keras-hub-nightly 0.23.0.dev202508260411__py3-none-any.whl → 0.23.0.dev202508280418__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/layers/__init__.py +6 -0
- keras_hub/models/__init__.py +21 -0
- keras_hub/src/layers/modeling/position_embedding.py +21 -6
- keras_hub/src/layers/modeling/rotary_embedding.py +16 -6
- keras_hub/src/layers/modeling/sine_position_encoding.py +21 -8
- keras_hub/src/layers/modeling/token_and_position_embedding.py +2 -1
- keras_hub/src/models/backbone.py +10 -15
- keras_hub/src/models/d_fine/__init__.py +0 -0
- keras_hub/src/models/d_fine/d_fine_attention.py +461 -0
- keras_hub/src/models/d_fine/d_fine_backbone.py +891 -0
- keras_hub/src/models/d_fine/d_fine_decoder.py +944 -0
- keras_hub/src/models/d_fine/d_fine_encoder.py +365 -0
- keras_hub/src/models/d_fine/d_fine_hybrid_encoder.py +642 -0
- keras_hub/src/models/d_fine/d_fine_image_converter.py +8 -0
- keras_hub/src/models/d_fine/d_fine_layers.py +1828 -0
- keras_hub/src/models/d_fine/d_fine_loss.py +938 -0
- keras_hub/src/models/d_fine/d_fine_object_detector.py +875 -0
- keras_hub/src/models/d_fine/d_fine_object_detector_preprocessor.py +14 -0
- keras_hub/src/models/d_fine/d_fine_presets.py +2 -0
- keras_hub/src/models/d_fine/d_fine_utils.py +827 -0
- keras_hub/src/models/hgnetv2/hgnetv2_backbone.py +4 -1
- keras_hub/src/models/hgnetv2/hgnetv2_encoder.py +3 -2
- keras_hub/src/models/hgnetv2/hgnetv2_layers.py +27 -11
- keras_hub/src/models/parseq/__init__.py +0 -0
- keras_hub/src/models/parseq/parseq_backbone.py +134 -0
- keras_hub/src/models/parseq/parseq_causal_lm.py +466 -0
- keras_hub/src/models/parseq/parseq_causal_lm_preprocessor.py +168 -0
- keras_hub/src/models/parseq/parseq_decoder.py +418 -0
- keras_hub/src/models/parseq/parseq_image_converter.py +8 -0
- keras_hub/src/models/parseq/parseq_tokenizer.py +221 -0
- keras_hub/src/tests/test_case.py +37 -1
- keras_hub/src/utils/preset_utils.py +49 -0
- keras_hub/src/utils/tensor_utils.py +23 -1
- keras_hub/src/utils/transformers/convert_vit.py +4 -1
- keras_hub/src/version.py +1 -1
- keras_hub/tokenizers/__init__.py +3 -0
- {keras_hub_nightly-0.23.0.dev202508260411.dist-info → keras_hub_nightly-0.23.0.dev202508280418.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.23.0.dev202508260411.dist-info → keras_hub_nightly-0.23.0.dev202508280418.dist-info}/RECORD +40 -20
- {keras_hub_nightly-0.23.0.dev202508260411.dist-info → keras_hub_nightly-0.23.0.dev202508280418.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.23.0.dev202508260411.dist-info → keras_hub_nightly-0.23.0.dev202508280418.dist-info}/top_level.txt +0 -0
@@ -10,6 +10,7 @@ import keras
|
|
10
10
|
from absl import logging
|
11
11
|
|
12
12
|
from keras_hub.src.api_export import keras_hub_export
|
13
|
+
from keras_hub.src.utils import tensor_utils
|
13
14
|
from keras_hub.src.utils.keras_utils import print_msg
|
14
15
|
from keras_hub.src.utils.keras_utils import sharded_weights_available
|
15
16
|
from keras_hub.src.utils.tensor_utils import get_tensor_size_in_bits
|
@@ -687,6 +688,7 @@ class KerasPresetLoader(PresetLoader):
|
|
687
688
|
)
