keras-hub-nightly 0.22.0.dev202508120417__py3-none-any.whl → 0.22.0.dev202508140419__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/src/models/deit/__init__.py +5 -0
- keras_hub/src/models/deit/deit_presets.py +8 -8
- keras_hub/src/models/esm/__init__.py +5 -0
- keras_hub/src/models/esm/esm_presets.py +53 -0
- keras_hub/src/models/mobilenet/mobilenet_presets.py +4 -4
- keras_hub/src/models/pali_gemma/pali_gemma_presets.py +17 -17
- keras_hub/src/models/qwen3/qwen3_presets.py +6 -6
- keras_hub/src/models/qwen_moe/qwen_moe_presets.py +1 -1
- keras_hub/src/models/roformer_v2/roformer_v2_attention.py +0 -3
- keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +8 -0
- keras_hub/src/utils/transformers/convert_llama3.py +6 -0
- keras_hub/src/version.py +1 -1
- {keras_hub_nightly-0.22.0.dev202508120417.dist-info → keras_hub_nightly-0.22.0.dev202508140419.dist-info}/METADATA +4 -4
- {keras_hub_nightly-0.22.0.dev202508120417.dist-info → keras_hub_nightly-0.22.0.dev202508140419.dist-info}/RECORD +16 -16
- {keras_hub_nightly-0.22.0.dev202508120417.dist-info → keras_hub_nightly-0.22.0.dev202508140419.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.22.0.dev202508120417.dist-info → keras_hub_nightly-0.22.0.dev202508140419.dist-info}/top_level.txt +0 -0
|
@@ -2,46 +2,46 @@
|
|
|
2
2
|
|
|
3
3
|
# Metadata for loading pretrained model weights.
|
|
4
4
|
backbone_presets = {
|
|
5
|
-
"
|
|
5
|
+
"deit_base_distilled_patch16_384_imagenet": {
|
|
6
6
|
"metadata": {
|
|
7
7
|
"description": (
|
|
8
8
|
"DeiT-B16 model pre-trained on the ImageNet 1k dataset with "
|
|
9
9
|
"image resolution of 384x384 "
|
|
10
10
|
),
|
|
11
|
-
"params":
|
|
11
|
+
"params": 86_092_032,
|
|
12
12
|
"path": "deit",
|
|
13
13
|
},
|
|
14
14
|
"kaggle_handle": "kaggle://keras/deit/keras/deit_base_distilled_patch16_384_imagenet/1",
|
|
15
15
|
},
|
|
16
|
-
"
|
|
16
|
+
"deit_base_distilled_patch16_224_imagenet": {
|
|
17
17
|
"metadata": {
|
|
18
18
|
"description": (
|
|
19
19
|
"DeiT-B16 model pre-trained on the ImageNet 1k dataset with "
|
|
20
20
|
"image resolution of 224x224 "
|
|
21
21
|
),
|
|
22
|
-
"params":
|
|
22
|
+
"params": 85_800_192,
|
|
23
23
|
"path": "deit",
|
|
24
24
|
},
|
|
25
25
|
"kaggle_handle": "kaggle://keras/deit/keras/deit_base_distilled_patch16_224_imagenet/1",
|
|
26
26
|
},
|
|
27
|
-
"
|
|
27
|
+
"deit_tiny_distilled_patch16_224_imagenet": {
|
|
28
28
|
"metadata": {
|
|
29
29
|
"description": (
|
|
30
30
|
"DeiT-T16 model pre-trained on the ImageNet 1k dataset with "
|
|
31
31
|
"image resolution of 224x224 "
|
|
32
32
|
),
|
|
33
|
-
"params":
|
|
33
|
+
"params": 5_524_800,
|
|
34
34
|
"path": "deit",
|
|
35
35
|
},
|
|
36
36
|
"kaggle_handle": "kaggle://keras/deit/keras/deit_tiny_distilled_patch16_224_imagenet/1",
|
|
37
37
|
},
|
|
38
|
-
"
|
|
38
|
+
"deit_small_distilled_patch16_224_imagenet": {
|
|
39
39
|
"metadata": {
|
|
40
40
|
"description": (
|
|
41
41
|
"DeiT-S16 model pre-trained on the ImageNet 1k dataset with "
|
|
42
42
|
"image resolution of 224x224 "
|
|
43
43
|
),
|
|
44
|
-
"params":
|
|
44
|
+
"params": 21_666_432,
|
|
45
45
|
"path": "deit",
|
|
46
46
|
},
|
|
47
47
|
"kaggle_handle": "kaggle://keras/deit/keras/deit_small_distilled_patch16_224_imagenet/1",
|
|
@@ -0,0 +1,53 @@
|
|
|
1
|
+
"""ESM model preset configurations."""
