keras-hub-nightly 0.23.0.dev202508260411__py3-none-any.whl → 0.23.0.dev202508280418__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (40) hide show
  1. keras_hub/layers/__init__.py +6 -0
  2. keras_hub/models/__init__.py +21 -0
  3. keras_hub/src/layers/modeling/position_embedding.py +21 -6
  4. keras_hub/src/layers/modeling/rotary_embedding.py +16 -6
  5. keras_hub/src/layers/modeling/sine_position_encoding.py +21 -8
  6. keras_hub/src/layers/modeling/token_and_position_embedding.py +2 -1
  7. keras_hub/src/models/backbone.py +10 -15
  8. keras_hub/src/models/d_fine/__init__.py +0 -0
  9. keras_hub/src/models/d_fine/d_fine_attention.py +461 -0
  10. keras_hub/src/models/d_fine/d_fine_backbone.py +891 -0
  11. keras_hub/src/models/d_fine/d_fine_decoder.py +944 -0
  12. keras_hub/src/models/d_fine/d_fine_encoder.py +365 -0
  13. keras_hub/src/models/d_fine/d_fine_hybrid_encoder.py +642 -0
  14. keras_hub/src/models/d_fine/d_fine_image_converter.py +8 -0
  15. keras_hub/src/models/d_fine/d_fine_layers.py +1828 -0
  16. keras_hub/src/models/d_fine/d_fine_loss.py +938 -0
  17. keras_hub/src/models/d_fine/d_fine_object_detector.py +875 -0
  18. keras_hub/src/models/d_fine/d_fine_object_detector_preprocessor.py +14 -0
  19. keras_hub/src/models/d_fine/d_fine_presets.py +2 -0
  20. keras_hub/src/models/d_fine/d_fine_utils.py +827 -0
  21. keras_hub/src/models/hgnetv2/hgnetv2_backbone.py +4 -1
  22. keras_hub/src/models/hgnetv2/hgnetv2_encoder.py +3 -2
  23. keras_hub/src/models/hgnetv2/hgnetv2_layers.py +27 -11
  24. keras_hub/src/models/parseq/__init__.py +0 -0
  25. keras_hub/src/models/parseq/parseq_backbone.py +134 -0
  26. keras_hub/src/models/parseq/parseq_causal_lm.py +466 -0
  27. keras_hub/src/models/parseq/parseq_causal_lm_preprocessor.py +168 -0
  28. keras_hub/src/models/parseq/parseq_decoder.py +418 -0
  29. keras_hub/src/models/parseq/parseq_image_converter.py +8 -0
  30. keras_hub/src/models/parseq/parseq_tokenizer.py +221 -0
  31. keras_hub/src/tests/test_case.py +37 -1
  32. keras_hub/src/utils/preset_utils.py +49 -0
  33. keras_hub/src/utils/tensor_utils.py +23 -1
  34. keras_hub/src/utils/transformers/convert_vit.py +4 -1
  35. keras_hub/src/version.py +1 -1
  36. keras_hub/tokenizers/__init__.py +3 -0
  37. {keras_hub_nightly-0.23.0.dev202508260411.dist-info → keras_hub_nightly-0.23.0.dev202508280418.dist-info}/METADATA +1 -1
  38. {keras_hub_nightly-0.23.0.dev202508260411.dist-info → keras_hub_nightly-0.23.0.dev202508280418.dist-info}/RECORD +40 -20
  39. {keras_hub_nightly-0.23.0.dev202508260411.dist-info → keras_hub_nightly-0.23.0.dev202508280418.dist-info}/WHEEL +0 -0
  40. {keras_hub_nightly-0.23.0.dev202508260411.dist-info → keras_hub_nightly-0.23.0.dev202508280418.dist-info}/top_level.txt +0 -0
@@ -10,6 +10,7 @@ import keras
10
10
  from absl import logging
11
11
 
12
12
  from keras_hub.src.api_export import keras_hub_export
13
+ from keras_hub.src.utils import tensor_utils
13
14
  from keras_hub.src.utils.keras_utils import print_msg
14
15
  from keras_hub.src.utils.keras_utils import sharded_weights_available
15
16
  from keras_hub.src.utils.tensor_utils import get_tensor_size_in_bits
@@ -687,6 +688,7 @@ class KerasPresetLoader(PresetLoader):
687
688
  )
