-JEo2sNy-ytX7ySD1sRzdhRAPmYex_z8oFk1NiG8,833
@@ -321,6 +326,17 @@ keras_hub/src/models/mobilenet/mobilenet_image_classifier_preprocessor.py,sha256
321
326
  keras_hub/src/models/mobilenet/mobilenet_image_converter.py,sha256=a3Ka0UYYK5wHSOjf2oMHSgofRazTAeUfttklVefq14w,360
322
327
  keras_hub/src/models/mobilenet/mobilenet_presets.py,sha256=hR_3xxI_PigE8UprXW4lAuKRa3LFGdidBaN8LklxwRQ,1895
323
328
  keras_hub/src/models/mobilenet/util.py,sha256=S7j4UacmVIJ3fU8cymyAoK49eHcpWIKTOyUQiEjcbzQ,721
329
+ keras_hub/src/models/mobilenetv5/__init__.py,sha256=UBySIjlMZeXRpef3FJMpA8w--XbPDcO-up-4zwYJQG0,305
330
+ keras_hub/src/models/mobilenetv5/mobilenetv5_attention.py,sha256=rH4cp1B5_r8g7gKvDdMvfEGfmMHUB2OMEbWQbX9yUMg,26499
331
+ keras_hub/src/models/mobilenetv5/mobilenetv5_backbone.py,sha256=y19FpVh0M3w9jSmP34E-GixdjMsU2cEJKrtjLcFfGZU,17167
332
+ keras_hub/src/models/mobilenetv5/mobilenetv5_blocks.py,sha256=aw2H-duaCkxGSHB-nKnG8nQhAPxNkmlPUn0FHDb_cTs,34026
333
+ keras_hub/src/models/mobilenetv5/mobilenetv5_builder.py,sha256=_vgjuqJq9GXlccKaL783q77rgtzfa0Oc9aNOhGWeprc,17092
334
+ keras_hub/src/models/mobilenetv5/mobilenetv5_image_classifier.py,sha256=BvL0yClapvG9I5hNMUFuYCXXfnBsBGmKR0ICL6MQqrc,5944
335
+ keras_hub/src/models/mobilenetv5/mobilenetv5_image_classifier_preprocessor.py,sha256=4yhM71JqOzQWiCXTidWAMCNaaIO8QVq5vXl_129ylsI,602
336
+ keras_hub/src/models/mobilenetv5/mobilenetv5_image_converter.py,sha256=HroX3OOwajIz9CIqlcGf9K9MYUEQ86wifABy9ZGRql4,381
337
+ keras_hub/src/models/mobilenetv5/mobilenetv5_layers.py,sha256=wLyR_gTcqiNLUt86fhxhEbbhZH3YA9CbvMSPnA4vTvg,15889
338
+ keras_hub/src/models/mobilenetv5/mobilenetv5_presets.py,sha256=fkWhfnoXxalYFLCsnuT1_aMrP_A5txx8s41MgMVe_ro,481
339
+ keras_hub/src/models/mobilenetv5/mobilenetv5_utils.py,sha256=ij2Dfguotb6RGSXuX-MsxF8JBXBWLdSi0LfDOKGp2rk,4868
324
340
  keras_hub/src/models/moonshine/__init__.py,sha256=WK_9Cy1dp5KplNAaTsaJbd-2DGLsiHQsIL5ZnXuCbDQ,275
325
341
  keras_hub/src/models/moonshine/moonshine_audio_converter.py,sha256=FnvR7SP44uVOsA3g9azUhQjsVg809eJ5nqoJZQ-DAq0,11854
326
342
  keras_hub/src/models/moonshine/moonshine_audio_to_text.py,sha256=dXFtjaxL1jpcIAiiZY1-kcNL-S4RiRJiAC2uR_a3Fyc,15865
@@ -347,12 +363,13 @@ keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=5yM_jUtrFsW
347
363
  keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=Q_zfHEjGTtXEiCwjoJc2g6HjmoNoLgSDRNfRvIsf0dA,12989
348
364
  keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=ljTiADHo0Ok88q-jVzwJIle2C8xcxnudLTsBLzIySaM,2415
349
365
  keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=SbWanwCoONSwgiWQsc6lFdvhqKZ-zDW42XzQt8CNMtU,18311
350
- keras_hub/src/models/parseq/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
366
+ keras_hub/src/models/parseq/__init__.py,sha256=BedkGhH5vJ-sm0gxGi3xfDiS0JN-CkOvGGQUBeYFwV4,257
351
367