|
|
2
|
+
|
|
3
|
+
# Metadata for loading pretrained model weights.
|
|
4
|
+
backbone_presets = {
|
|
5
|
+
"esm2_t6_8M": {
|
|
6
|
+
"metadata": {
|
|
7
|
+
"description": (
|
|
8
|
+
"6 transformer layers version of the ESM-2 protein language "
|
|
9
|
+
"model, trained on the UniRef50 clustered protein sequence "
|
|
10
|
+
"dataset."
|
|
11
|
+
),
|
|
12
|
+
"params": 7_408_960,
|
|
13
|
+
"path": "esm",
|
|
14
|
+
},
|
|
15
|
+
"kaggle_handle": "kaggle://keras/esm-2/keras/esm2_t6_8M/1",
|
|
16
|
+
},
|
|
17
|
+
"esm2_t12_35M": {
|
|
18
|
+
"metadata": {
|
|
19
|
+
"description": (
|
|
20
|
+
"12 transformer layers version of the ESM-2 protein language "
|
|
21
|
+
"model, trained on the UniRef50 clustered protein sequence "
|
|
22
|
+
"dataset."
|
|
23
|
+
),
|
|
24
|
+
"params": 33_269_280,
|
|
25
|
+
"path": "esm",
|
|
26
|
+
},
|
|
27
|
+
"kaggle_handle": "kaggle://keras/esm-2/keras/esm2_t12_35M/1",
|
|
28
|
+
},
|
|
29
|
+
"esm2_t30_150M": {
|
|
30
|
+
"metadata": {
|
|
31
|
+
"description": (
|
|
32
|
+
"30 transformer layers version of the ESM-2 protein language "
|
|
33
|
+
"model, trained on the UniRef50 clustered protein sequence "
|
|
34
|
+
"dataset."
|
|
35
|
+
),
|
|
36
|
+
"params": 147_728_000,
|
|
37
|
+
"path": "esm",
|
|
38
|
+
},
|
|
39
|
+
"kaggle_handle": "kaggle://keras/esm-2/keras/esm2_t30_150M/1",
|
|
40
|
+
},
|
|
41
|
+
"esm2_t33_650M": {
|
|
42
|
+
"metadata": {
|
|
43
|
+
"description": (
|
|
44
|
+
"33 transformer layers version of the ESM-2 protein language "
|
|
45
|
+
"model, trained on the UniRef50 clustered protein sequence "
|
|
46
|
+
"dataset."
|
|
47
|
+
),
|
|
48
|
+
"params": 649_400_320,
|
|
49
|
+
"path": "esm",
|
|
50
|
+
},
|
|
51
|
+
"kaggle_handle": "kaggle://keras/esm-2/keras/esm2_t33_650M/1",
|
|
52
|
+
},
|
|
53
|
+
}
|
|
@@ -8,7 +8,7 @@ backbone_presets = {
|
|
|
8
8
|
"dataset at a 224x224 resolution. Has half channel multiplier."
|
|
9
9
|
),
|
|
10
10
|
"params": 278784,
|
|
11
|
-
"path": "
|
|
11
|
+
"path": "mobilenet",
|
|
12
12
|
},
|
|
13
13
|
"kaggle_handle": "kaggle://keras/mobilenetv3/keras/mobilenet_v3_small_050_imagenet/1",
|
|
14
14
|
},
|
|
@@ -20,7 +20,7 @@ backbone_presets = {
|
|
|
20
20
|
"multiplier."
|
|
21
21
|
),
|
|
22
22
|
"params": 939120,
|
|
23
|
-
"path": "
|
|
23
|
+
"path": "mobilenet",
|
|
24
24
|
},
|
|
25
25
|
"kaggle_handle": "kaggle://keras/mobilenetv3/keras/mobilenet_v3_small_100_imagenet/1",
|
|
26
26
|
},
|
|
@@ -32,7 +32,7 @@ backbone_presets = {
|
|
|
32
32
|
"multiplier."
|
|
33
33
|
),
|
|
34
34
|
"params": 2996352,
|
|
35
|
-
"path": "
|
|
35
|
+
"path": "mobilenet",
|
|
36
36
|
},
|
|
37
37
|
"kaggle_handle": "kaggle://keras/mobilenetv3/keras/mobilenet_v3_large_100_imagenet/1",
|
|
38
38
|
},
|
|
@@ -44,7 +44,7 @@ backbone_presets = {
|
|
|
44
44
|
"multiplier."