688
689
  # We found a `task.json` with a complete config for our class.
689
690
  # Forward backbone args.
691
+ kwargs["dtype"] = self._resolve_dtype(self.config, kwargs)
690
692
  backbone_kwargs, kwargs = self.get_backbone_kwargs(**kwargs)
691
693
  if "backbone" in task_config["config"]:
692
694
  backbone_config = task_config["config"]["backbone"]["config"]
@@ -708,6 +710,53 @@ class KerasPresetLoader(PresetLoader):
708
710
  self._load_backbone_weights(task.backbone)
709
711
  return task
710
712
 
713
+ def _resolve_dtype(self, config, kwargs):
714
+ """Resolves the Model's dtype based on the provided config and kwargs.
715
+
716
+ The data type is resolved based on the following priority:
717
+ 1. If a user specified dtype is passed, use that.
718
+ 2. If no user specified dtype is passed, and the save dtype is castable
719
+ to the current keras default dtype convert weights on load (float type
720
+ to float type).
721
+ 3. If not user specified dtype is passed, and the save dtype is not
722
+ castable to the current default dtype (quantized dtypes). Load the
723
+ saved types verbatim.
724
+
725
+ Args:
726
+ config: dict. The model configuration.
727
+ kwargs: dict. Additional keyword arguments, potentially including
728
+ `dtype`.
729
+
730
+ Returns:
731
+ str, dict, or DTypePolicy. The resolved dtype.
732
+ """
733
+ # 1. If a user specified dtype is passed, use that.
734
+ if "dtype" in kwargs and kwargs["dtype"] is not None:
735
+ return kwargs["dtype"]
736
+
737
+ saved_dtype = config.get("config", {}).get("dtype")
738
+
739
+ # If there's no saved dtype, we don't need to do anything.
740
+ if saved_dtype is None:
741
+ return None
742
+
743
+ # 2. Check whether the saved dtype is a simple float type.
744
+ policy_name = saved_dtype.get("config", {}).get("name")
745
+ if policy_name and tensor_utils.is_float_dtype(policy_name):
746
+ # If the saved dtype is a float, we can safely cast to the default
747
+ # backend float type.
748
+ if policy_name != keras.config.dtype_policy().name:
749
+ logging.info(
750
+ f"Converting weights saved as {policy_name} "
751
+ "to the current Keras dtype policy "
752
+ f"{keras.config.dtype_policy()}"
753
+ )
754
+ return keras.config.dtype_policy()
755
+ else:
756
+ # 3. Otherwise, the dtype is a complex object (e.g. a
757
+ # DTypePolicyMap for quantization), and should be used as is.
758
+ return saved_dtype
759
+
711
760
  def load_preprocessor(
712
761
  self, cls, config_file=PREPROCESSOR_CONFIG_FILE, **kwargs
713
762
  ):
@@ -310,7 +310,29 @@ def is_tensor_type(x):
310
310
 
311
311
 
312
312
  def is_float_dtype(dtype):
313
- return "float" in keras.backend.standardize_dtype(dtype)
313
+ """
314
+ Checks if a dtype is a float type by using a regex.
315
+
316
+ This function standardizes the input dtype and then uses a regular
317
+ expression to perform an exact match. It identifies standard floats,
318
+ bfloats, and mixed-precision float types.
319
+
320
+ For example:
321
+ - `is_float_dtype("float32")` returns `True`.
322
+ - `is_float_dtype("bfloat16")` returns `True`.
323
+ - `is_float_dtype("mixed_float16")` returns `True`.
324
+ - `is_float_dtype("int8")` returns `False`.
325
+ - `is_float_dtype("int8_from_float32")` returns `False`.