|
688
689
|
# We found a `task.json` with a complete config for our class.
|
689
690
|
# Forward backbone args.
|
691
|
+
kwargs["dtype"] = self._resolve_dtype(self.config, kwargs)
|
690
692
|
backbone_kwargs, kwargs = self.get_backbone_kwargs(**kwargs)
|
691
693
|
if "backbone" in task_config["config"]:
|
692
694
|
backbone_config = task_config["config"]["backbone"]["config"]
|
@@ -708,6 +710,53 @@ class KerasPresetLoader(PresetLoader):
|
|
708
710
|
self._load_backbone_weights(task.backbone)
|
709
711
|
return task
|
710
712
|
|
713
|
+
def _resolve_dtype(self, config, kwargs):
|
714
|
+
"""Resolves the Model's dtype based on the provided config and kwargs.
|
715
|
+
|
716
|
+
The data type is resolved based on the following priority:
|
717
|
+
1. If a user specified dtype is passed, use that.
|
718
|
+
2. If no user specified dtype is passed, and the save dtype is castable
|
719
|
+
to the current keras default dtype convert weights on load (float type
|
720
|
+
to float type).
|
721
|
+
3. If not user specified dtype is passed, and the save dtype is not
|
722
|
+
castable to the current default dtype (quantized dtypes). Load the
|
723
|
+
saved types verbatim.
|
724
|
+
|
725
|
+
Args:
|
726
|
+
config: dict. The model configuration.
|
727
|
+
kwargs: dict. Additional keyword arguments, potentially including
|
728
|
+
`dtype`.
|
729
|
+
|
730
|
+
Returns:
|
731
|
+
str, dict, or DTypePolicy. The resolved dtype.
|
732
|
+
"""
|
733
|
+
# 1. If a user specified dtype is passed, use that.
|
734
|
+
if "dtype" in kwargs and kwargs["dtype"] is not None:
|
735
|
+
return kwargs["dtype"]
|
736
|
+
|
737
|
+
saved_dtype = config.get("config", {}).get("dtype")
|
738
|
+
|
739
|
+
# If there's no saved dtype, we don't need to do anything.
|
740
|
+
if saved_dtype is None:
|
741
|
+
return None
|
742
|
+
|
743
|
+
# 2. Check whether the saved dtype is a simple float type.
|
744
|
+
policy_name = saved_dtype.get("config", {}).get("name")
|
745
|
+
if policy_name and tensor_utils.is_float_dtype(policy_name):
|
746
|
+
# If the saved dtype is a float, we can safely cast to the default
|
747
|
+
# backend float type.
|
748
|
+
if policy_name != keras.config.dtype_policy().name:
|
749
|
+
logging.info(
|
750
|
+
f"Converting weights saved as {policy_name} "
|
751
|
+
"to the current Keras dtype policy "
|
752
|
+
f"{keras.config.dtype_policy()}"
|
753
|
+
)
|
754
|
+
return keras.config.dtype_policy()
|
755
|
+
else:
|
756
|
+
# 3. Otherwise, the dtype is a complex object (e.g. a
|
757
|
+
# DTypePolicyMap for quantization), and should be used as is.
|
758
|
+
return saved_dtype
|
759
|
+
|
711
760
|
def load_preprocessor(
|
712
761
|
self, cls, config_file=PREPROCESSOR_CONFIG_FILE, **kwargs
|
713
762
|
):
|
@@ -310,7 +310,29 @@ def is_tensor_type(x):
|
|
310
310
|
|
311
311
|
|
312
312
|
def is_float_dtype(dtype):
|
313
|
-
|
313
|
+
"""
|
314
|
+
Checks if a dtype is a float type by using a regex.
|
315
|
+
|
316
|
+
This function standardizes the input dtype and then uses a regular
|
317
|
+
expression to perform an exact match. It identifies standard floats,
|
318
|
+
bfloats, and mixed-precision float types.