|
|
45
45
|
),
|
|
46
46
|
"params": 2996352,
|
|
47
|
-
"path": "
|
|
47
|
+
"path": "mobilenet",
|
|
48
48
|
},
|
|
49
49
|
"kaggle_handle": "kaggle://keras/mobilenetv3/keras/mobilenet_v3_large_100_imagenet_21k/1",
|
|
50
50
|
},
|
|
@@ -63,7 +63,7 @@ backbone_presets = {
|
|
|
63
63
|
),
|
|
64
64
|
"params": 3032979696,
|
|
65
65
|
"official_name": "PaliGemma2",
|
|
66
|
-
"path": "
|
|
66
|
+
"path": "pali_gemma",
|
|
67
67
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
|
68
68
|
},
|
|
69
69
|
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma_2_ft_docci_3b_448/2",
|
|
@@ -78,7 +78,7 @@ backbone_presets = {
|
|
|
78
78
|
),
|
|
79
79
|
"params": 9663294192,
|
|
80
80
|
"official_name": "PaliGemma2",
|
|
81
|
-
"path": "
|
|
81
|
+
"path": "pali_gemma",
|
|
82
82
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
|
83
83
|
},
|
|
84
84
|
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_ft_docci_10b_448/3",
|
|
@@ -93,7 +93,7 @@ backbone_presets = {
|
|
|
93
93
|
),
|
|
94
94
|
"params": 3032094960,
|
|
95
95
|
"official_name": "PaliGemma2",
|
|
96
|
-
"path": "
|
|
96
|
+
"path": "pali_gemma",
|
|
97
97
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
|
98
98
|
},
|
|
99
99
|
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_mix_3b_224/2",
|
|
@@ -108,7 +108,7 @@ backbone_presets = {
|
|
|
108
108
|
),
|
|
109
109
|
"params": 3032979696,
|
|
110
110
|
"official_name": "PaliGemma2",
|
|
111
|
-
"path": "
|
|
111
|
+
"path": "pali_gemma",
|
|
112
112
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
|
113
113
|
},
|
|
114
114
|
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_mix_3b_448/2",
|
|
@@ -123,7 +123,7 @@ backbone_presets = {
|
|
|
123
123
|
),
|
|
124
124
|
"params": 9662409456,
|
|
125
125
|
"official_name": "PaliGemma2",
|
|
126
|
-
"path": "
|
|
126
|
+
"path": "pali_gemma",
|
|
127
127
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
|
128
128
|
},
|
|
129
129
|
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_mix_10b_224/3",
|
|
@@ -138,7 +138,7 @@ backbone_presets = {
|
|
|
138
138
|
),
|
|
139
139
|
"params": 9663294192,
|
|
140
140
|
"official_name": "PaliGemma2",
|
|
141
|
-
"path": "
|
|
141
|
+
"path": "pali_gemma",
|
|
142
142
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
|
143
143
|
},
|
|
144
144
|
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_mix_10b_448/3",
|
|
@@ -153,7 +153,7 @@ backbone_presets = {
|
|
|
153
153
|
),
|
|
154
154
|
"params": 27650192112,
|
|
155
155
|
"official_name": "PaliGemma2",
|
|
156
|
-
"path": "
|
|
156
|
+
"path": "pali_gemma",
|
|
157
157
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
|
158
158
|
},
|
|
159
159
|
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_28b_mix_224/3",
|
|
@@ -168,7 +168,7 @@ backbone_presets = {
|
|
|
168
168
|
),
|
|
169
169
|
"params": 27650192112,
|
|
170
170
|
"official_name": "PaliGemma2",
|
|
171
|
-
"path": "
|
|
171
|
+
"path": "pali_gemma",
|
|
172
172
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
|
173
173
|
},
|
|
174
174
|
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_28b_mix_448/3",
|
|
@@ -183,7 +183,7 @@ backbone_presets = {
|
|
|
183
183
|
),
|
|
184
184
|
"params": 3032094960,
|
|
185
185
|
"official_name": "PaliGemma2",
|
|
186
|
-
"path": "
|
|
186
|
+
"path": "pali_gemma",
|
|
187
187
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
|
188
188
|
},
|
|
189
189
|
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_3b_224/2",
|
|
@@ -198,7 +198,7 @@ backbone_presets = {
|
|
|
198
198
|
),
|
|
199
199
|
"params": 3032979696,
|
|
200
200
|
"official_name": "PaliGemma2",
|
|
201
|
-
"path": "
|
|
201
|
+
"path": "pali_gemma",
|
|
202
202
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
|
203
203
|
},
|
|
204
204
|
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_3b_448/2",
|
|
@@ -213,7 +213,7 @@ backbone_presets = {
|
|
|
213
213
|
),
|
|
214
214
|
"params": 3036518640,
|
|
215
215
|
"official_name": "PaliGemma2",