326
+
327
+ Args:
328
+ dtype: str, DTypePolicy. The data type to check.
329
+
330
+ Returns:
331
+ bool: `True` if the dtype is a floating-point type, `False` otherwise.
332
+ """
333
+ pattern = re.compile(r"^(mixed_)?(b)?float[0-9]*$")
334
+ standardized_dtype = keras.backend.standardize_dtype(dtype)
335
+ return pattern.match(standardized_dtype) is not None
314
336
 
315
337
 
316
338
  def is_int_dtype(dtype):
@@ -9,7 +9,10 @@ def convert_backbone_config(transformers_config):
9
9
  image_size = transformers_config["image_size"]
10
10
  return {
11
11
  "image_shape": (image_size, image_size, 3),
12
- "patch_size": transformers_config["patch_size"],
12
+ "patch_size": (
13
+ transformers_config["patch_size"],
14
+ transformers_config["patch_size"],
15
+ ),
13
16
  "num_layers": transformers_config["num_hidden_layers"],
14
17
  "num_heads": transformers_config["num_attention_heads"],
15
18
  "hidden_dim": transformers_config["hidden_size"],
keras_hub/src/version.py CHANGED
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.23.0.dev202508260411"
4
+ __version__ = "0.23.0.dev202508280418"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -66,6 +66,9 @@ from keras_hub.src.models.opt.opt_tokenizer import OPTTokenizer as OPTTokenizer
66
66
  from keras_hub.src.models.pali_gemma.pali_gemma_tokenizer import (
67
67
  PaliGemmaTokenizer as PaliGemmaTokenizer,
68
68
  )
69
+ from keras_hub.src.models.parseq.parseq_tokenizer import (
70
+ PARSeqTokenizer as PARSeqTokenizer,
71
+ )
69
72
  from keras_hub.src.models.phi3.phi3_tokenizer import (
70
73
  Phi3Tokenizer as Phi3Tokenizer,
71
74
  )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.23.0.dev202508260411
3
+ Version: 0.23.0.dev202508280418
4
4
  Summary: Pretrained models for Keras.
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License-Expression: Apache-2.0
@@ -1,11 +1,11 @@
1
1
  keras_hub/__init__.py,sha256=bJbUZkqwhZvTb1Tqx1fbkq6mzBYiEyq-Hin3oQIkhdE,558
2
- keras_hub/layers/__init__.py,sha256=SMkchjCbNydCBULOFC1pzZRaD-KWZ2CaH6CEVf1MRWE,5428
2
+ keras_hub/layers/__init__.py,sha256=GUDgi0KdORQnv-rH_IRQQ1cCwb-wGQFHy6Vdb7H6FA8,5660
3
3
  keras_hub/metrics/__init__.py,sha256=KYalsMPBnfwim9BdGHFfJ5WxUKFXOQ1QoKIMT_0lwlM,439
4
- keras_hub/models/__init__.py,sha256=BIiZQysBWPgBaShlvPu2wGvDOeHZyJ5IEcaGmdO3KJA,28899
4
+ keras_hub/models/__init__.py,sha256=Est6LugIjoAFkpTgqZWfISk-1NVMH_k-4soHCHaMmyM,29696
5
5
  keras_hub/samplers/__init__.py,sha256=aFQIkiqbZpi8vjrPp2MVII4QUfE-eQjra5fMeHsoy7k,886
6
6
  keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
7
  keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