  keras_hub/src/models/parseq/parseq_backbone.py,sha256=FX28p7VZerjoHwlyfrvht3Pibl9GlTczDxo1iXtO6cA,4767
352
368
  keras_hub/src/models/parseq/parseq_causal_lm.py,sha256=fhxhXCOgrIfe5aFimWz_w31VOZj5nb6w9Mx0kuzm718,17187
353
369
  keras_hub/src/models/parseq/parseq_causal_lm_preprocessor.py,sha256=2pVdqEepiSQf8Z01J1qKoTRbLeQGhWtomjKw1Gaxrhk,6057
354
370
  keras_hub/src/models/parseq/parseq_decoder.py,sha256=R9yRlfwkk0q-HEchn5bW34qqTcEnCRDsD3Ru7ENi4F4,14442
355
371
  keras_hub/src/models/parseq/parseq_image_converter.py,sha256=cEFXRICZQ5lEf3qpgmfSBMMiDZI7PC-0kO5wb-kLYx4,342
372
+ keras_hub/src/models/parseq/parseq_presets.py,sha256=DAZuTCWcWe_1kxI8edhlYQ9xcwHNCtlDg4cTjg5GY8M,405
356
373
  keras_hub/src/models/parseq/parseq_tokenizer.py,sha256=SEbeYRxU7VzHuyTWKJK5hOhqq_DZqXvGALnG8MNCN3I,8164
357
374
  keras_hub/src/models/phi3/__init__.py,sha256=zIbf1MU-ks91mEkjTRJAsk51N3BBnXDF2JM1vO-13PQ,245
358
375
  keras_hub/src/models/phi3/phi3_attention.py,sha256=pojx23rG2NPqy0MRo_OspnxipJCZvexZ2V25xucimHY,9980
@@ -382,12 +399,14 @@ keras_hub/src/models/qwen3/qwen3_decoder.py,sha256=68s9jQj53zFmXE4-SGXKYHu546fXO
382
399
  keras_hub/src/models/qwen3/qwen3_layernorm.py,sha256=EJxjf7Pr6ufPQnNeuYQxkExzPjPk4PQxqMsoBeSEkDo,1073
383
400
  keras_hub/src/models/qwen3/qwen3_presets.py,sha256=eAqRbjLyRTSXcN-jnGHqoCHejKm2gmt8_zL4EPoE-JA,2518
384
401
  keras_hub/src/models/qwen3/qwen3_tokenizer.py,sha256=LmPtg0vprMchDvYfTj8m5PraXI2QS3-YgdIIpIm5iAs,1448
402
+ keras_hub/src/models/qwen3_moe/__init__.py,sha256=0jp5BHZ8O8cCrp4g6VWWDUwB5_fSDXvCVCSf6Q0UB6o,273
385
403
  keras_hub/src/models/qwen3_moe/qwen3_moe_attention.py,sha256=rZnzWA-cAhuWSuHSJfrNqf5_Cu0PNEe7PKbPNbhJdeM,13355
386
404
  keras_hub/src/models/qwen3_moe/qwen3_moe_backbone.py,sha256=gguc_M5akemEaQCklTDFiABSRa4nwa4IuDzlfzRRpKM,14618
387
405
  keras_hub/src/models/qwen3_moe/qwen3_moe_causal_lm.py,sha256=g3IlpuNzKbcAt_VBYnm895GBLQIPDuMP9eVbL44tf-A,13286
388
406
  keras_hub/src/models/qwen3_moe/qwen3_moe_causal_lm_preprocessor.py,sha256=CU5sH0bljNCPuN7sKNnP1FV-jexc12WK0HFU7RWsAvU,499
389
407
  keras_hub/src/models/qwen3_moe/qwen3_moe_decoder.py,sha256=lUmDkxrikv4s40tcT9a8muCbEbfUBN97nTFWQEelIJw,25926
390
408
  keras_hub/src/models/qwen3_moe/qwen3_moe_layernorm.py,sha256=T6BjJm93F37_0XrrqkWPPXXg4DFOt3f6Al0LDF8N15Y,1360
409
+ keras_hub/src/models/qwen3_moe/qwen3_moe_presets.py,sha256=CWImTWsUVYPcdN-RnvRlgQ_8vD7brLA0oq0ptuRxvR0,1144
391
410
  keras_hub/src/models/qwen3_moe/qwen3_moe_tokenizer.py,sha256=tDx1WSxmpiWn39NhzkQO-YUbdy713RYHKc_F-EUa6Tw,1473
392
411
  keras_hub/src/models/qwen_moe/__init__.py,sha256=5D8GUmVDsJs0J4sVZHcXOLkZf12U96l-WtwyVee4lu8,267
393
412
  keras_hub/src/models/qwen_moe/qwen_moe_attention.py,sha256=o0mcVTDMtElMYq3NSYRCfuYVdF-W8YDSU5ogensrVJg,13277
@@ -453,17 +472,23 @@ keras_hub/src/models/siglip/siglip_image_converter.py,sha256=yjYc0XOyL37WLlr-X6V
453
472