|
|
216
|
-
"path": "
|
|
216
|
+
"path": "pali_gemma",
|
|
217
217
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
|
218
218
|
},
|
|
219
219
|
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_3b_896/2",
|
|
@@ -228,7 +228,7 @@ backbone_presets = {
|
|
|
228
228
|
),
|
|
229
229
|
"params": 9662409456,
|
|
230
230
|
"official_name": "PaliGemma2",
|
|
231
|
-
"path": "
|
|
231
|
+
"path": "pali_gemma",
|
|
232
232
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
|
233
233
|
},
|
|
234
234
|
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_10b_224/3",
|
|
@@ -243,7 +243,7 @@ backbone_presets = {
|
|
|
243
243
|
),
|
|
244
244
|
"params": 9663294192,
|
|
245
245
|
"official_name": "PaliGemma2",
|
|
246
|
-
"path": "
|
|
246
|
+
"path": "pali_gemma",
|
|
247
247
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
|
248
248
|
},
|
|
249
249
|
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_10b_448/3",
|
|
@@ -258,7 +258,7 @@ backbone_presets = {
|
|
|
258
258
|
),
|
|
259
259
|
"params": 9666833136,
|
|
260
260
|
"official_name": "PaliGemma2",
|
|
261
|
-
"path": "
|
|
261
|
+
"path": "pali_gemma",
|
|
262
262
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
|
263
263
|
},
|
|
264
264
|
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_10b_896/3",
|
|
@@ -273,7 +273,7 @@ backbone_presets = {
|
|
|
273
273
|
),
|
|
274
274
|
"params": 27650192112,
|
|
275
275
|
"official_name": "PaliGemma2",
|
|
276
|
-
"path": "
|
|
276
|
+
"path": "pali_gemma",
|
|
277
277
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
|
278
278
|
},
|
|
279
279
|
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_28b_224/4",
|
|
@@ -288,7 +288,7 @@ backbone_presets = {
|
|
|
288
288
|
),
|
|
289
289
|
"params": 27650192112,
|
|
290
290
|
"official_name": "PaliGemma2",
|
|
291
|
-
"path": "
|
|
291
|
+
"path": "pali_gemma",
|
|
292
292
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
|
293
293
|
},
|
|
294
294
|
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_28b_448/3",
|
|
@@ -303,7 +303,7 @@ backbone_presets = {
|
|
|
303
303
|
),
|
|
304
304
|
"params": 27650192112,
|
|
305
305
|
"official_name": "PaliGemma2",
|
|
306
|
-
"path": "
|
|
306
|
+
"path": "pali_gemma",
|
|
307
307
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
|
308
308
|
},
|
|
309
309
|
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_28b_896/3",
|
|
@@ -8,7 +8,7 @@ backbone_presets = {
|
|
|
8
8
|
"efficiency and fast inference on resource-constrained devices."
|
|
9
9
|
),
|
|
10
10
|
"params": 596049920,
|
|
11
|
-
"path": "
|
|
11
|
+
"path": "qwen3",
|
|
12
12
|
},
|
|
13
13
|
"kaggle_handle": "kaggle://keras/qwen-3/keras/qwen3_0.6b_en/1",
|
|
14
14
|
},
|
|
@@ -19,7 +19,7 @@ backbone_presets = {
|
|
|
19
19
|
"a good balance between performance and resource usage."
|
|
20
20
|
),
|
|
21
21
|
"params": 1720574976,
|
|
22
|
-
"path": "
|
|
22
|
+
"path": "qwen3",
|
|
23
23
|
},
|
|
24
24
|
"kaggle_handle": "kaggle://keras/qwen-3/keras/qwen3_1.7b_en/1",
|
|
25
25
|
},
|
|
@@ -31,7 +31,7 @@ backbone_presets = {
|
|
|
31
31
|
"variants."
|
|
32
32
|
),
|
|
33
33
|
"params": 4022468096,
|
|
34
|
-
"path": "
|
|
34
|
+
"path": "qwen3",
|
|
35
35
|
},
|
|
36
36
|
"kaggle_handle": "kaggle://keras/qwen-3/keras/qwen3_4b_en/1",
|
|
37
37
|
},
|
|
@@ -43,7 +43,7 @@ backbone_presets = {
|
|
|
43
43
|
"capabilities."
|
|
44
44
|
),
|
|
45
45
|
"params": 8190735360,
|
|
46
|
-
"path": "
|
|
46
|
+
"path": "qwen3",
|
|
47
47
|
},
|
|
48
48
|
"kaggle_handle": "kaggle://keras/qwen-3/keras/qwen3_8b_en/1",
|
|
49
49
|
},
|
|
@@ -54,7 +54,7 @@ backbone_presets = {
|
|
|
54
54
|
"advanced reasoning, coding, and multilingual capabilities."
|
|
55
55
|
),
|
|
56
56
|
"params": 14768307200,
|
|
57
|
-
"path": "
|
|
57
|
+
"path": "qwen3",
|
|
58
58
|
},
|
|
59
59
|
"kaggle_handle": "kaggle://keras/qwen-3/keras/qwen3_14b_en/1",
|
|
60
60
|
},
|
|
@@ -66,7 +66,7 @@ backbone_presets = {
|
|
|
66
66
|
"general language tasks."