8
- keras_hub/src/version.py,sha256=g1tcd00bjQZuGngpSoTU2YlVzqJrCZYrV6wu_r4dQOA,222
8
+ keras_hub/src/version.py,sha256=eqcOIC_473obdqI8Jors74gclaT4zT2WshgxL02xzwQ,222
9
9
  keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
10
  keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
11
  keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
@@ -15,12 +15,12 @@ keras_hub/src/layers/modeling/cached_multi_head_attention.py,sha256=8IDyP3JMeALV
15
15
  keras_hub/src/layers/modeling/f_net_encoder.py,sha256=zkVeO5Nk_kBZCUGq2LeDGmPEIM_cr-aGqCKtQGOHKTY,6842
16
16
  keras_hub/src/layers/modeling/masked_lm_head.py,sha256=no6XQb76KB2cUiksYC0MSdyeDOK7pn8MY6cmdCDxpKs,9015
17
17
  keras_hub/src/layers/modeling/non_max_supression.py,sha256=yAkAH1CCj_tYXgQTav39IRr_Uxn8hmzJgIxqbYQyZY8,22565
18
- keras_hub/src/layers/modeling/position_embedding.py,sha256=FfTS6JGMhnOIzo9bHzvoxBbdQNctc32iRLI7ZjdxoTY,3850
18
+ keras_hub/src/layers/modeling/position_embedding.py,sha256=vqmmUbMU-41Ns6qwR_4N1IvVsV0arGlkiTD7D7NMS2s,4562
19
19
  keras_hub/src/layers/modeling/reversible_embedding.py,sha256=w6f1LQzwPOKUdlWDy3YRECaDzb8veCB2PAxy4L0HJ7w,10866
20
20
  keras_hub/src/layers/modeling/rms_normalization.py,sha256=Ylnc9vkDw1A_ZqiKpQ09jVTAGumS5rspjdQOkH-mxf4,1084
21
- keras_hub/src/layers/modeling/rotary_embedding.py,sha256=BuMD2dCyZi73Eokddx8Q9cFb4pJVlOL2OgFwsom2p8I,6059
22
- keras_hub/src/layers/modeling/sine_position_encoding.py,sha256=NAPW9HaVTMNZgUJNzA3l1B3C_FNvaY7IW-5tQgFgnNg,3453
23
- keras_hub/src/layers/modeling/token_and_position_embedding.py,sha256=Q-MhVHZSd_W2eWjDCj-s7wo3z8UHmgZ-7j7hElkaXBQ,5263
21
+ keras_hub/src/layers/modeling/rotary_embedding.py,sha256=uKcEyidierqdEs67QYPMQrJ1u0gxqJYT22_YGnhkQ-I,6546
22
+ keras_hub/src/layers/modeling/sine_position_encoding.py,sha256=aLoadvQW1eeivac8gzymP740NXppblZ2C_OlErLMfN4,4063
23
+ keras_hub/src/layers/modeling/token_and_position_embedding.py,sha256=10PDSErd6T6pisor1p6i5-7wCZtswhVQiuzNMKzf4xk,5312
24
24
  keras_hub/src/layers/modeling/transformer_decoder.py,sha256=50KLxaZwaQglWIcFotx3BFh6RwCMXRvGZNXHQBrJ5KM,21172
25
25
  keras_hub/src/layers/modeling/transformer_encoder.py,sha256=kKPGfjpdhqGJs4MmRyx7fk9xU_2TAS-gLGhq9FZdU0w,10828
26
26
  keras_hub/src/layers/modeling/transformer_layer_utils.py,sha256=FuznrW33iG50B-VDN8R1RjuA5JG72yNMJ1TBgWLxR0E,3487
@@ -43,7 +43,7 @@ keras_hub/src/metrics/rouge_n.py,sha256=JoFtmgjF4Ic263ny6bfD6vMHKreH9le3HnOOxemu
43
43
  keras_hub/src/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
44
44
  keras_hub/src/models/audio_to_text.py,sha256=XoOjXtKBX6K1fz-zOXcdVo3FpjuxCMnJZh2LQcYXb_0,2726