  keras_hub/src/models/siglip/siglip_layers.py,sha256=c20n6v3cFsI-Im9GBVTknhj_IpX79I4a-fajBKRMzQA,19893
454
473
  keras_hub/src/models/siglip/siglip_loss.py,sha256=n6zmOeL0o7Nwb5iaoEZfrxiAsQoqZ9yLIlaCJsAfTg4,1442
455
474
  keras_hub/src/models/siglip/siglip_preprocessor.py,sha256=r1Ej7hVwr5BudFYTHkjW5yc3lk4OYZD1s3t32lKkuec,5660
456
- keras_hub/src/models/siglip/siglip_presets.py,sha256=gOzSVhLskAthfzq8jWOtQWv14euaqS2ywcZlNfivDOI,13164
475
+ keras_hub/src/models/siglip/siglip_presets.py,sha256=jtIQrNcq14othG1QgwBEfozEmoHdXXW270qylQEmA8E,13864
457
476
  keras_hub/src/models/siglip/siglip_text_encoder.py,sha256=xOVvzyQHLX9ne30y4ussar99gNMXPXHYKlkbCX_On2Y,5380
458
477
  keras_hub/src/models/siglip/siglip_tokenizer.py,sha256=j_67JbIHJDRk-CbiemG2dgAO6lp3_0_JdnfroZ90G18,2579
459
478
  keras_hub/src/models/siglip/siglip_vision_encoder.py,sha256=CaNaFq5thBC3TUXXOf2qknk5vWsauM20ZoaDPYRnXcs,5927
479
+ keras_hub/src/models/smollm3/smollm3_backbone.py,sha256=9e8ydwy7X0stVEWgIJYt69vt6JYSCiYpM73w6oLxyoQ,7949
480
+ keras_hub/src/models/smollm3/smollm3_causal_lm.py,sha256=PWn2zPu0YS3uRvmjksmXKXpxehl8lvEHAXaO0u7nweM,12641
481
+ keras_hub/src/models/smollm3/smollm3_causal_lm_preprocessor.py,sha256=gbj7IhDbgA30AM80uG6BeI1yZmGd5yQ2VEaPWWyS9M4,3121
482
+ keras_hub/src/models/smollm3/smollm3_layers.py,sha256=lR33IynX-1G42L3hNzOBnnIx-INOzJguSQDAwIPaSIQ,26632
483
+ keras_hub/src/models/smollm3/smollm3_tokenizer.py,sha256=evOVM8pgZUkWLoXAwWiYRSNNFZ7KBv1WtFdLqpHdCQU,1877
484
+ keras_hub/src/models/smollm3/smollm3_utils.py,sha256=zAqtZTv1G--k-Dbjvk886OcmsuIxyYicRiUQXcpyud0,1904
460
485
  keras_hub/src/models/stable_diffusion_3/__init__.py,sha256=ZKYQuaRObyhKq8GVAHmoRvlXp6FpU8ChvutVCHyXKuc,343
461
486
  keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py,sha256=1K_B3d3fNn50eY84OgxVHyIHHZhmlJY03b71pMSmE9s,3246
462
487
  keras_hub/src/models/stable_diffusion_3/mmdit.py,sha256=emyDmtpJiFU_9crSDBC5CaXoZnM1Eti8uAQtwv2v8B0,42794
463
488
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py,sha256=BEtMwYaxrJxHpNT_E1wK-SPCBCp4hgbnX-UjgqGrQ7g,24362
464
489
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py,sha256=uNsNSQ4EFceGfIMzgjYWFMuL0XdfM58rubTcrCVPrts,5532
465
490
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py,sha256=2UIRz11DRbHJ7IVbkjpBjtbkZGC3-eYhMtVUWTmWMH8,6437
466
- keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py,sha256=x7Ez4L955MJE4ABtBy-63YpU9XpR0Ro8QWPzYYJs1yE,2167
491
+ keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py,sha256=n5hLzjw9rmMwH-jsn9ztiQklgJfkTcf8Offkz__Ltu0,2167
467
492
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py,sha256=-xmmCaoPc1ixJvyIBwVTW1yKBA-rP4nWReovcs7OLKE,4620
468
493
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py,sha256=crUT82moaPx8RVKrLtUHx1zry602f8DWItek9aFkojg,2903
469
494
  keras_hub/src/models/stable_diffusion_3/t5_encoder.py,sha256=oV7P1uwCKdGiD93zXq7kmqX0elMZQU4UvBa8wg6P1hs,5113
