keras-hub-nightly 0.23.0.dev202509140416__py3-none-any.whl → 0.23.0.dev202509160412__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/src/models/d_fine/__init__.py +5 -0
- keras_hub/src/models/d_fine/d_fine_presets.py +154 -1
- keras_hub/src/models/t5gemma/t5gemma_presets.py +360 -1
- keras_hub/src/version.py +1 -1
- {keras_hub_nightly-0.23.0.dev202509140416.dist-info → keras_hub_nightly-0.23.0.dev202509160412.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.23.0.dev202509140416.dist-info → keras_hub_nightly-0.23.0.dev202509160412.dist-info}/RECORD +8 -8
- {keras_hub_nightly-0.23.0.dev202509140416.dist-info → keras_hub_nightly-0.23.0.dev202509160412.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.23.0.dev202509140416.dist-info → keras_hub_nightly-0.23.0.dev202509160412.dist-info}/top_level.txt +0 -0
|
@@ -1,2 +1,155 @@
|
|
|
1
1
|
# Metadata for loading pretrained model weights.
|
|
2
|
-
backbone_presets = {
|
|
2
|
+
backbone_presets = {
|
|
3
|
+
"dfine_nano_coco": {
|
|
4
|
+
"metadata": {
|
|
5
|
+
"description": (
|
|
6
|
+
"D-FINE Nano model, the smallest variant in the family, "
|
|
7
|
+
"pretrained on the COCO dataset. Ideal for applications "
|
|
8
|
+
"where computational resources are limited."
|
|
9
|
+
),
|
|
10
|
+
"params": 3788625,
|
|
11
|
+
"path": "d_fine",
|
|
12
|
+
},
|
|
13
|
+
"kaggle_handle": "kaggle://keras/d-fine/keras/dfine_nano_coco/1",
|
|
14
|
+
},
|
|
15
|
+
"dfine_small_coco": {
|
|
16
|
+
"metadata": {
|
|
17
|
+
"description": (
|
|
18
|
+
"D-FINE Small model pretrained on the COCO dataset. Offers a "
|
|
19
|
+
"balance between performance and computational efficiency."
|
|
20
|
+
),
|
|
21
|
+
"params": 10329321,
|
|
22
|
+
"path": "d_fine",
|
|
23
|
+
},
|
|
24
|
+
"kaggle_handle": "kaggle://keras/d-fine/keras/dfine_small_coco/1",
|
|
25
|
+
},
|
|
26
|
+
"dfine_medium_coco": {
|
|
27
|
+
"metadata": {
|
|
28
|
+
"description": (
|
|
29
|
+
"D-FINE Medium model pretrained on the COCO dataset. A solid "
|
|
30
|
+
"baseline with strong performance for general-purpose "
|
|
31
|
+
"object detection."
|
|
32
|
+
),
|
|
33
|
+
"params": 19621160,
|
|
34
|
+
"path": "d_fine",
|
|
35
|
+
},
|
|
36
|
+
"kaggle_handle": "kaggle://keras/d-fine/keras/dfine_medium_coco/1",
|
|
37
|
+
},
|
|
38
|
+
"dfine_large_coco": {
|
|
39
|
+
"metadata": {
|
|
40
|
+
"description": (
|
|
41
|
+
"D-FINE Large model pretrained on the COCO dataset. Provides "
|
|
42
|
+
"high accuracy and is suitable for more demanding tasks."
|
|
43
|
+
),
|
|
44
|
+
"params": 31344064,
|
|
45
|
+
"path": "d_fine",
|
|
46
|
+
},
|
|
47
|
+
"kaggle_handle": "kaggle://keras/d-fine/keras/dfine_large_coco/1",
|
|
48
|
+
},
|
|
49
|
+
"dfine_xlarge_coco": {
|
|
50
|
+
"metadata": {
|
|
51
|
+
"description": (
|
|
52
|
+
"D-FINE X-Large model, the largest COCO-pretrained variant, "
|
|
53
|
+
"designed for state-of-the-art performance where accuracy "
|
|
54
|
+
"is the top priority."
|
|
55
|
+
),
|
|
56
|
+
"params": 62834048,
|
|
57
|
+
"path": "d_fine",
|
|
58
|
+
},
|
|
59
|
+
"kaggle_handle": "kaggle://keras/d-fine/keras/dfine_xlarge_coco/1",
|
|
60
|
+
},
|
|
61
|
+
"dfine_small_obj365": {
|
|
62
|
+
"metadata": {
|
|
63
|
+
"description": (
|
|
64
|
+
"D-FINE Small model pretrained on the large-scale Objects365 "
|
|
65
|
+
"dataset, enhancing its ability to recognize a wider "
|
|
66
|
+
"variety of objects."