45
45
  keras_hub/src/models/audio_to_text_preprocessor.py,sha256=GS-WWyJ6aSsPRxi_0bxvxA00h2mT2FEwSdAoQXAUYVI,3249
46
- keras_hub/src/models/backbone.py,sha256=MYc9rJbFRM1q3asI3ORb1sFakV9nBACSQFHnkZBc75M,12323
46
+ keras_hub/src/models/backbone.py,sha256=kkF2Jv_R-EIueCsVLPKXONHkGGO1yprReNtO_ufRDKI,12139
47
47
  keras_hub/src/models/causal_lm.py,sha256=iyPfYhfvM9Rqyc-SZg132KsCYA3Poy-9RRQXN9U8lpE,17671
48
48
  keras_hub/src/models/causal_lm_preprocessor.py,sha256=nxl-sfmCfkfl6JmVRASa878QbaZUgWSA6Jdu48x4-dY,7155
49
49
  keras_hub/src/models/feature_pyramid_backbone.py,sha256=clEW-TTQSVJ_5qFNdDF0iABkin1p_xlBUFjJrC7T0IA,2247
@@ -116,6 +116,19 @@ keras_hub/src/models/cspnet/cspnet_image_classifier.py,sha256=JqfBHIBTFxaLOyAWx6
116
116
  keras_hub/src/models/cspnet/cspnet_image_classifier_preprocessor.py,sha256=ACRnOhjslk2ZZhpPfJioW4um4RLYa-Suk59z9wa5vfo,543
117
117
  keras_hub/src/models/cspnet/cspnet_image_converter.py,sha256=f-ICTY2T-RlCykU6qOHDxg0fY7ECfZ_xpSJzIVmbvpc,342
118
118
  keras_hub/src/models/cspnet/cspnet_presets.py,sha256=n01_7DTvbmaA_qs2GWiNLkBXNrrEvigPXSGc2NDTot8,1870
119
+ keras_hub/src/models/d_fine/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
120
+ keras_hub/src/models/d_fine/d_fine_attention.py,sha256=RlsgB9XxTz88wkGSRVFYpKSdiKMVxyb-fCnnpEfVQqo,17848
121
+ keras_hub/src/models/d_fine/d_fine_backbone.py,sha256=KDBVu5LNKqBfNmKsnyJGY0YmJZRLOEo9Pi0VSjjJr5M,37363
122
+ keras_hub/src/models/d_fine/d_fine_decoder.py,sha256=7b4yZaLf2BLA51szoJCgUdqw91QGzv7oxs-DvqVjsvg,38658
123
+ keras_hub/src/models/d_fine/d_fine_encoder.py,sha256=7AV09Y4rRf3JQC5Uxksr5d_r-2jh8syU9dL7dN5ow04,14974
124
+ keras_hub/src/models/d_fine/d_fine_hybrid_encoder.py,sha256=Q4yKVGpknBKHp_rjKzebT1XJgA5yiOzcAugCp2UlrmU,28305
125
+ keras_hub/src/models/d_fine/d_fine_image_converter.py,sha256=8KFAnLISLzDmFWIlGYWM-n1DY3rdQAqm7Sds-ZnRCKk,338
126
+ keras_hub/src/models/d_fine/d_fine_layers.py,sha256=hClOattmgjUcxcAS3LgpX36xKvD9yWTq0UhQX27U20Y,71265
127
+ keras_hub/src/models/d_fine/d_fine_loss.py,sha256=zO-LBBXJvbmSpsQ-DvTWN2N5qJmToIp61DMfnp31XE8,36046
128
+ keras_hub/src/models/d_fine/d_fine_object_detector.py,sha256=ap5ZQypupCDhsdFhm4hVQuMY3767r5cYEQZwOY3LYDI,32762
129
+ keras_hub/src/models/d_fine/d_fine_object_detector_preprocessor.py,sha256=738VvyHGQdsGN3sSP1yDnOOiC4RpYSQSES7OySynVm8,532
130
+ keras_hub/src/models/d_fine/d_fine_presets.py,sha256=FIe3owE5HOWrr_kWvn2r8v9vjetFd-fMoe4b4y9HvgY,71
131
+ keras_hub/src/models/d_fine/d_fine_utils.py,sha256=-EL5zanBgwDe6-RV4N9dwp-fkd7cy4SrGZDhc3WRR5A,31130
119
132
  keras_hub/src/models/deberta_v3/__init__.py,sha256=6E-QtAD1uvTBobrn5bUoyB1qtaCJU-t73TtbAEH6i9g,288