|
|
67
67
|
),
|
|
68
68
|
"params": 32762123264,
|
|
69
|
-
"path": "
|
|
69
|
+
"path": "qwen3",
|
|
70
70
|
},
|
|
71
71
|
"kaggle_handle": "kaggle://keras/qwen-3/keras/qwen3_32b_en/1",
|
|
72
72
|
},
|
|
@@ -1,7 +1,6 @@
|
|
|
1
1
|
import keras
|
|
2
2
|
from keras import initializers
|
|
3
3
|
from keras import ops
|
|
4
|
-
from packaging import version
|
|
5
4
|
|
|
6
5
|
|
|
7
6
|
class RoformerNorm(keras.layers.Layer):
|
|
@@ -180,8 +179,6 @@ class RoformerAttention(keras.layers.Layer):
|
|
|
180
179
|
vw = ops.reshape(vw, (b, s, self.heads, self.head_size))
|
|
181
180
|
|
|
182
181
|
qw, kw = self.rotary_embedding_layer([qw, kw])
|
|
183
|
-
if version.parse(keras.__version__) < version.parse("3.6"):
|
|
184
|
-
raise ("Please make sure your Keras version is >=3.6.")
|
|
185
182
|
flash_attention = keras.config.is_flash_attention_enabled()
|
|
186
183
|
attention_mask = ops.reshape(attention_mask, [b, 1, s, 1])
|
|
187
184
|
if keras.config.backend() == "torch":
|
|
@@ -1,4 +1,6 @@
|
|
|
1
1
|
import keras
|
|
2
|
+
from keras import backend
|
|
3
|
+
from keras import distribution
|
|
2
4
|
from keras import layers
|
|
3
5
|
from keras import ops
|
|
4
6
|
|
|
@@ -621,11 +623,17 @@ class StableDiffusion3Backbone(Backbone):
|
|
|
621
623
|
config["vae"]["config"]["dtype"] = dtype_config
|
|
622
624
|
|
|
623
625
|
# Text encoders default to float16 dtype if not specified.
|
|
626
|
+
# TODO: JAX CPU doesn't support float16 in `nn.dot_product_attention`.
|
|
627
|
+
is_jax_cpu = (
|
|
628
|
+
backend.backend() == "jax"
|
|
629
|
+
and "cpu" in distribution.list_devices()[0].lower()
|
|
630
|
+
)
|
|
624
631
|
for text_encoder in ("clip_l", "clip_g", "t5"):
|
|
625
632
|
if (
|
|
626
633
|
text_encoder in config
|
|
627
634
|
and config[text_encoder] is not None
|
|
628
635
|
and "dtype" not in config[text_encoder]["config"]
|
|
636
|
+
and not is_jax_cpu
|
|
629
637
|
):
|
|
630
638
|
config[text_encoder]["config"]["dtype"] = "float16"
|
|
631
639
|
|
|
@@ -127,6 +127,12 @@ def convert_tokenizer(cls, preset, **kwargs):
|
|
|
127
127
|
vocab = tokenizer_config["model"]["vocab"]
|
|
128
128
|
merges = tokenizer_config["model"]["merges"]
|
|
129
129
|
|
|
130
|
+
# Handle different merge formats
|
|
131
|
+
if merges and isinstance(merges[0], list) and len(merges[0]) == 2:
|
|
132
|
+
# Convert list of lists format [["Ġ", "a"], ["Ġ", "b"]]
|
|
133
|
+
# to space-separated strings
|
|
134
|
+
merges = [" ".join(merge) for merge in merges]
|
|
135
|
+
|
|
130
136
|
# Load all special tokens with the exception of "reserved" ones.
|
|
131
137
|
special_tokens = set()
|
|
132
138
|
for token in tokenizer_config["added_tokens"]:
|
keras_hub/src/version.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: keras-hub-nightly
|
|
3
|
-
Version: 0.22.0.
|
|
3
|
+
Version: 0.22.0.dev202508140419
|
|
4
4
|
Summary: Pretrained models for Keras.
|
|
5
5
|
Author-email: Keras team <keras-users@googlegroups.com>
|
|
6
6
|
License-Expression: Apache-2.0
|
|
@@ -18,9 +18,9 @@ Classifier: Operating System :: MacOS
|
|
|
18
18
|
Classifier: Intended Audience :: Science/Research
|
|
19
19
|
Classifier: Topic :: Scientific/Engineering
|
|
20
20
|
Classifier: Topic :: Software Development
|
|
21
|
-
Requires-Python: >=3.
|
|
21
|
+
Requires-Python: >=3.10
|
|
22
22
|
Description-Content-Type: text/markdown
|
|
23
|
-
Requires-Dist: keras>=3.