|
|
67
|
+
),
|
|
68
|
+
"params": 10623329,
|
|
69
|
+
"path": "d_fine",
|
|
70
|
+
},
|
|
71
|
+
"kaggle_handle": "kaggle://keras/d-fine/keras/dfine_small_obj365/1",
|
|
72
|
+
},
|
|
73
|
+
"dfine_medium_obj365": {
|
|
74
|
+
"metadata": {
|
|
75
|
+
"description": (
|
|
76
|
+
"D-FINE Medium model pretrained on the Objects365 dataset. "
|
|
77
|
+
"Benefits from a larger and more diverse pretraining corpus."
|
|
78
|
+
),
|
|
79
|
+
"params": 19988670,
|
|
80
|
+
"path": "d_fine",
|
|
81
|
+
},
|
|
82
|
+
"kaggle_handle": "kaggle://keras/d-fine/keras/dfine_medium_obj365/1",
|
|
83
|
+
},
|
|
84
|
+
"dfine_large_obj365": {
|
|
85
|
+
"metadata": {
|
|
86
|
+
"description": (
|
|
87
|
+
"D-FINE Large model pretrained on the Objects365 dataset for "
|
|
88
|
+
"improved generalization and performance on diverse object "
|
|
89
|
+
"categories."
|
|
90
|
+
),
|
|
91
|
+
"params": 31858578,
|
|
92
|
+
"path": "d_fine",
|
|
93
|
+
},
|
|
94
|
+
"kaggle_handle": "kaggle://keras/d-fine/keras/dfine_large_obj365/1",
|
|
95
|
+
},
|
|
96
|
+
"dfine_xlarge_obj365": {
|
|
97
|
+
"metadata": {
|
|
98
|
+
"description": (
|
|
99
|
+
"D-FINE X-Large model pretrained on the Objects365 dataset, "
|
|
100
|
+
"offering maximum performance by leveraging a vast number "
|
|
101
|
+
"of object categories during pretraining."
|
|
102
|
+
),
|
|
103
|
+
"params": 63348562,
|
|
104
|
+
"path": "d_fine",
|
|
105
|
+
},
|
|
106
|
+
"kaggle_handle": "kaggle://keras/d-fine/keras/dfine_xlarge_obj365/1",
|
|
107
|
+
},
|
|
108
|
+
"dfine_small_obj2coco": {
|
|
109
|
+
"metadata": {
|
|
110
|
+
"description": (
|
|
111
|
+
"D-FINE Small model first pretrained on Objects365 and then "
|
|
112
|
+
"fine-tuned on COCO, combining broad feature learning with "
|
|
113
|
+
"benchmark-specific adaptation."
|
|
114
|
+
),
|
|
115
|
+
"params": 10329321,
|
|
116
|
+
"path": "d_fine",
|
|
117
|
+
},
|
|
118
|
+
"kaggle_handle": "kaggle://keras/d-fine/keras/dfine_small_obj2coco/1",
|
|
119
|
+
},
|
|
120
|
+
"dfine_medium_obj2coco": {
|
|
121
|
+
"metadata": {
|
|
122
|
+
"description": (
|
|
123
|
+
"D-FINE Medium model using a two-stage training process: "
|
|
124
|
+
"pretraining on Objects365 followed by fine-tuning on COCO."
|
|
125
|
+
),
|
|
126
|
+
"params": 19621160,
|
|
127
|
+
"path": "d_fine",
|
|
128
|
+
},
|
|
129
|
+
"kaggle_handle": "kaggle://keras/d-fine/keras/dfine_medium_obj2coco/1",
|
|
130
|
+
},
|
|
131
|
+
"dfine_large_obj2coco_e25": {
|
|
132
|
+
"metadata": {
|
|
133
|
+
"description": (
|
|
134
|
+
"D-FINE Large model pretrained on Objects365 and then "
|
|
135
|
+
"fine-tuned on COCO for 25 epochs. A high-performance model "
|
|
136
|
+
"with specialized tuning."
|
|
137
|
+
),
|
|
138
|
+
"params": 31344064,
|
|
139
|
+
"path": "d_fine",
|
|
140
|
+
},
|
|
141
|
+
"kaggle_handle": "kaggle://keras/d-fine/keras/dfine_large_obj2coco_e25/1",
|
|
142
|
+
},
|
|
143
|
+
"dfine_xlarge_obj2coco": {
|
|
144
|
+
"metadata": {
|
|
145
|
+
"description": (
|
|
146
|
+
"D-FINE X-Large model, pretrained on Objects365 and fine-tuned "
|
|
147
|
+
"on COCO, representing the most powerful model in this "
|
|
148
|
+
"series for COCO-style tasks."