120
133
  keras_hub/src/models/deberta_v3/deberta_v3_backbone.py,sha256=oXdV7naTiMowuU3GsXEUo5K0GXiKbPKxdo27o5fXWjc,7258
121
134
  keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py,sha256=ADBktf1DdiP9T6LCaMhdFiZ_mUbBRKMekY5mGwAeJIo,4186
@@ -242,12 +255,12 @@ keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py,sha256=YiVz9q
242
255
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py,sha256=hmB81V0SuI6bEsxEuFkYgq58wbcrv1YLvmXGin5T3E0,9732
243
256
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py,sha256=aKso-8yGrynn3tZ5xm2egcXIBQo3__sWZDBtjmS3ZgU,1991
244
257
  keras_hub/src/models/hgnetv2/__init__.py,sha256=hGilfTnRPpVFS3YpRhJWEyK8CaPIzkRh6zUC1_5imaY,263
245
- keras_hub/src/models/hgnetv2/hgnetv2_backbone.py,sha256=eqVrbU2EyB2ToxK1g2QRW90zd5GyvJ8I7PKVBgqRpfY,7966
246
- keras_hub/src/models/hgnetv2/hgnetv2_encoder.py,sha256=VL6XCqyXieUPkqXS7fhsAT-EV6jzyN_i31EjsAizgVU,6464
258
+ keras_hub/src/models/hgnetv2/hgnetv2_backbone.py,sha256=PeejT-joxAXaMFb_H2AYrM4ilTwQTwFDA3vjal2ffW8,8016
259
+ keras_hub/src/models/hgnetv2/hgnetv2_encoder.py,sha256=51G78sl1UzUrO9TED3kQEPiYRUZ7mqP-ErZavKe12BA,6492
247
260
  keras_hub/src/models/hgnetv2/hgnetv2_image_classifier.py,sha256=62Xual9pRBkU6G_RUdCblx68Z827SCA_5q9utCXxwa0,7897
248
261
  keras_hub/src/models/hgnetv2/hgnetv2_image_classifier_preprocessor.py,sha256=df7OKvJmz2UqOXrqECvI9QdVMVkVMWhK0go9sltajnI,553
249
262
  keras_hub/src/models/hgnetv2/hgnetv2_image_converter.py,sha256=qaGRtDeQwmC0PR69KWC7GzYNdWZ5cHu_exhNzdYyYzM,348
250
- keras_hub/src/models/hgnetv2/hgnetv2_layers.py,sha256=OMUKW5VWL0xkEQl7RJYGAbTTB7qeqH3FHtMMuiQ0QmI,36418
263
+ keras_hub/src/models/hgnetv2/hgnetv2_layers.py,sha256=Kqte7B1LxrLFZhGDR65qUnMAju5sheSDV1kKsnxPEw8,37039
251
264
  keras_hub/src/models/hgnetv2/hgnetv2_presets.py,sha256=kbwxp8Nh4jdDN6egSmSxxwpY7CP5AklINXlWI0K3ZYA,2078
252
265
  keras_hub/src/models/llama/__init__.py,sha256=svVZjGi71R3lVbq0AdbqlXj909mr3Rp9EPXdiO0w0G0,251
253
266
  keras_hub/src/models/llama/llama_attention.py,sha256=UFHOWr69vTkOxLdgSUckGaSuUUyqlJ_xYoswWHVnTOU,8977
@@ -323,6 +336,13 @@ keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=5yM_jUtrFsW
323
336
  keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=Q_zfHEjGTtXEiCwjoJc2g6HjmoNoLgSDRNfRvIsf0dA,12989
324
337
  keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=ljTiADHo0Ok88q-jVzwJIle2C8xcxnudLTsBLzIySaM,2415
325
338
  keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=SbWanwCoONSwgiWQsc6lFdvhqKZ-zDW42XzQt8CNMtU,18311
339
+ keras_hub/src/models/parseq/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