|
|
23
|
+
Requires-Dist: keras>=3.8
|
|
24
24
|
Requires-Dist: absl-py
|
|
25
25
|
Requires-Dist: numpy
|
|
26
26
|
Requires-Dist: packaging
|
|
@@ -31,7 +31,7 @@ Requires-Dist: tensorflow-text; platform_system != "Windows"
|
|
|
31
31
|
|
|
32
32
|
# KerasHub: Multi-framework Pretrained Models
|
|
33
33
|
[](https://github.com/keras-team/keras-hub/actions?query=workflow%3ATests+branch%3Amaster)
|
|
34
|
-

|
|
35
35
|
[](https://github.com/keras-team/keras-hub/issues)
|
|
36
36
|
|
|
37
37
|
> [!IMPORTANT]
|
|
@@ -5,7 +5,7 @@ keras_hub/models/__init__.py,sha256=UXMwKVZ7bg-AOrq2xsl8M0idUAS89pkdCvQKhzL-D3I,
|
|
|
5
5
|
keras_hub/samplers/__init__.py,sha256=aFQIkiqbZpi8vjrPp2MVII4QUfE-eQjra5fMeHsoy7k,886
|
|
6
6
|
keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
7
7
|
keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
|
|
8
|
-
keras_hub/src/version.py,sha256=
|
|
8
|
+
keras_hub/src/version.py,sha256=cvWGyJkZFd-yHG--qkMN58JFqhHaSPHDxkqsRUvNs0w,222
|
|
9
9
|
keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
10
10
|
keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
11
11
|
keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
|
|
@@ -134,13 +134,13 @@ keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py,sha256
|
|
|
134
134
|
keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py,sha256=mz9nG55gdXSTDE96AXgeTCwUFB95DIpTuqrvWIt5Lco,7840
|
|
135
135
|
keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py,sha256=ZKYY8A7mV2QvwXwjDUd9xAbVHo58-Hgj_IqNUbuyCIU,625
|
|
136
136
|
keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py,sha256=pubi30sPJKLOpz9fRQff2FZt_53KBvwf2uyaJ5YL7J8,3726
|
|
137
|
-
keras_hub/src/models/deit/__init__.py,sha256=
|
|
137
|
+
keras_hub/src/models/deit/__init__.py,sha256=5XUICYa-poqErbmMLArBKCrSxC7wsIiQwUpuCnvGt_E,245
|
|
138
138
|
keras_hub/src/models/deit/deit_backbone.py,sha256=R5pBOqe8vcvD8VaRnsy_zIRIz6BLnUbkTeKUOoGNHPA,5942
|
|
139
139
|
keras_hub/src/models/deit/deit_image_classifier.py,sha256=pUS2638yBAxEBxcJoHyLABsgjCWv_Y0Mj_8u0YgDPdI,5758
|
|
140
140
|
keras_hub/src/models/deit/deit_image_classifier_preprocessor.py,sha256=s5pTcsUjlt1oIXFWIu-9gf2-sBesAyrjJIYmFOB96Xs,514
|
|
141
141
|
keras_hub/src/models/deit/deit_image_converter.py,sha256=wEGCLHS_i4wF9WA4m7uUXcHNbwf6TYgvPoM6C_t0rpM,330
|
|
142
142
|
keras_hub/src/models/deit/deit_layers.py,sha256=A80-UTHEUV8g5rEG-fr8OQpGe3HeoYlYwpoDCtq71ZU,17278
|
|
143
|
-
keras_hub/src/models/deit/deit_presets.py,sha256=
|
|
143
|
+
keras_hub/src/models/deit/deit_presets.py,sha256=5VwMAEg16RLWOjcdZ-BCYVlUlEzBfHz-6wCSOIhWGVQ,1786
|
|
144
144
|
keras_hub/src/models/densenet/__init__.py,sha256=r7StyamnWeeZxOk9r4ZYNbS_YVhu9YGPyXhNxljvdPg,269
|
|
145
145
|
keras_hub/src/models/densenet/densenet_backbone.py,sha256=f2nfsXyXQert2aYHq-L-JZtp8inq1fs1K47rzZQ9nTI,6744
|
|
146
146
|
keras_hub/src/models/densenet/densenet_image_classifier.py,sha256=ye-Ix3oU42pfsDoh-h1PG4di1kzldO0ZO7Nj304p_X4,544
|
|
@@ -173,7 +173,7 @@ keras_hub/src/models/electra/__init__.py,sha256=vaXl_uQx_oLeKZWxmc1NRgCJfHpYJ35J
|
|
|
173
173
|
keras_hub/src/models/electra/electra_backbone.py,sha256=h-QuFxACBvbMktkyGV2pIgn6dQ-kudJB1i14ekwEaL4,9004
|
|
174
174
|