|
|
149
|
+
),
|
|
150
|
+
"params": 62834048,
|
|
151
|
+
"path": "d_fine",
|
|
152
|
+
},
|
|
153
|
+
"kaggle_handle": "kaggle://keras/d-fine/keras/dfine_xlarge_obj2coco/1",
|
|
154
|
+
},
|
|
155
|
+
}
|
|
@@ -1,5 +1,85 @@
|
|
|
1
1
|
# Metadata for loading pretrained model weights.
|
|
2
2
|
backbone_presets = {
|
|
3
|
+
"t5gemma_s_s_ul2": {
|
|
4
|
+
"metadata": {
|
|
5
|
+
"description": (
|
|
6
|
+
"T5Gemma S/S model with a small encoder and small decoder, "
|
|
7
|
+
"adapted as a UL2 model."
|
|
8
|
+
),
|
|
9
|
+
"params": 312517632,
|
|
10
|
+
"path": "t5gemma",
|
|
11
|
+
},
|
|
12
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_s_s_ul2/1",
|
|
13
|
+
},
|
|
14
|
+
"t5gemma_s_s_prefixlm": {
|
|
15
|
+
"metadata": {
|
|
16
|
+
"description": (
|
|
17
|
+
"T5Gemma S/S model with a small encoder and small decoder, "
|
|
18
|
+
"adapted as a prefix language model."
|
|
19
|
+
),
|
|
20
|
+
"params": 312517632,
|
|
21
|
+
"path": "t5gemma",
|
|
22
|
+
},
|
|
23
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_s_s_prefixlm/1",
|
|
24
|
+
},
|
|
25
|
+
"t5gemma_s_s_ul2_it": {
|
|
26
|
+
"metadata": {
|
|
27
|
+
"description": (
|
|
28
|
+
"T5Gemma S/S model with a small encoder and small decoder, "
|
|
29
|
+
"adapted as a UL2 model and fine-tuned for instruction "
|
|
30
|
+
"following."
|
|
31
|
+
),
|
|
32
|
+
"params": 312517632,
|
|
33
|
+
"path": "t5gemma",
|
|
34
|
+
},
|
|
35
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_s_s_ul2_it/1",
|
|
36
|
+
},
|
|
37
|
+
"t5gemma_s_s_prefixlm_it": {
|
|
38
|
+
"metadata": {
|
|
39
|
+
"description": (
|
|
40
|
+
"T5Gemma S/S model with a small encoder and small decoder, "
|
|
41
|
+
"adapted as a prefix language model and fine-tuned for "
|
|
42
|
+
"instruction following."
|
|
43
|
+
),
|
|
44
|
+
"params": 312517632,
|
|
45
|
+
"path": "t5gemma",
|
|
46
|
+
},
|
|
47
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_s_s_prefixlm_it/1",
|
|
48
|
+
},
|
|
49
|
+
"t5gemma_b_b_ul2": {
|
|
50
|
+
"metadata": {
|
|
51
|
+
"description": (
|
|
52
|
+
"T5Gemma B/B model with a base encoder and base decoder, "
|
|
53
|
+
"adapted as a UL2 model."
|
|
54
|
+
),
|
|
55
|
+
"params": 591490560,
|
|
56
|
+
"path": "t5gemma",
|
|
57
|
+
},
|
|
58
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_b_b_ul2/1",
|
|
59
|
+
},
|
|
60
|
+
"t5gemma_b_b_prefixlm": {
|
|
61
|
+
"metadata": {
|
|
62
|
+
"description": (
|
|
63
|
+
"T5Gemma B/B model with a base encoder and base decoder, "
|
|
64
|
+
"adapted as a prefix language model."
|
|
65
|
+
),
|
|
66
|
+
"params": 591490560,
|
|
67
|
+
"path": "t5gemma",
|
|
68
|
+
},
|
|
69
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_b_b_prefixlm/1",
|
|
70
|
+
},
|
|
71
|
+
"t5gemma_b_b_ul2_it": {
|
|
72
|
+
"metadata": {
|
|
73
|
+
"description": (
|
|
74
|
+
"T5Gemma B/B model with a base encoder and base decoder, "
|
|
75
|
+
"adapted as a UL2 model and fine-tuned for instruction "
|
|
76
|
+
"following."