340
+ keras_hub/src/models/parseq/parseq_backbone.py,sha256=FX28p7VZerjoHwlyfrvht3Pibl9GlTczDxo1iXtO6cA,4767
341
+ keras_hub/src/models/parseq/parseq_causal_lm.py,sha256=fhxhXCOgrIfe5aFimWz_w31VOZj5nb6w9Mx0kuzm718,17187
342
+ keras_hub/src/models/parseq/parseq_causal_lm_preprocessor.py,sha256=2pVdqEepiSQf8Z01J1qKoTRbLeQGhWtomjKw1Gaxrhk,6057
343
+ keras_hub/src/models/parseq/parseq_decoder.py,sha256=R9yRlfwkk0q-HEchn5bW34qqTcEnCRDsD3Ru7ENi4F4,14442
344
+ keras_hub/src/models/parseq/parseq_image_converter.py,sha256=cEFXRICZQ5lEf3qpgmfSBMMiDZI7PC-0kO5wb-kLYx4,342
345
+ keras_hub/src/models/parseq/parseq_tokenizer.py,sha256=SEbeYRxU7VzHuyTWKJK5hOhqq_DZqXvGALnG8MNCN3I,8164
326
346
  keras_hub/src/models/phi3/__init__.py,sha256=zIbf1MU-ks91mEkjTRJAsk51N3BBnXDF2JM1vO-13PQ,245
327
347
  keras_hub/src/models/phi3/phi3_attention.py,sha256=pojx23rG2NPqy0MRo_OspnxipJCZvexZ2V25xucimHY,9980
328
348
  keras_hub/src/models/phi3/phi3_backbone.py,sha256=fY-OY2ZrqxDHglYjTM0OCacBdEQHwj-XNmU0MnXL7iU,8885
@@ -503,7 +523,7 @@ keras_hub/src/samplers/serialization.py,sha256=K6FC4AY1sfOLLIk2k4G783XWnQ_Rk3z1Q
503
523
  keras_hub/src/samplers/top_k_sampler.py,sha256=WSyrhmOCan55X2JYAnNWE88rkx66sXqdoerl87nOrDQ,2250
504
524
  keras_hub/src/samplers/top_p_sampler.py,sha256=9r29WdqBlrW_2TBma6QqkRps2Uit4a6iZPmq1Gsiuko,3400
505
525
  keras_hub/src/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
506
- keras_hub/src/tests/test_case.py,sha256=lBIH6rNJU7wasOV-Iq4mymPg28kznqMi81LOEWWvUYY,27476
526
+ keras_hub/src/tests/test_case.py,sha256=MgvZrz9bz_ubOEAt0D4q5ZiX_UUarHaV8taXoXFuz4U,29260
507
527
  keras_hub/src/tests/mocks/mock_gemma3_tokenizer.py,sha256=a4mSer84-xh9dVJUVpFUPzglCh-7NcFqHRKPDR35c8c,4888
508
528
  keras_hub/src/tokenizers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
509
529
  keras_hub/src/tokenizers/byte_pair_tokenizer.py,sha256=WeUlHMAf5y_MUjFIfVhEcFoOZu-z4kkSj-Dq-pegM9w,24052
@@ -517,9 +537,9 @@ keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=cylrs02ZrYQ1TuZr
517
537
  keras_hub/src/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
518
538
  keras_hub/src/utils/keras_utils.py,sha256=IWsbg-p-XVLuOkba8PAYNf9zDo4G2RkINLr58p12MhA,5291
519
539
  keras_hub/src/utils/pipeline_model.py,sha256=jgzB6NQPSl0KOu08N-TazfOnXnUJbZjH2EXXhx25Ftg,9084
520
- keras_hub/src/utils/preset_utils.py,sha256=dEOAGjkjnu69nhWuS1wnHVyMmkYnlzUQAUPzbLexLhY,35142
540
+ keras_hub/src/utils/preset_utils.py,sha256=vSs7U9cy0p6UqOEyGvudzL-o3mxl3FX22r4XH6rOgMg,37309
521
541
  keras_hub/src/utils/python_utils.py,sha256=N8nWeO3san4YnGkffRXG3Ix7VEIMTKSN21FX5TuL7G8,202
