keras-hub-nightly 0.23.0.dev202510080414__py3-none-any.whl → 0.23.0.dev202510100415__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of keras-hub-nightly might be problematic. Click here for more details.

@@ -0,0 +1,5 @@
1
+ from keras_hub.src.models.qwen3_moe.qwen3_moe_backbone import Qwen3MoeBackbone
2
+ from keras_hub.src.models.qwen3_moe.qwen3_moe_presets import backbone_presets
3
+ from keras_hub.src.utils.preset_utils import register_presets
4
+
5
+ register_presets(backbone_presets, Qwen3MoeBackbone)
@@ -0,0 +1,30 @@
1
+ """Qwen3 MoE model preset configurations."""
2
+
3
+ backbone_presets = {
4
+ "qwen3_moe_30b_a3b_en": {
5
+ "metadata": {
6
+ "description": (
7
+ " Mixture-of-Experts (MoE) model has 30.5 billion total"
8
+ " parameters with 3.3 billion activated, built on 48 layers"
9
+ " and utilizes 32 query and 4 key/value attention heads"
10
+ " with 128 experts (8 active)."
11
+ ),
12
+ "params": 30532122624,
13
+ "path": "qwen3_moe",
14
+ },
15
+ "kaggle_handle": "kaggle://keras/qwen-3-moe/keras/qwen3_moe_30b_a3b_en/2",
16
+ },
17
+ "qwen3_moe_235b_a22b_en": {
18
+ "metadata": {
19
+ "description": (
20
+ " Mixture-of-Experts (MoE) model has 235 billion"
21
+ " total parameters with 22 billion activated, built on 94"
22
+ " layers and utilizes 64 query and 4 key/value attention heads"
23
+ " with 128 experts (8 active)."
24
+ ),
25
+ "params": 235093634560,
26
+ "path": "qwen3_moe",
27
+ },
28
+ "kaggle_handle": "kaggle://keras/qwen-3-moe/keras/qwen3_moe_235b_a22b_en/1",
29
+ },
30
+ }
@@ -11,7 +11,7 @@ backbone_presets = {
11
11
  "params": 2987080931,
12
12
  "path": "stable_diffusion_3",
13
13
  },
14
- "kaggle_handle": "kaggle://keras/stablediffusion3/keras/stable_diffusion_3_medium/4",
14
+ "kaggle_handle": "kaggle://keras/stablediffusion3/keras/stable_diffusion_3_medium/5",
15
15
  },
16
16
  "stable_diffusion_3.5_medium": {
17
17
  "metadata": {
@@ -35,7 +35,7 @@ backbone_presets = {
35
35
  "params": 9048410595,
36
36
  "path": "stable_diffusion_3",
37
37
  },
38
- "kaggle_handle": "kaggle://keras/stablediffusion-3.5/keras/stable_diffusion_3.5_large/2",
38
+ "kaggle_handle": "kaggle://keras/stablediffusion-3.5/keras/stable_diffusion_3.5_large/3",
39
39
  },
40
40
  "stable_diffusion_3.5_large_turbo": {
41
41
  "metadata": {
@@ -49,6 +49,6 @@ backbone_presets = {
49
49
  "params": 9048410595,
50
50
  "path": "stable_diffusion_3",
51
51
  },
52
- "kaggle_handle": "kaggle://keras/stablediffusion-3.5/keras/stable_diffusion_3.5_large_turbo/2",
52
+ "kaggle_handle": "kaggle://keras/stablediffusion-3.5/keras/stable_diffusion_3.5_large_turbo/3",
53
53
  },
54
54
  }
keras_hub/src/version.py CHANGED
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.23.0.dev202510080414"
4
+ __version__ = "0.23.0.dev202510100415"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.23.0.dev202510080414
3
+ Version: 0.23.0.dev202510100415
4
4
  Summary: Pretrained models for Keras.