|
|
77
|
+
),
|
|
78
|
+
"params": 591490560,
|
|
79
|
+
"path": "t5gemma",
|
|
80
|
+
},
|
|
81
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_b_b_ul2_it/1",
|
|
82
|
+
},
|
|
3
83
|
"t5gemma_b_b_prefixlm_it": {
|
|
4
84
|
"metadata": {
|
|
5
85
|
"description": (
|
|
@@ -10,6 +90,285 @@ backbone_presets = {
|
|
|
10
90
|
"params": 591490560,
|
|
11
91
|
"path": "t5gemma",
|
|
12
92
|
},
|
|
13
|
-
"kaggle_handle": "kaggle://
|
|
93
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_b_b_prefixlm_it/1",
|
|
94
|
+
},
|
|
95
|
+
"t5gemma_l_l_ul2": {
|
|
96
|
+
"metadata": {
|
|
97
|
+
"description": (
|
|
98
|
+
"T5Gemma L/L model with a large encoder and large decoder, "
|
|
99
|
+
"adapted as a UL2 model."
|
|
100
|
+
),
|
|
101
|
+
"params": 1241761792,
|
|
102
|
+
"path": "t5gemma",
|
|
103
|
+
},
|
|
104
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_l_l_ul2/1",
|
|
105
|
+
},
|
|
106
|
+
"t5gemma_l_l_prefixlm": {
|
|
107
|
+
"metadata": {
|
|
108
|
+
"description": (
|
|
109
|
+
"T5Gemma L/L model with a large encoder and large decoder, "
|
|
110
|
+
"adapted as a prefix language model."
|
|
111
|
+
),
|
|
112
|
+
"params": 1241761792,
|
|
113
|
+
"path": "t5gemma",
|
|
114
|
+
},
|
|
115
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_l_l_prefixlm/1",
|
|
116
|
+
},
|
|
117
|
+
"t5gemma_l_l_ul2_it": {
|
|
118
|
+
"metadata": {
|
|
119
|
+
"description": (
|
|
120
|
+
"T5Gemma L/L model with a large encoder and large decoder, "
|
|
121
|
+
"adapted as a UL2 model and fine-tuned for instruction "
|
|
122
|
+
"following."
|
|
123
|
+
),
|
|
124
|
+
"params": 1241761792,
|
|
125
|
+
"path": "t5gemma",
|
|
126
|
+
},
|
|
127
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_l_l_ul2_it/1",
|
|
128
|
+
},
|
|
129
|
+
"t5gemma_l_l_prefixlm_it": {
|
|
130
|
+
"metadata": {
|
|
131
|
+
"description": (
|
|
132
|
+
"T5Gemma L/L model with a large encoder and large decoder, "
|
|
133
|
+
"adapted as a prefix language model and fine-tuned for "
|
|
134
|
+
"instruction following."
|
|
135
|
+
),
|
|
136
|
+
"params": 1241761792,
|
|
137
|
+
"path": "t5gemma",
|
|
138
|
+
},
|
|
139
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_l_l_prefixlm_it/1",
|
|
140
|
+
},
|
|
141
|
+
"t5gemma_ml_ml_ul2": {
|
|
142
|
+
"metadata": {
|
|
143
|
+
"description": (
|
|
144
|
+
"T5Gemma ML/ML model with a medium-large encoder and "
|
|
145
|
+
"medium-large decoder, adapted as a UL2 model."
|
|
146
|
+
),
|
|
147
|
+
"params": 2200345344,
|
|
148
|
+
"path": "t5gemma",
|
|
149
|
+
},
|
|
150
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_ml_ml_ul2/1",
|
|
151
|
+
},
|
|
152
|
+
"t5gemma_ml_ml_prefixlm": {
|
|
153
|
+
"metadata": {
|
|
154
|
+
"description": (
|
|
155
|
+
"T5Gemma ML/ML model with a medium-large encoder and "
|
|
156
|
+
"medium-large decoder, adapted as a prefix language model."
|
|
157
|
+
),
|
|
158
|
+
"params": 2200345344,
|
|
159
|
+
"path": "t5gemma",
|
|
160
|
+
},
|
|
161
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_ml_ml_prefixlm/1",
|
|
162
|
+
},
|
|
163
|
+
"t5gemma_ml_ml_ul2_it": {
|
|
164
|
+
"metadata": {
|
|
165
|
+
"description": (
|
|
166
|
+
"T5Gemma ML/ML model with a medium-large encoder and "
|
|
167
|
+
"medium-large decoder, adapted as a UL2 model and fine-tuned "
|
|
168
|
+
"for instruction following."