522
- keras_hub/src/utils/tensor_utils.py,sha256=WrohV6-hvxtLE6rRRhtN4hy8GkHikV-NrRnVEYUwJQo,16133
542
+ keras_hub/src/utils/tensor_utils.py,sha256=bGM0pK-x0R4640emul49GfSZ3p4OSvOaVzZZPlm6eiM,16957
523
543
  keras_hub/src/utils/coco/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
524
544
  keras_hub/src/utils/coco/coco_utils.py,sha256=x_QnUUvZ92zoFzMJugiInHORc4NrMdWVBkpp8BAYF6s,2586
525
545
  keras_hub/src/utils/imagenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -550,14 +570,14 @@ keras_hub/src/utils/transformers/convert_qwen.py,sha256=WUxMAEFVqRs7TRw7QU5TH3_e
550
570
  keras_hub/src/utils/transformers/convert_qwen3.py,sha256=LIormvCMWPq6X9Wo2eNbADjtFZ0nI7tFGZFBxmo4GKw,5700
551
571
  keras_hub/src/utils/transformers/convert_qwen_moe.py,sha256=a7R28aln-PdAcNuKAXdrtzvslho2Co6GypChxLMKPpc,10618
552
572
  keras_hub/src/utils/transformers/convert_t5gemma.py,sha256=DPOwd61UhjspKuCsk3_EaNvSADGP_f8KLcZARHYVk5Y,9490
553
- keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
573
+ keras_hub/src/utils/transformers/convert_vit.py,sha256=YAmXh519ecSgEO5B4g-aEQg1Bb_6ifFafLMqDTfLn_c,5259
554
574
  keras_hub/src/utils/transformers/preset_loader.py,sha256=JZn5mfKnVTN5aAvdZ6GWbS_CK3wP42iDkEJsmA58BVw,4925
555
575
  keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
556
576
  keras_hub/src/utils/transformers/export/gemma.py,sha256=xX_vfQwvFZ_-lQX4kgMNOGKL7fL_1yk7QyGYV2Qyly4,4699
557
577
  keras_hub/src/utils/transformers/export/hf_exporter.py,sha256=Qk52c6LIA2eMHUNY9Vy4STJSpnhLMdJ_t-3ljqhSr4k,5081
558
- keras_hub/tokenizers/__init__.py,sha256=B-LdN3lKiXaqv9MV7JiVaKiVqs8SL_1sqSpdbg_qtJY,4349
578
+ keras_hub/tokenizers/__init__.py,sha256=YEr_cwyX6MACxQOgyRwETilOFYBXpQLNXH22ZdSSv3o,4450
559
579
  keras_hub/utils/__init__.py,sha256=jXPqVGBpJr_PpYmqD8aDG-fRMlxH-ulqCR2SZMn288Y,646
560
- keras_hub_nightly-0.23.0.dev202508260411.dist-info/METADATA,sha256=KdNoOY6Bw-w1ZrGexPSltZfYkpESpzxpf9YfkLvENiY,7395
561
- keras_hub_nightly-0.23.0.dev202508260411.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
562
- keras_hub_nightly-0.23.0.dev202508260411.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
563
- keras_hub_nightly-0.23.0.dev202508260411.dist-info/RECORD,,
580
+ keras_hub_nightly-0.23.0.dev202508280418.dist-info/METADATA,sha256=X-OFLf5GlX75kwatUaq1RcxrYDIhJf27bbQXNXc4mNU,7395
581
+ keras_hub_nightly-0.23.0.dev202508280418.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
582
+ keras_hub_nightly-0.23.0.dev202508280418.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
583
+ keras_hub_nightly-0.23.0.dev202508280418.dist-info/RECORD,,