@@ -556,9 +581,9 @@ keras_hub/src/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSu
556
581
  keras_hub/src/utils/keras_utils.py,sha256=IWsbg-p-XVLuOkba8PAYNf9zDo4G2RkINLr58p12MhA,5291
557
582
  keras_hub/src/utils/openvino_utils.py,sha256=P1ZvedLv91LZD-UAgAo2dy6WC5305elh1qvgmdYQIGc,4512
558
583
  keras_hub/src/utils/pipeline_model.py,sha256=jgzB6NQPSl0KOu08N-TazfOnXnUJbZjH2EXXhx25Ftg,9084
559
- keras_hub/src/utils/preset_utils.py,sha256=vSs7U9cy0p6UqOEyGvudzL-o3mxl3FX22r4XH6rOgMg,37309
584
+ keras_hub/src/utils/preset_utils.py,sha256=lyCg_PRcYH1Jy8lGKaO8sgpIbMrP-Ik66EbjGD4gizc,37677
560
585
  keras_hub/src/utils/python_utils.py,sha256=N8nWeO3san4YnGkffRXG3Ix7VEIMTKSN21FX5TuL7G8,202
561
- keras_hub/src/utils/tensor_utils.py,sha256=bGM0pK-x0R4640emul49GfSZ3p4OSvOaVzZZPlm6eiM,16957
586
+ keras_hub/src/utils/tensor_utils.py,sha256=tULr53SZLCczN_BD7XvbAq9c9bFVZTn7aYcLbqmbfx8,16982
562
587
  keras_hub/src/utils/coco/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
563
588
  keras_hub/src/utils/coco/coco_utils.py,sha256=x_QnUUvZ92zoFzMJugiInHORc4NrMdWVBkpp8BAYF6s,2586
564
589
  keras_hub/src/utils/imagenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -568,15 +593,17 @@ keras_hub/src/utils/timm/convert_cspnet.py,sha256=9p1IF0B4UPbDTruQQXR6mJEUdhvQvH
568
593
  keras_hub/src/utils/timm/convert_densenet.py,sha256=fu8HBIQis5o3ib2tyI2qnmYScVrVIQySok8vTfa1qJ8,3393
569
594
  keras_hub/src/utils/timm/convert_efficientnet.py,sha256=SgEIlyyinS04qoQpEgh3WazHq544zNUCCpfmWh3EjSs,17100
570
595
  keras_hub/src/utils/timm/convert_mobilenet.py,sha256=XTqHOK4nJwigKefsw7ktWJtOgRpEVMO9MtRhuP5qP_k,9219
596
+ keras_hub/src/utils/timm/convert_mobilenetv5.py,sha256=B4qDcVH_v0dZCwcDmUnufbORbwpj-al8atnFMQX3bcg,12437
571
597
  keras_hub/src/utils/timm/convert_resnet.py,sha256=8JFkVtdpy5z9h83LJ97rD-a8FRejXPZvMNksNuStqjM,5834
572
598
  keras_hub/src/utils/timm/convert_vgg.py,sha256=MT5jGnLrzenPpe66Af_Lp1IdR9KGtsSrcmn6_UPqHvQ,2419
573
- keras_hub/src/utils/timm/preset_loader.py,sha256=4hULdq2K2hgPYTZR71PGV4YNDHLG1zcoxF9TXpg6fGE,3905
599
+ keras_hub/src/utils/timm/preset_loader.py,sha256=3bNmKinKjwc5-ToPCrT2dC2MsvD9tpIMzEKRknrnB5A,4190
574
600
  keras_hub/src/utils/transformers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
575
601
  keras_hub/src/utils/transformers/convert_albert.py,sha256=VdKclZpCxtDWq3UbUUQZf4fR9DJK_JYZ73B4O_G9skg,7695
576
602
  keras_hub/src/utils/transformers/convert_bart.py,sha256=Tk4h9Md9rwN5wjQbGIVrC7qzDpF8kI8qm-FKL8HlUok,14411
577
603
  keras_hub/src/utils/transformers/convert_bert.py,sha256=4gQqXCJzC9QWdLPDUAq741K8t_kjPIET050YjUnLeDA,5977
578
604
  keras_hub/src/utils/transformers/convert_deit.py,sha256=ubcqYzMlhWTCE2S_TsXICCMmqjN9RsQPaw_70vArnjo,5306
579
605
  keras_hub/src/utils/transformers/convert_dinov2.py,sha256=Zmxz33hKJCcykQOcW8XhG_Yy1l8XqIYam1cjzM69-Mk,6986
606