|
|
169
|
+
),
|
|
170
|
+
"params": 2200345344,
|
|
171
|
+
"path": "t5gemma",
|
|
172
|
+
},
|
|
173
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_ml_ml_ul2_it/1",
|
|
174
|
+
},
|
|
175
|
+
"t5gemma_ml_ml_prefixlm_it": {
|
|
176
|
+
"metadata": {
|
|
177
|
+
"description": (
|
|
178
|
+
"T5Gemma ML/ML model with a medium-large encoder and "
|
|
179
|
+
"medium-large decoder, adapted as a prefix language model and "
|
|
180
|
+
"fine-tuned for instruction following."
|
|
181
|
+
),
|
|
182
|
+
"params": 2200345344,
|
|
183
|
+
"path": "t5gemma",
|
|
184
|
+
},
|
|
185
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_ml_ml_prefixlm_it/1",
|
|
186
|
+
},
|
|
187
|
+
"t5gemma_xl_xl_ul2": {
|
|
188
|
+
"metadata": {
|
|
189
|
+
"description": (
|
|
190
|
+
"T5Gemma XL/XL model with an extra-large encoder and "
|
|
191
|
+
"extra-large decoder, adapted as a UL2 model."
|
|
192
|
+
),
|
|
193
|
+
"params": 3766980608,
|
|
194
|
+
"path": "t5gemma",
|
|
195
|
+
},
|
|
196
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_xl_xl_ul2/1",
|
|
197
|
+
},
|
|
198
|
+
"t5gemma_xl_xl_prefixlm": {
|
|
199
|
+
"metadata": {
|
|
200
|
+
"description": (
|
|
201
|
+
"T5Gemma XL/XL model with an extra-large encoder and "
|
|
202
|
+
"extra-large decoder, adapted as a prefix language model."
|
|
203
|
+
),
|
|
204
|
+
"params": 3766980608,
|
|
205
|
+
"path": "t5gemma",
|
|
206
|
+
},
|
|
207
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_xl_xl_prefixlm/1",
|
|
208
|
+
},
|
|
209
|
+
"t5gemma_xl_xl_ul2_it": {
|
|
210
|
+
"metadata": {
|
|
211
|
+
"description": (
|
|
212
|
+
"T5Gemma XL/XL model with an extra-large encoder and "
|
|
213
|
+
"extra-large decoder, adapted as a UL2 model and fine-tuned "
|
|
214
|
+
"for instruction following."
|
|
215
|
+
),
|
|
216
|
+
"params": 3766980608,
|
|
217
|
+
"path": "t5gemma",
|
|
218
|
+
},
|
|
219
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_xl_xl_ul2_it/1",
|
|
220
|
+
},
|
|
221
|
+
"t5gemma_xl_xl_prefixlm_it": {
|
|
222
|
+
"metadata": {
|
|
223
|
+
"description": (
|
|
224
|
+
"T5Gemma XL/XL model with an extra-large encoder and "
|
|
225
|
+
"extra-large decoder, adapted as a prefix language model and "
|
|
226
|
+
"fine-tuned for instruction following."
|
|
227
|
+
),
|
|
228
|
+
"params": 3766980608,
|
|
229
|
+
"path": "t5gemma",
|
|
230
|
+
},
|
|
231
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_xl_xl_prefixlm_it/1",
|
|
232
|
+
},
|
|
233
|
+
"t5gemma_2b_2b_ul2": {
|
|
234
|
+
"metadata": {
|
|
235
|
+
"description": (
|
|
236
|
+
"T5Gemma 2B/2B model with a 2-billion-parameter encoder and "
|
|
237
|
+
"2-billion-parameter decoder, adapted as a UL2 model."
|
|
238
|
+
),
|
|
239
|
+
"params": 5596853760,
|
|
240
|
+
"path": "t5gemma",
|
|
241
|
+
},
|
|
242
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_2b_2b_ul2/1",
|
|
243
|
+
},
|
|
244
|
+
"t5gemma_2b_2b_prefixlm": {
|
|
245
|
+
"metadata": {
|
|
246
|
+
"description": (
|
|
247
|
+
"T5Gemma 2B/2B model with a 2-billion-parameter encoder and "
|
|
248
|
+
"2-billion-parameter decoder, adapted as a prefix language "
|
|
249
|
+
"model."
|
|
250
|
+
),
|
|
251
|
+
"params": 5596853760,
|
|
252
|
+
"path": "t5gemma",
|
|
253
|
+
},
|
|
254
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_2b_2b_prefixlm/1",
|
|
255
|
+
},
|
|
256
|
+
"t5gemma_2b_2b_ul2_it": {
|
|
257
|
+
"metadata": {
|
|
258
|
+
"description": (
|
|
259
|
+
"T5Gemma 2B/2B model with a 2-billion-parameter encoder and "
|
|
260
|
+
"2-billion-parameter decoder, adapted as a UL2 model and "
|
|
261
|
+
"fine-tuned for instruction following."