keras_hub/src/models/electra/electra_presets.py,sha256=6f0WAYtDx5To4gvi6btN8I8y7yfc9ANchTHRKgCyIkg,2697
|
|
175
175
|
keras_hub/src/models/electra/electra_tokenizer.py,sha256=Ll_EW-14i-OZr6appQEt5ceMUCeEadF4yPJHMwaRfVs,2729
|
|
176
|
-
keras_hub/src/models/esm/__init__.py,sha256=
|
|
176
|
+
keras_hub/src/models/esm/__init__.py,sha256=_IlazeBwHkpetmLIZz3fFzC8CFcSnBRVQvw9nes4TN8,239
|
|
177
177
|
keras_hub/src/models/esm/esm_attention.py,sha256=T21MVs9QDUe_8a53mcW3dJvJfaNZOg5lkMdxGhQdmFQ,3327
|
|
178
178
|
keras_hub/src/models/esm/esm_backbone.py,sha256=ADIpeiYz16fw1PNvx2tX-51HsZ_AjR2wGLkXZHErWBg,8696
|
|
179
179
|
keras_hub/src/models/esm/esm_classifier.py,sha256=35-_3U725JhzspQAO_4ZkTJ0Tuy0XKMVkSrpmFz2CaE,6049
|
|
@@ -181,7 +181,7 @@ keras_hub/src/models/esm/esm_classifier_preprocessor.py,sha256=TXjGH8ttElEsfBLOM
|
|
|
181
181
|
keras_hub/src/models/esm/esm_encoder.py,sha256=FxqfM_amKnmzNJoTq-LKouKaf_huklbjLiQ37ip85Tc,4499
|
|
182
182
|
keras_hub/src/models/esm/esm_masked_plm.py,sha256=FTNHrr0nRiuuO0Yqf5NSM48PehXWKMZvUVLBGET8X-8,3874
|
|
183
183
|
keras_hub/src/models/esm/esm_masked_plm_preprocessor.py,sha256=jfpehbd1KN_s48KCPSUpzQf1YYeriuR6a81wmXSG8bE,6272
|
|
184
|
-
keras_hub/src/models/esm/esm_presets.py,sha256=
|
|
184
|
+
keras_hub/src/models/esm/esm_presets.py,sha256=f3O0qhHoHGx-xXS4DuSw8fqxVEKmDaj45jput7OMz9M,1792
|
|
185
185
|
keras_hub/src/models/esm/esm_tokenizer.py,sha256=6hKDWanN4Hfl6eSNXHiHJUcwSMDRL4gHEWxenaMI3Os,3079
|
|
186
186
|
keras_hub/src/models/f_net/__init__.py,sha256=a3OAwgEVy3Rv88ZlBE9RYLrPCNteImhGkW-lSAq5hyI,249
|
|
187
187
|
keras_hub/src/models/f_net/f_net_backbone.py,sha256=6vZEq2UgoJxU2-aEesdXZnyRbACxpMZQ1akyVbGH8wg,8290
|
|
@@ -295,7 +295,7 @@ keras_hub/src/models/mobilenet/mobilenet_backbone.py,sha256=aZBSFeLUObYYoi3od9DI
|
|
|
295
295
|
keras_hub/src/models/mobilenet/mobilenet_image_classifier.py,sha256=rgPVJeSRqyp3-Fgf5ERbg_97c4cSawRmAtoJpdBN8WA,2437
|
|
296
296
|
keras_hub/src/models/mobilenet/mobilenet_image_classifier_preprocessor.py,sha256=yqM4wQ3ae7wXTBO0aMuvJx6XqllA7Psqzjvpm2NABXM,573
|
|
297
297
|
keras_hub/src/models/mobilenet/mobilenet_image_converter.py,sha256=a3Ka0UYYK5wHSOjf2oMHSgofRazTAeUfttklVefq14w,360
|
|
298
|
-
keras_hub/src/models/mobilenet/mobilenet_presets.py,sha256
|
|
298
|
+
keras_hub/src/models/mobilenet/mobilenet_presets.py,sha256=hR_3xxI_PigE8UprXW4lAuKRa3LFGdidBaN8LklxwRQ,1895
|
|
299
299
|
keras_hub/src/models/mobilenet/util.py,sha256=S7j4UacmVIJ3fU8cymyAoK49eHcpWIKTOyUQiEjcbzQ,721
|
|
300
300
|
keras_hub/src/models/moonshine/__init__.py,sha256=WK_9Cy1dp5KplNAaTsaJbd-2DGLsiHQsIL5ZnXuCbDQ,275
|
|
301
301
|
keras_hub/src/models/moonshine/moonshine_audio_converter.py,sha256=FnvR7SP44uVOsA3g9azUhQjsVg809eJ5nqoJZQ-DAq0,11854
|
|
@@ -320,7 +320,7 @@ keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py,sha256=aT075qRyFmuo5Jwph
|
|
|
320
320
|
keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py,sha256=F57y0fZ0wYYxfGIjfrJc1W9uQpViYFx5bvFjj5CqUbI,4814
|
|
321
321
|
keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py,sha256=24ABQ1vGlppV-KfWh0YqJjzM_Lu2GIwvyJ4X2XXie_A,5616
|
|
322
322
|
keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=5yM_jUtrFsWIieiwfFBoP7mtPmQAwywkeLKbd7fhmzk,371