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License-Expression: Apache-2.0
@@ -5,7 +5,7 @@ keras_hub/models/__init__.py,sha256=wy75CGuTVxRIEXSCqmXgMyf23vUbuRbByWrlAaPWXB0,
5
5
  keras_hub/samplers/__init__.py,sha256=aFQIkiqbZpi8vjrPp2MVII4QUfE-eQjra5fMeHsoy7k,886
6
6
  keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
7
  keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
8
- keras_hub/src/version.py,sha256=aKLGM4XgAQe-vXwGPqbAw1auq51nWvQ5ft_VmhQ2w5Q,222
8
+ keras_hub/src/version.py,sha256=XWjJrPwsNeGHKdXmdJIHeXWcFLk329AcGB-njcIbEik,222
9
9
  keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
10
  keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
11
  keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
@@ -382,12 +382,14 @@ keras_hub/src/models/qwen3/qwen3_decoder.py,sha256=68s9jQj53zFmXE4-SGXKYHu546fXO
382
382
  keras_hub/src/models/qwen3/qwen3_layernorm.py,sha256=EJxjf7Pr6ufPQnNeuYQxkExzPjPk4PQxqMsoBeSEkDo,1073
383
383
  keras_hub/src/models/qwen3/qwen3_presets.py,sha256=eAqRbjLyRTSXcN-jnGHqoCHejKm2gmt8_zL4EPoE-JA,2518
384
384
  keras_hub/src/models/qwen3/qwen3_tokenizer.py,sha256=LmPtg0vprMchDvYfTj8m5PraXI2QS3-YgdIIpIm5iAs,1448
385
+ keras_hub/src/models/qwen3_moe/__init__.py,sha256=0jp5BHZ8O8cCrp4g6VWWDUwB5_fSDXvCVCSf6Q0UB6o,273
385
386
  keras_hub/src/models/qwen3_moe/qwen3_moe_attention.py,sha256=rZnzWA-cAhuWSuHSJfrNqf5_Cu0PNEe7PKbPNbhJdeM,13355
386
387
  keras_hub/src/models/qwen3_moe/qwen3_moe_backbone.py,sha256=gguc_M5akemEaQCklTDFiABSRa4nwa4IuDzlfzRRpKM,14618
387
388
  keras_hub/src/models/qwen3_moe/qwen3_moe_causal_lm.py,sha256=g3IlpuNzKbcAt_VBYnm895GBLQIPDuMP9eVbL44tf-A,13286
388
389
  keras_hub/src/models/qwen3_moe/qwen3_moe_causal_lm_preprocessor.py,sha256=CU5sH0bljNCPuN7sKNnP1FV-jexc12WK0HFU7RWsAvU,499
389
390
  keras_hub/src/models/qwen3_moe/qwen3_moe_decoder.py,sha256=lUmDkxrikv4s40tcT9a8muCbEbfUBN97nTFWQEelIJw,25926
390
391
  keras_hub/src/models/qwen3_moe/qwen3_moe_layernorm.py,sha256=T6BjJm93F37_0XrrqkWPPXXg4DFOt3f6Al0LDF8N15Y,1360
392
+ keras_hub/src/models/qwen3_moe/qwen3_moe_presets.py,sha256=CWImTWsUVYPcdN-RnvRlgQ_8vD7brLA0oq0ptuRxvR0,1144
391
393
  keras_hub/src/models/qwen3_moe/qwen3_moe_tokenizer.py,sha256=tDx1WSxmpiWn39NhzkQO-YUbdy713RYHKc_F-EUa6Tw,1473
392
394
  keras_hub/src/models/qwen_moe/__init__.py,sha256=5D8GUmVDsJs0J4sVZHcXOLkZf12U96l-WtwyVee4lu8,267
393
395
  keras_hub/src/models/qwen_moe/qwen_moe_attention.py,sha256=o0mcVTDMtElMYq3NSYRCfuYVdF-W8YDSU5ogensrVJg,13277
@@ -463,7 +465,7 @@ keras_hub/src/models/stable_diffusion_3/mmdit.py,sha256=emyDmtpJiFU_9crSDBC5CaXo
463
465
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py,sha256=BEtMwYaxrJxHpNT_E1wK-SPCBCp4hgbnX-UjgqGrQ7g,24362
464
466
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py,sha256=uNsNSQ4EFceGfIMzgjYWFMuL0XdfM58rubTcrCVPrts,5532
465
467
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py,sha256=2UIRz11DRbHJ7IVbkjpBjtbkZGC3-eYhMtVUWTmWMH8,6437
466
- keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py,sha256=x7Ez4L955MJE4ABtBy-63YpU9XpR0Ro8QWPzYYJs1yE,2167
468
+ keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py,sha256=n5hLzjw9rmMwH-jsn9ztiQklgJfkTcf8Offkz__Ltu0,2167
467
469
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py,sha256=-xmmCaoPc1ixJvyIBwVTW1yKBA-rP4nWReovcs7OLKE,4620
468
470
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py,sha256=crUT82moaPx8RVKrLtUHx1zry602f8DWItek9aFkojg,2903
469
471
  keras_hub/src/models/stable_diffusion_3/t5_encoder.py,sha256=oV7P1uwCKdGiD93zXq7kmqX0elMZQU4UvBa8wg6P1hs,5113
@@ -597,7 +599,7 @@ keras_hub/src/utils/transformers/export/gemma.py,sha256=xX_vfQwvFZ_-lQX4kgMNOGKL
597
599
  keras_hub/src/utils/transformers/export/hf_exporter.py,sha256=Qk52c6LIA2eMHUNY9Vy4STJSpnhLMdJ_t-3ljqhSr4k,5081
598
600
  keras_hub/tokenizers/__init__.py,sha256=kyFWYm4mb--U4xYU-2Gb1COM8xEFWNK6LcKxr8h9Ivc,4561
599
601
  keras_hub/utils/__init__.py,sha256=jXPqVGBpJr_PpYmqD8aDG-fRMlxH-ulqCR2SZMn288Y,646
600
- keras_hub_nightly-0.23.0.dev202510080414.dist-info/METADATA,sha256=arxc2r6Nzxm_qkPkDCFM9jAR3KBa1ASAUT7A-Fo_VY8,7395
601
- keras_hub_nightly-0.23.0.dev202510080414.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
602
- keras_hub_nightly-0.23.0.dev202510080414.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
603
- keras_hub_nightly-0.23.0.dev202510080414.dist-info/RECORD,,
602
+ keras_hub_nightly-0.23.0.dev202510100415.dist-info/METADATA,sha256=xpB7dOP6MkBQwzdaZL_NOKsxidg3ZUivQ2PWJjpEwhI,7395
603
+ keras_hub_nightly-0.23.0.dev202510100415.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
604
+ keras_hub_nightly-0.23.0.dev202510100415.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
605
+ keras_hub_nightly-0.23.0.dev202510100415.dist-info/RECORD,,