|
|
262
|
+
),
|
|
263
|
+
"params": 5596853760,
|
|
264
|
+
"path": "t5gemma",
|
|
265
|
+
},
|
|
266
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_2b_2b_ul2_it/1",
|
|
267
|
+
},
|
|
268
|
+
"t5gemma_2b_2b_prefixlm_it": {
|
|
269
|
+
"metadata": {
|
|
270
|
+
"description": (
|
|
271
|
+
"T5Gemma 2B/2B model with a 2-billion-parameter encoder and "
|
|
272
|
+
"2-billion-parameter decoder, adapted as a prefix language "
|
|
273
|
+
"model and fine-tuned for instruction following."
|
|
274
|
+
),
|
|
275
|
+
"params": 5596853760,
|
|
276
|
+
"path": "t5gemma",
|
|
277
|
+
},
|
|
278
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_2b_2b_prefixlm_it/1",
|
|
279
|
+
},
|
|
280
|
+
"t5gemma_9b_2b_ul2": {
|
|
281
|
+
"metadata": {
|
|
282
|
+
"description": (
|
|
283
|
+
"T5Gemma 9B/2B model with a 9-billion-parameter encoder and "
|
|
284
|
+
"2-billion-parameter decoder, adapted as a UL2 model."
|
|
285
|
+
),
|
|
286
|
+
"params": 12292375296,
|
|
287
|
+
"path": "t5gemma",
|
|
288
|
+
},
|
|
289
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_9b_2b_ul2/1",
|
|
290
|
+
},
|
|
291
|
+
"t5gemma_9b_2b_prefixlm": {
|
|
292
|
+
"metadata": {
|
|
293
|
+
"description": (
|
|
294
|
+
"T5Gemma 9B/2B model with a 9-billion-parameter encoder and "
|
|
295
|
+
"2-billion-parameter decoder, adapted as a prefix language "
|
|
296
|
+
"model."
|
|
297
|
+
),
|
|
298
|
+
"params": 12292375296,
|
|
299
|
+
"path": "t5gemma",
|
|
300
|
+
},
|
|
301
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_9b_2b_prefixlm/1",
|
|
302
|
+
},
|
|
303
|
+
"t5gemma_9b_2b_ul2_it": {
|
|
304
|
+
"metadata": {
|
|
305
|
+
"description": (
|
|
306
|
+
"T5Gemma 9B/2B model with a 9-billion-parameter encoder and "
|
|
307
|
+
"2-billion-parameter decoder, adapted as a UL2 model and "
|
|
308
|
+
"fine-tuned for instruction following."
|
|
309
|
+
),
|
|
310
|
+
"params": 12292375296,
|
|
311
|
+
"path": "t5gemma",
|
|
312
|
+
},
|
|
313
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_9b_2b_ul2_it/1",
|
|
314
|
+
},
|
|
315
|
+
"t5gemma_9b_2b_prefixlm_it": {
|
|
316
|
+
"metadata": {
|
|
317
|
+
"description": (
|
|
318
|
+
"T5Gemma 9B/2B model with a 9-billion-parameter encoder and "
|
|
319
|
+
"2-billion-parameter decoder, adapted as a prefix language "
|
|
320
|
+
"model and fine-tuned for instruction following."
|
|
321
|
+
),
|
|
322
|
+
"params": 12292375296,
|
|
323
|
+
"path": "t5gemma",
|
|
324
|
+
},
|
|
325
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_9b_2b_prefixlm_it/1",
|
|
326
|
+
},
|
|
327
|
+
"t5gemma_9b_9b_ul2": {
|
|
328
|
+
"metadata": {
|
|
329
|
+
"description": (
|
|
330
|
+
"T5Gemma 9B/9B model with a 9-billion-parameter encoder and "
|
|
331
|
+
"9-billion-parameter decoder, adapted as a UL2 model."
|
|
332
|
+
),
|
|
333
|
+
"params": 20333401088,
|
|
334
|
+
"path": "t5gemma",
|
|
335
|
+
},
|
|
336
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_9b_9b_ul2/1",
|
|
337
|
+
},
|
|
338
|
+
"t5gemma_9b_9b_prefixlm": {
|
|
339
|
+
"metadata": {
|
|
340
|
+
"description": (
|
|
341
|
+
"T5Gemma 9B/9B model with a 9-billion-parameter encoder and "
|
|
342
|
+
"9-billion-parameter decoder, adapted as a prefix language "
|
|
343
|
+
"model."