|
319
|
+
|
320
|
+
For example:
|
321
|
+
- `is_float_dtype("float32")` returns `True`.
|
322
|
+
- `is_float_dtype("bfloat16")` returns `True`.
|
323
|
+
- `is_float_dtype("mixed_float16")` returns `True`.
|
324
|
+
- `is_float_dtype("int8")` returns `False`.
|
325
|
+
- `is_float_dtype("int8_from_float32")` returns `False`.
|
326
|
+
|
327
|
+
Args:
|
328
|
+
dtype: str, DTypePolicy. The data type to check.
|
329
|
+
|
330
|
+
Returns:
|
331
|
+
bool: `True` if the dtype is a floating-point type, `False` otherwise.
|
332
|
+
"""
|
333
|
+
pattern = re.compile(r"^(mixed_)?(b)?float[0-9]*$")
|
334
|
+
standardized_dtype = keras.backend.standardize_dtype(dtype)
|
335
|
+
return pattern.match(standardized_dtype) is not None
|
314
336
|
|
315
337
|
|
316
338
|
def is_int_dtype(dtype):
|
@@ -9,7 +9,10 @@ def convert_backbone_config(transformers_config):
|
|
9
9
|
image_size = transformers_config["image_size"]
|
10
10
|
return {
|
11
11
|
"image_shape": (image_size, image_size, 3),
|
12
|
-
"patch_size":
|
12
|
+
"patch_size": (
|
13
|
+
transformers_config["patch_size"],
|
14
|
+
transformers_config["patch_size"],
|
15
|
+
),
|
13
16
|
"num_layers": transformers_config["num_hidden_layers"],
|
14
17
|
"num_heads": transformers_config["num_attention_heads"],
|
15
18
|
"hidden_dim": transformers_config["hidden_size"],
|
keras_hub/src/version.py
CHANGED
keras_hub/tokenizers/__init__.py
CHANGED
@@ -66,6 +66,9 @@ from keras_hub.src.models.opt.opt_tokenizer import OPTTokenizer as OPTTokenizer
|
|
66
66
|
from keras_hub.src.models.pali_gemma.pali_gemma_tokenizer import (
|
67
67
|
PaliGemmaTokenizer as PaliGemmaTokenizer,
|
68
68
|
)
|
69
|
+
from keras_hub.src.models.parseq.parseq_tokenizer import (
|
70
|
+
PARSeqTokenizer as PARSeqTokenizer,
|
71
|
+
)
|
69
72
|
from keras_hub.src.models.phi3.phi3_tokenizer import (
|
70
73
|
Phi3Tokenizer as Phi3Tokenizer,
|
71
74
|
)
|
@@ -1,11 +1,11 @@
|
|
1
1
|
keras_hub/__init__.py,sha256=bJbUZkqwhZvTb1Tqx1fbkq6mzBYiEyq-Hin3oQIkhdE,558
|
2
|
-
keras_hub/layers/__init__.py,sha256=
|
2
|
+
keras_hub/layers/__init__.py,sha256=GUDgi0KdORQnv-rH_IRQQ1cCwb-wGQFHy6Vdb7H6FA8,5660
|
3
3
|
keras_hub/metrics/__init__.py,sha256=KYalsMPBnfwim9BdGHFfJ5WxUKFXOQ1QoKIMT_0lwlM,439
|
4
|
-
keras_hub/models/__init__.py,sha256=
|
4
|
+
keras_hub/models/__init__.py,sha256=Est6LugIjoAFkpTgqZWfISk-1NVMH_k-4soHCHaMmyM,29696
|
5
5
|
keras_hub/samplers/__init__.py,sha256=aFQIkiqbZpi8vjrPp2MVII4QUfE-eQjra5fMeHsoy7k,886
|
6
6
|
keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