+ keras_hub/src/utils/transformers/convert_dinov3.py,sha256=rZqowTASKSAQQ1HrwlD9_tY7VAQHY_C4_61ky5wUbvE,4448
580
607
  keras_hub/src/utils/transformers/convert_distilbert.py,sha256=SlfIRhSRk5c1ir2HGiDPiXa5XdOId_DbcnZO9lbwyZ8,6498
581
608
  keras_hub/src/utils/transformers/convert_esm.py,sha256=rOgGnNY37ZbYnoVC3L-Y-yGGAxTRmYtQV0nJoandH2Y,6214
582
609
  keras_hub/src/utils/transformers/convert_gemma.py,sha256=ElCgwBpSN5Q7rV5PJawTsoytPzs5ZjuwoY60YAe8y_A,6533
@@ -589,15 +616,16 @@ keras_hub/src/utils/transformers/convert_qwen.py,sha256=WUxMAEFVqRs7TRw7QU5TH3_e
589
616
  keras_hub/src/utils/transformers/convert_qwen3.py,sha256=LIormvCMWPq6X9Wo2eNbADjtFZ0nI7tFGZFBxmo4GKw,5700
590
617
  keras_hub/src/utils/transformers/convert_qwen3_moe.py,sha256=4Cr2haS20VNHF1iqKRpKeZ47baV0TAXg87zkCfl-JTg,8876
591
618
  keras_hub/src/utils/transformers/convert_qwen_moe.py,sha256=a7R28aln-PdAcNuKAXdrtzvslho2Co6GypChxLMKPpc,10618
619
+ keras_hub/src/utils/transformers/convert_smollm3.py,sha256=V2vWES85YSNXNx39I8OwAcOvSpb9KxUscrDr7ra-LPA,5281
592
620
  keras_hub/src/utils/transformers/convert_t5gemma.py,sha256=DPOwd61UhjspKuCsk3_EaNvSADGP_f8KLcZARHYVk5Y,9490
593
621
  keras_hub/src/utils/transformers/convert_vit.py,sha256=YAmXh519ecSgEO5B4g-aEQg1Bb_6ifFafLMqDTfLn_c,5259
594
- keras_hub/src/utils/transformers/preset_loader.py,sha256=_NX7T6ecEQ8I01FkaZApJf-u8JUymNplixR8vcriRlQ,5075
622
+ keras_hub/src/utils/transformers/preset_loader.py,sha256=alzuIEhDI6gLpEw05wPJVbOJ2LhwmLB_s7JhDqkb4ec,5364
595
623
  keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
596
624
  keras_hub/src/utils/transformers/export/gemma.py,sha256=xX_vfQwvFZ_-lQX4kgMNOGKL7fL_1yk7QyGYV2Qyly4,4699
597
625
  keras_hub/src/utils/transformers/export/hf_exporter.py,sha256=Qk52c6LIA2eMHUNY9Vy4STJSpnhLMdJ_t-3ljqhSr4k,5081
598
- keras_hub/tokenizers/__init__.py,sha256=kyFWYm4mb--U4xYU-2Gb1COM8xEFWNK6LcKxr8h9Ivc,4561
626
+ keras_hub/tokenizers/__init__.py,sha256=XFOxDmM1Mz9TxiE8ICZK_-yTTyRFywUUiVwRIzz2QZ8,4770
599
627
  keras_hub/utils/__init__.py,sha256=jXPqVGBpJr_PpYmqD8aDG-fRMlxH-ulqCR2SZMn288Y,646
600
- keras_hub_nightly-0.23.0.dev202510080414.dist-info/METADATA,sha256=arxc2r6Nzxm_qkPkDCFM9jAR3KBa1ASAUT7A-Fo_VY8,7395
601
- keras_hub_nightly-0.23.0.dev202510080414.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
602
- keras_hub_nightly-0.23.0.dev202510080414.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
603
- keras_hub_nightly-0.23.0.dev202510080414.dist-info/RECORD,,
628
+ keras_hub_nightly-0.24.0.dev202511080419.dist-info/METADATA,sha256=saL0T6V_Dp7dtdpj1eFLovEcieSzxdMePvkYHKgrqRg,7395
629
+ keras_hub_nightly-0.24.0.dev202511080419.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
630
+ keras_hub_nightly-0.24.0.dev202511080419.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
631
+ keras_hub_nightly-0.24.0.dev202511080419.dist-info/RECORD,,