|
|
344
|
+
),
|
|
345
|
+
"params": 20333401088,
|
|
346
|
+
"path": "t5gemma",
|
|
347
|
+
},
|
|
348
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_9b_9b_prefixlm/1",
|
|
349
|
+
},
|
|
350
|
+
"t5gemma_9b_9b_ul2_it": {
|
|
351
|
+
"metadata": {
|
|
352
|
+
"description": (
|
|
353
|
+
"T5Gemma 9B/9B model with a 9-billion-parameter encoder and "
|
|
354
|
+
"9-billion-parameter decoder, adapted as a UL2 model and "
|
|
355
|
+
"fine-tuned for instruction following."
|
|
356
|
+
),
|
|
357
|
+
"params": 20333401088,
|
|
358
|
+
"path": "t5gemma",
|
|
359
|
+
},
|
|
360
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_9b_9b_ul2_it/1",
|
|
361
|
+
},
|
|
362
|
+
"t5gemma_9b_9b_prefixlm_it": {
|
|
363
|
+
"metadata": {
|
|
364
|
+
"description": (
|
|
365
|
+
"T5Gemma 9B/9B model with a 9-billion-parameter encoder and "
|
|
366
|
+
"9-billion-parameter decoder, adapted as a prefix language "
|
|
367
|
+
"model and fine-tuned for instruction following."
|
|
368
|
+
),
|
|
369
|
+
"params": 20333401088,
|
|
370
|
+
"path": "t5gemma",
|
|
371
|
+
},
|
|
372
|
+
"kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_9b_9b_prefixlm_it/1",
|
|
14
373
|
},
|
|
15
374
|
}
|
keras_hub/src/version.py
CHANGED
|
@@ -5,7 +5,7 @@ keras_hub/models/__init__.py,sha256=Est6LugIjoAFkpTgqZWfISk-1NVMH_k-4soHCHaMmyM,
|
|
|
5
5
|
keras_hub/samplers/__init__.py,sha256=aFQIkiqbZpi8vjrPp2MVII4QUfE-eQjra5fMeHsoy7k,886
|
|
6
6
|
keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
7
7
|
keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
|
|
8
|
-
keras_hub/src/version.py,sha256=
|
|
8
|
+
keras_hub/src/version.py,sha256=yx81hNfPJPXJbX_4ou7pHZ1S65meX830B2dU-dQhF6U,222
|
|
9
9
|
keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
10
10
|
keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
11
11
|
keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
|
|
@@ -116,7 +116,7 @@ keras_hub/src/models/cspnet/cspnet_image_classifier.py,sha256=JqfBHIBTFxaLOyAWx6
|
|
|
116
116
|
keras_hub/src/models/cspnet/cspnet_image_classifier_preprocessor.py,sha256=ACRnOhjslk2ZZhpPfJioW4um4RLYa-Suk59z9wa5vfo,543
|
|
117
117
|
keras_hub/src/models/cspnet/cspnet_image_converter.py,sha256=f-ICTY2T-RlCykU6qOHDxg0fY7ECfZ_xpSJzIVmbvpc,342
|
|
118
118
|
keras_hub/src/models/cspnet/cspnet_presets.py,sha256=n01_7DTvbmaA_qs2GWiNLkBXNrrEvigPXSGc2NDTot8,1870
|
|
119
|
-
keras_hub/src/models/d_fine/__init__.py,sha256
|
|
119
|
+
keras_hub/src/models/d_fine/__init__.py,sha256=-1dG2O0zjDhODJG8DEWuZo6MCbmlGgIsIqJwBhDXDU4,255
|
|
120
120
|
keras_hub/src/models/d_fine/d_fine_attention.py,sha256=RlsgB9XxTz88wkGSRVFYpKSdiKMVxyb-fCnnpEfVQqo,17848
|
|
121
121
|
keras_hub/src/models/d_fine/d_fine_backbone.py,sha256=KDBVu5LNKqBfNmKsnyJGY0YmJZRLOEo9Pi0VSjjJr5M,37363
|
|
122
122
|
keras_hub/src/models/d_fine/d_fine_decoder.py,sha256=7b4yZaLf2BLA51szoJCgUdqw91QGzv7oxs-DvqVjsvg,38658
|
|
@@ -127,7 +127,7 @@ keras_hub/src/models/d_fine/d_fine_layers.py,sha256=hClOattmgjUcxcAS3LgpX36xKvD9