7
7
|
keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
|
8
|
-
keras_hub/src/version.py,sha256=
|
8
|
+
keras_hub/src/version.py,sha256=eqcOIC_473obdqI8Jors74gclaT4zT2WshgxL02xzwQ,222
|
9
9
|
keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
10
10
|
keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
11
11
|
keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
|
@@ -15,12 +15,12 @@ keras_hub/src/layers/modeling/cached_multi_head_attention.py,sha256=8IDyP3JMeALV
|
|
15
15
|
keras_hub/src/layers/modeling/f_net_encoder.py,sha256=zkVeO5Nk_kBZCUGq2LeDGmPEIM_cr-aGqCKtQGOHKTY,6842
|
16
16
|
keras_hub/src/layers/modeling/masked_lm_head.py,sha256=no6XQb76KB2cUiksYC0MSdyeDOK7pn8MY6cmdCDxpKs,9015
|
17
17
|
keras_hub/src/layers/modeling/non_max_supression.py,sha256=yAkAH1CCj_tYXgQTav39IRr_Uxn8hmzJgIxqbYQyZY8,22565
|
18
|
-
keras_hub/src/layers/modeling/position_embedding.py,sha256=
|
18
|
+
keras_hub/src/layers/modeling/position_embedding.py,sha256=vqmmUbMU-41Ns6qwR_4N1IvVsV0arGlkiTD7D7NMS2s,4562
|
19
19
|
keras_hub/src/layers/modeling/reversible_embedding.py,sha256=w6f1LQzwPOKUdlWDy3YRECaDzb8veCB2PAxy4L0HJ7w,10866
|
20
20
|
keras_hub/src/layers/modeling/rms_normalization.py,sha256=Ylnc9vkDw1A_ZqiKpQ09jVTAGumS5rspjdQOkH-mxf4,1084
|
21
|
-
keras_hub/src/layers/modeling/rotary_embedding.py,sha256=
|
22
|
-
keras_hub/src/layers/modeling/sine_position_encoding.py,sha256=
|
23
|
-
keras_hub/src/layers/modeling/token_and_position_embedding.py,sha256=
|
21
|
+
keras_hub/src/layers/modeling/rotary_embedding.py,sha256=uKcEyidierqdEs67QYPMQrJ1u0gxqJYT22_YGnhkQ-I,6546
|
22
|
+
keras_hub/src/layers/modeling/sine_position_encoding.py,sha256=aLoadvQW1eeivac8gzymP740NXppblZ2C_OlErLMfN4,4063
|
23
|
+
keras_hub/src/layers/modeling/token_and_position_embedding.py,sha256=10PDSErd6T6pisor1p6i5-7wCZtswhVQiuzNMKzf4xk,5312
|
24
24
|
keras_hub/src/layers/modeling/transformer_decoder.py,sha256=50KLxaZwaQglWIcFotx3BFh6RwCMXRvGZNXHQBrJ5KM,21172
|
25
25
|
keras_hub/src/layers/modeling/transformer_encoder.py,sha256=kKPGfjpdhqGJs4MmRyx7fk9xU_2TAS-gLGhq9FZdU0w,10828
|
26
26
|
keras_hub/src/layers/modeling/transformer_layer_utils.py,sha256=FuznrW33iG50B-VDN8R1RjuA5JG72yNMJ1TBgWLxR0E,3487
|
@@ -43,7 +43,7 @@ keras_hub/src/metrics/rouge_n.py,sha256=JoFtmgjF4Ic263ny6bfD6vMHKreH9le3HnOOxemu
|
|
43
43
|
keras_hub/src/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
44
44
|
keras_hub/src/models/audio_to_text.py,sha256=XoOjXtKBX6K1fz-zOXcdVo3FpjuxCMnJZh2LQcYXb_0,2726
|
45
45
|
keras_hub/src/models/audio_to_text_preprocessor.py,sha256=GS-WWyJ6aSsPRxi_0bxvxA00h2mT2FEwSdAoQXAUYVI,3249
|
46
|
-
keras_hub/src/models/backbone.py,sha256=
|
46
|
+
keras_hub/src/models/backbone.py,sha256=kkF2Jv_R-EIueCsVLPKXONHkGGO1yprReNtO_ufRDKI,12139
|
47
47
|
keras_hub/src/models/causal_lm.py,sha256=iyPfYhfvM9Rqyc-SZg132KsCYA3Poy-9RRQXN9U8lpE,17671
|
48
48
|
keras_hub/src/models/causal_lm_preprocessor.py,sha256=nxl-sfmCfkfl6JmVRASa878QbaZUgWSA6Jdu48x4-dY,7155
|
49
49
|
keras_hub/src/models/feature_pyramid_backbone.py,sha256=clEW-TTQSVJ_5qFNdDF0iABkin1p_xlBUFjJrC7T0IA,2247
|
@@ -116,6 +116,19 @@ keras_hub/src/models/cspnet/cspnet_image_classifier.py,sha256=JqfBHIBTFxaLOyAWx6
|
|
116
116
|
keras_hub/src/models/cspnet/cspnet_image_classifier_preprocessor.py,sha256=ACRnOhjslk2ZZhpPfJioW4um4RLYa-Suk59z9wa5vfo,543
|
117
117
|
keras_hub/src/models/cspnet/cspnet_image_converter.py,sha256=f-ICTY2T-RlCykU6qOHDxg0fY7ECfZ_xpSJzIVmbvpc,342
|
118
118
|
keras_hub/src/models/cspnet/cspnet_presets.py,sha256=n01_7DTvbmaA_qs2GWiNLkBXNrrEvigPXSGc2NDTot8,1870
|
119
|
+
keras_hub/src/models/d_fine/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
120
|
+
keras_hub/src/models/d_fine/d_fine_attention.py,sha256=RlsgB9XxTz88wkGSRVFYpKSdiKMVxyb-fCnnpEfVQqo,17848
|
121
|
+
keras_hub/src/models/d_fine/d_fine_backbone.py,sha256=KDBVu5LNKqBfNmKsnyJGY0YmJZRLOEo9Pi0VSjjJr5M,37363
|
122
|
+
keras_hub/src/models/d_fine/d_fine_decoder.py,sha256=7b4yZaLf2BLA51szoJCgUdqw91QGzv7oxs-DvqVjsvg,38658
|
123
|
+
keras_hub/src/models/d_fine/d_fine_encoder.py,sha256=7AV09Y4rRf3JQC5Uxksr5d_r-2jh8syU9dL7dN5ow04,14974
|
124
|
+
keras_hub/src/models/d_fine/d_fine_hybrid_encoder.py,sha256=Q4yKVGpknBKHp_rjKzebT1XJgA5yiOzcAugCp2UlrmU,28305
|
125
|
+
keras_hub/src/models/d_fine/d_fine_image_converter.py,sha256=8KFAnLISLzDmFWIlGYWM-n1DY3rdQAqm7Sds-ZnRCKk,338
|
126
|
+
keras_hub/src/models/d_fine/d_fine_layers.py,sha256=hClOattmgjUcxcAS3LgpX36xKvD9yWTq0UhQX27U20Y,71265
|
127
|
+
keras_hub/src/models/d_fine/d_fine_loss.py,sha256=zO-LBBXJvbmSpsQ-DvTWN2N5qJmToIp61DMfnp31XE8,36046
|
128
|
+
keras_hub/src/models/d_fine/d_fine_object_detector.py,sha256=ap5ZQypupCDhsdFhm4hVQuMY3767r5cYEQZwOY3LYDI,32762
|
129
|
+
keras_hub/src/models/d_fine/d_fine_object_detector_preprocessor.py,sha256=738VvyHGQdsGN3sSP1yDnOOiC4RpYSQSES7OySynVm8,532
|
130
|
+
keras_hub/src/models/d_fine/d_fine_presets.py,sha256=FIe3owE5HOWrr_kWvn2r8v9vjetFd-fMoe4b4y9HvgY,71
|
131
|
+
keras_hub/src/models/d_fine/d_fine_utils.py,sha256=-EL5zanBgwDe6-RV4N9dwp-fkd7cy4SrGZDhc3WRR5A,31130