|
|
|
127
127
|
keras_hub/src/models/d_fine/d_fine_loss.py,sha256=zO-LBBXJvbmSpsQ-DvTWN2N5qJmToIp61DMfnp31XE8,36046
|
|
128
128
|
keras_hub/src/models/d_fine/d_fine_object_detector.py,sha256=ap5ZQypupCDhsdFhm4hVQuMY3767r5cYEQZwOY3LYDI,32762
|
|
129
129
|
keras_hub/src/models/d_fine/d_fine_object_detector_preprocessor.py,sha256=738VvyHGQdsGN3sSP1yDnOOiC4RpYSQSES7OySynVm8,532
|
|
130
|
-
keras_hub/src/models/d_fine/d_fine_presets.py,sha256=
|
|
130
|
+
keras_hub/src/models/d_fine/d_fine_presets.py,sha256=KCrx2ZwprCcm_uYPrJaMwiy_FDSqdsG_v2YAljYloDk,5737
|
|
131
131
|
keras_hub/src/models/d_fine/d_fine_utils.py,sha256=-EL5zanBgwDe6-RV4N9dwp-fkd7cy4SrGZDhc3WRR5A,31130
|
|
132
132
|
keras_hub/src/models/deberta_v3/__init__.py,sha256=6E-QtAD1uvTBobrn5bUoyB1qtaCJU-t73TtbAEH6i9g,288
|
|
133
133
|
keras_hub/src/models/deberta_v3/deberta_v3_backbone.py,sha256=oXdV7naTiMowuU3GsXEUo5K0GXiKbPKxdo27o5fXWjc,7258
|
|
@@ -463,7 +463,7 @@ keras_hub/src/models/t5gemma/t5gemma_backbone.py,sha256=wV5UTSlHm9P5AhsK-Bnab_my
|
|
|
463
463
|
keras_hub/src/models/t5gemma/t5gemma_decoder.py,sha256=BHzdk5akm7sVbEyL7e176YYeuT2gVtSW7ol41b0PdSM,14375
|
|
464
464
|
keras_hub/src/models/t5gemma/t5gemma_encoder.py,sha256=KW5xZTVS9UgzoQspHwKcYkqKWYxob2wACZKQUv-zIC0,8675
|
|
465
465
|
keras_hub/src/models/t5gemma/t5gemma_layers.py,sha256=19_CLs6_lYTqdQJQTlalI50VEI8F3buNgXWoBoIgjas,4381
|
|
466
|
-
keras_hub/src/models/t5gemma/t5gemma_presets.py,sha256=
|
|
466
|
+
keras_hub/src/models/t5gemma/t5gemma_presets.py,sha256=vTL0DMAR-r0-Qco6cgdDGriZrwFUFgXD0CrqjWVoA1M,13901
|
|
467
467
|
keras_hub/src/models/t5gemma/t5gemma_seq_2_seq_lm.py,sha256=-dRXqt1DbKQVUKqUqafBft2rJUB89tEj7NuRMlhX5og,17836
|
|
468
468
|
keras_hub/src/models/t5gemma/t5gemma_seq_2_seq_lm_preprocessor.py,sha256=AXjmd0vOQ2J__E9GACeKWTosGrlkzcriC2OstQi0-x0,8186
|
|
469
469
|
keras_hub/src/models/t5gemma/t5gemma_tokenizer.py,sha256=4EUX_kUEDqB6QAKSv2VxBVUVrF16TIBBX34Dir7f-70,2740
|
|
@@ -578,7 +578,7 @@ keras_hub/src/utils/transformers/export/gemma.py,sha256=xX_vfQwvFZ_-lQX4kgMNOGKL
|
|
|
578
578
|
keras_hub/src/utils/transformers/export/hf_exporter.py,sha256=Qk52c6LIA2eMHUNY9Vy4STJSpnhLMdJ_t-3ljqhSr4k,5081
|
|
579
579
|
keras_hub/tokenizers/__init__.py,sha256=YEr_cwyX6MACxQOgyRwETilOFYBXpQLNXH22ZdSSv3o,4450
|
|
580
580
|
keras_hub/utils/__init__.py,sha256=jXPqVGBpJr_PpYmqD8aDG-fRMlxH-ulqCR2SZMn288Y,646
|
|
581
|
-
keras_hub_nightly-0.23.0.
|
|
582
|
-
keras_hub_nightly-0.23.0.
|
|
583
|
-
keras_hub_nightly-0.23.0.
|
|
584
|
-
keras_hub_nightly-0.23.0.
|
|
581
|
+
keras_hub_nightly-0.23.0.dev202509160412.dist-info/METADATA,sha256=Qm_wd3giI55Kuk7maPxaUocXYxevTJ-G8SJ0jPU6OVs,7395
|
|
582
|
+
keras_hub_nightly-0.23.0.dev202509160412.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
583
|
+
keras_hub_nightly-0.23.0.dev202509160412.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
|
584
|
+
keras_hub_nightly-0.23.0.dev202509160412.dist-info/RECORD,,
|
|
File without changes
|