|
119
132
|
keras_hub/src/models/deberta_v3/__init__.py,sha256=6E-QtAD1uvTBobrn5bUoyB1qtaCJU-t73TtbAEH6i9g,288
|
120
133
|
keras_hub/src/models/deberta_v3/deberta_v3_backbone.py,sha256=oXdV7naTiMowuU3GsXEUo5K0GXiKbPKxdo27o5fXWjc,7258
|
121
134
|
keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py,sha256=ADBktf1DdiP9T6LCaMhdFiZ_mUbBRKMekY5mGwAeJIo,4186
|
@@ -242,12 +255,12 @@ keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py,sha256=YiVz9q
|
|
242
255
|
keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py,sha256=hmB81V0SuI6bEsxEuFkYgq58wbcrv1YLvmXGin5T3E0,9732
|
243
256
|
keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py,sha256=aKso-8yGrynn3tZ5xm2egcXIBQo3__sWZDBtjmS3ZgU,1991
|
244
257
|
keras_hub/src/models/hgnetv2/__init__.py,sha256=hGilfTnRPpVFS3YpRhJWEyK8CaPIzkRh6zUC1_5imaY,263
|
245
|
-
keras_hub/src/models/hgnetv2/hgnetv2_backbone.py,sha256=
|
246
|
-
keras_hub/src/models/hgnetv2/hgnetv2_encoder.py,sha256=
|
258
|
+
keras_hub/src/models/hgnetv2/hgnetv2_backbone.py,sha256=PeejT-joxAXaMFb_H2AYrM4ilTwQTwFDA3vjal2ffW8,8016
|
259
|
+
keras_hub/src/models/hgnetv2/hgnetv2_encoder.py,sha256=51G78sl1UzUrO9TED3kQEPiYRUZ7mqP-ErZavKe12BA,6492
|
247
260
|
keras_hub/src/models/hgnetv2/hgnetv2_image_classifier.py,sha256=62Xual9pRBkU6G_RUdCblx68Z827SCA_5q9utCXxwa0,7897
|
248
261
|
keras_hub/src/models/hgnetv2/hgnetv2_image_classifier_preprocessor.py,sha256=df7OKvJmz2UqOXrqECvI9QdVMVkVMWhK0go9sltajnI,553
|
249
262
|
keras_hub/src/models/hgnetv2/hgnetv2_image_converter.py,sha256=qaGRtDeQwmC0PR69KWC7GzYNdWZ5cHu_exhNzdYyYzM,348
|
250
|
-
keras_hub/src/models/hgnetv2/hgnetv2_layers.py,sha256=
|
263
|
+
keras_hub/src/models/hgnetv2/hgnetv2_layers.py,sha256=Kqte7B1LxrLFZhGDR65qUnMAju5sheSDV1kKsnxPEw8,37039
|
251
264
|
keras_hub/src/models/hgnetv2/hgnetv2_presets.py,sha256=kbwxp8Nh4jdDN6egSmSxxwpY7CP5AklINXlWI0K3ZYA,2078
|
252
265
|
keras_hub/src/models/llama/__init__.py,sha256=svVZjGi71R3lVbq0AdbqlXj909mr3Rp9EPXdiO0w0G0,251
|
253
266
|
keras_hub/src/models/llama/llama_attention.py,sha256=UFHOWr69vTkOxLdgSUckGaSuUUyqlJ_xYoswWHVnTOU,8977
|
@@ -323,6 +336,13 @@ keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=5yM_jUtrFsW
|
|
323
336
|
keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=Q_zfHEjGTtXEiCwjoJc2g6HjmoNoLgSDRNfRvIsf0dA,12989
|
324
337
|
keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=ljTiADHo0Ok88q-jVzwJIle2C8xcxnudLTsBLzIySaM,2415
|
325
338
|
keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=SbWanwCoONSwgiWQsc6lFdvhqKZ-zDW42XzQt8CNMtU,18311
|
339
|
+
keras_hub/src/models/parseq/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
340
|
+
keras_hub/src/models/parseq/parseq_backbone.py,sha256=FX28p7VZerjoHwlyfrvht3Pibl9GlTczDxo1iXtO6cA,4767
|
341
|
+
keras_hub/src/models/parseq/parseq_causal_lm.py,sha256=fhxhXCOgrIfe5aFimWz_w31VOZj5nb6w9Mx0kuzm718,17187
|
342
|
+
keras_hub/src/models/parseq/parseq_causal_lm_preprocessor.py,sha256=2pVdqEepiSQf8Z01J1qKoTRbLeQGhWtomjKw1Gaxrhk,6057
|
343
|
+
keras_hub/src/models/parseq/parseq_decoder.py,sha256=R9yRlfwkk0q-HEchn5bW34qqTcEnCRDsD3Ru7ENi4F4,14442
|
344
|
+
keras_hub/src/models/parseq/parseq_image_converter.py,sha256=cEFXRICZQ5lEf3qpgmfSBMMiDZI7PC-0kO5wb-kLYx4,342
|
345
|
+
keras_hub/src/models/parseq/parseq_tokenizer.py,sha256=SEbeYRxU7VzHuyTWKJK5hOhqq_DZqXvGALnG8MNCN3I,8164
|
326
346
|
keras_hub/src/models/phi3/__init__.py,sha256=zIbf1MU-ks91mEkjTRJAsk51N3BBnXDF2JM1vO-13PQ,245
|
327
347
|
keras_hub/src/models/phi3/phi3_attention.py,sha256=pojx23rG2NPqy0MRo_OspnxipJCZvexZ2V25xucimHY,9980
|
328
348
|
keras_hub/src/models/phi3/phi3_backbone.py,sha256=fY-OY2ZrqxDHglYjTM0OCacBdEQHwj-XNmU0MnXL7iU,8885
|
@@ -503,7 +523,7 @@ keras_hub/src/samplers/serialization.py,sha256=K6FC4AY1sfOLLIk2k4G783XWnQ_Rk3z1Q
|
|
503
523
|
keras_hub/src/samplers/top_k_sampler.py,sha256=WSyrhmOCan55X2JYAnNWE88rkx66sXqdoerl87nOrDQ,2250
|
504
524
|
keras_hub/src/samplers/top_p_sampler.py,sha256=9r29WdqBlrW_2TBma6QqkRps2Uit4a6iZPmq1Gsiuko,3400
|
505
525
|
keras_hub/src/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
506
|
-
keras_hub/src/tests/test_case.py,sha256=
|
526
|
+
keras_hub/src/tests/test_case.py,sha256=MgvZrz9bz_ubOEAt0D4q5ZiX_UUarHaV8taXoXFuz4U,29260
|
507
527
|
keras_hub/src/tests/mocks/mock_gemma3_tokenizer.py,sha256=a4mSer84-xh9dVJUVpFUPzglCh-7NcFqHRKPDR35c8c,4888
|
508
528
|
keras_hub/src/tokenizers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
509
529
|
keras_hub/src/tokenizers/byte_pair_tokenizer.py,sha256=WeUlHMAf5y_MUjFIfVhEcFoOZu-z4kkSj-Dq-pegM9w,24052
|
@@ -517,9 +537,9 @@ keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=cylrs02ZrYQ1TuZr
|
|
517
537
|
keras_hub/src/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
518
538
|
keras_hub/src/utils/keras_utils.py,sha256=IWsbg-p-XVLuOkba8PAYNf9zDo4G2RkINLr58p12MhA,5291
|
519
539
|
keras_hub/src/utils/pipeline_model.py,sha256=jgzB6NQPSl0KOu08N-TazfOnXnUJbZjH2EXXhx25Ftg,9084
|
520
|
-
keras_hub/src/utils/preset_utils.py,sha256=
|
540
|
+
keras_hub/src/utils/preset_utils.py,sha256=vSs7U9cy0p6UqOEyGvudzL-o3mxl3FX22r4XH6rOgMg,37309
|
521
541
|
keras_hub/src/utils/python_utils.py,sha256=N8nWeO3san4YnGkffRXG3Ix7VEIMTKSN21FX5TuL7G8,202
|
522
|
-
keras_hub/src/utils/tensor_utils.py,sha256=
|
542
|
+
keras_hub/src/utils/tensor_utils.py,sha256=bGM0pK-x0R4640emul49GfSZ3p4OSvOaVzZZPlm6eiM,16957
|
523
543
|
keras_hub/src/utils/coco/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
524
544
|
keras_hub/src/utils/coco/coco_utils.py,sha256=x_QnUUvZ92zoFzMJugiInHORc4NrMdWVBkpp8BAYF6s,2586
|
525
545
|
keras_hub/src/utils/imagenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -550,14 +570,14 @@ keras_hub/src/utils/transformers/convert_qwen.py,sha256=WUxMAEFVqRs7TRw7QU5TH3_e
|
|
550
570
|
keras_hub/src/utils/transformers/convert_qwen3.py,sha256=LIormvCMWPq6X9Wo2eNbADjtFZ0nI7tFGZFBxmo4GKw,5700
|
551
571
|
keras_hub/src/utils/transformers/convert_qwen_moe.py,sha256=a7R28aln-PdAcNuKAXdrtzvslho2Co6GypChxLMKPpc,10618
|
552
572
|
keras_hub/src/utils/transformers/convert_t5gemma.py,sha256=DPOwd61UhjspKuCsk3_EaNvSADGP_f8KLcZARHYVk5Y,9490
|
553
|
-
keras_hub/src/utils/transformers/convert_vit.py,sha256=
|
573
|
+
keras_hub/src/utils/transformers/convert_vit.py,sha256=YAmXh519ecSgEO5B4g-aEQg1Bb_6ifFafLMqDTfLn_c,5259
|
554
574
|
keras_hub/src/utils/transformers/preset_loader.py,sha256=JZn5mfKnVTN5aAvdZ6GWbS_CK3wP42iDkEJsmA58BVw,4925
|
555
575
|
keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
|
556
576
|
keras_hub/src/utils/transformers/export/gemma.py,sha256=xX_vfQwvFZ_-lQX4kgMNOGKL7fL_1yk7QyGYV2Qyly4,4699
|
557
577
|
keras_hub/src/utils/transformers/export/hf_exporter.py,sha256=Qk52c6LIA2eMHUNY9Vy4STJSpnhLMdJ_t-3ljqhSr4k,5081
|
558
|
-
keras_hub/tokenizers/__init__.py,sha256=
|
578
|
+
keras_hub/tokenizers/__init__.py,sha256=YEr_cwyX6MACxQOgyRwETilOFYBXpQLNXH22ZdSSv3o,4450
|
559
579
|
keras_hub/utils/__init__.py,sha256=jXPqVGBpJr_PpYmqD8aDG-fRMlxH-ulqCR2SZMn288Y,646
|
560
|
-
keras_hub_nightly-0.23.0.
|
561
|
-
keras_hub_nightly-0.23.0.
|
562
|
-
keras_hub_nightly-0.23.0.
|
563
|
-
keras_hub_nightly-0.23.0.
|
580
|
+
keras_hub_nightly-0.23.0.dev202508280418.dist-info/METADATA,sha256=X-OFLf5GlX75kwatUaq1RcxrYDIhJf27bbQXNXc4mNU,7395
|
581
|
+
keras_hub_nightly-0.23.0.dev202508280418.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
582
|
+
keras_hub_nightly-0.23.0.dev202508280418.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
583
|
+
keras_hub_nightly-0.23.0.dev202508280418.dist-info/RECORD,,
|
File without changes
|