|
|
323
|
-
keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=
|
|
323
|
+
keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=Q_zfHEjGTtXEiCwjoJc2g6HjmoNoLgSDRNfRvIsf0dA,12989
|
|
324
324
|
keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=ljTiADHo0Ok88q-jVzwJIle2C8xcxnudLTsBLzIySaM,2415
|
|
325
325
|
keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=SbWanwCoONSwgiWQsc6lFdvhqKZ-zDW42XzQt8CNMtU,18311
|
|
326
326
|
keras_hub/src/models/phi3/__init__.py,sha256=zIbf1MU-ks91mEkjTRJAsk51N3BBnXDF2JM1vO-13PQ,245
|
|
@@ -349,7 +349,7 @@ keras_hub/src/models/qwen3/qwen3_causal_lm.py,sha256=cn_4WFVxhlOArtIGAaqkNzIz9Rx
|
|
|
349
349
|
keras_hub/src/models/qwen3/qwen3_causal_lm_preprocessor.py,sha256=H4g-bgvuhAUnDwjJovydK16Kes38ZFZWPvflrgHqZis,458
|
|
350
350
|
keras_hub/src/models/qwen3/qwen3_decoder.py,sha256=68s9jQj53zFmXE4-SGXKYHu546fXOyi9LUbnKk-HGYY,11595
|
|
351
351
|
keras_hub/src/models/qwen3/qwen3_layernorm.py,sha256=EJxjf7Pr6ufPQnNeuYQxkExzPjPk4PQxqMsoBeSEkDo,1073
|
|
352
|
-
keras_hub/src/models/qwen3/qwen3_presets.py,sha256=
|
|
352
|
+
keras_hub/src/models/qwen3/qwen3_presets.py,sha256=eAqRbjLyRTSXcN-jnGHqoCHejKm2gmt8_zL4EPoE-JA,2518
|
|
353
353
|
keras_hub/src/models/qwen3/qwen3_tokenizer.py,sha256=LmPtg0vprMchDvYfTj8m5PraXI2QS3-YgdIIpIm5iAs,1448
|
|
354
354
|
keras_hub/src/models/qwen_moe/__init__.py,sha256=5D8GUmVDsJs0J4sVZHcXOLkZf12U96l-WtwyVee4lu8,267
|
|
355
355
|
keras_hub/src/models/qwen_moe/qwen_moe_attention.py,sha256=o0mcVTDMtElMYq3NSYRCfuYVdF-W8YDSU5ogensrVJg,13277
|
|
@@ -358,7 +358,7 @@ keras_hub/src/models/qwen_moe/qwen_moe_causal_lm.py,sha256=MeP60v7GcN_SmH5_ULRpq
|
|
|
358
358
|
keras_hub/src/models/qwen_moe/qwen_moe_causal_lm_preprocessor.py,sha256=9P6TT7W_fqf4HsXcmlHF-DW_anR-XoDrRN2ZFGA7Ai4,3168
|
|
359
359
|
keras_hub/src/models/qwen_moe/qwen_moe_decoder.py,sha256=kmUjLpYTbJQ3J_31qWhLOd0Dg2_9cl_JX_zM8ZMH1Qo,23130
|
|
360
360
|
keras_hub/src/models/qwen_moe/qwen_moe_layernorm.py,sha256=DbkWJo7U0-cwdZwHPeAnFznYwtao6o0fjpoDJ9UWnpc,927
|
|
361
|
-
keras_hub/src/models/qwen_moe/qwen_moe_presets.py,sha256=
|
|
361
|
+
keras_hub/src/models/qwen_moe/qwen_moe_presets.py,sha256=nGQ0azaOJAjBorR_6_Qtb1yCSXPdFJdRp0_ULYT4_04,451
|
|
362
362
|
keras_hub/src/models/qwen_moe/qwen_moe_tokenizer.py,sha256=2c3X8jNGO0q0UL5NtUqSgHWLqhyJGi2ohNcTeOGhd84,1407
|
|
363
363
|
keras_hub/src/models/resnet/__init__.py,sha256=C5UqlQ6apm8WSp1bnrxB6Bi3BGaknxRQs-r3b2wpaGA,257
|
|
364
364
|
keras_hub/src/models/resnet/resnet_backbone.py,sha256=Q7nlqcTXZzjqd0e-DsjHC4ok58yOX7qxseotym3uZpM,31276
|
|
@@ -384,7 +384,7 @@ keras_hub/src/models/roberta/roberta_text_classifier.py,sha256=x36hU84P-ROReZniU
|
|
|
384
384
|
keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py,sha256=gAJa8JdPUmT1N7nxBqtaIbnfXV-xlNjTtkEevQhfjNU,5993
|
|
385
385
|
keras_hub/src/models/roberta/roberta_tokenizer.py,sha256=VKPrgXVT9aMKP7et2DIWKlTN8g4tIzjya0MHqNz9BwQ,2712
|
|
386
386
|
keras_hub/src/models/roformer_v2/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
387
|
-
keras_hub/src/models/roformer_v2/roformer_v2_attention.py,sha256=
|
|
387
|
+
keras_hub/src/models/roformer_v2/roformer_v2_attention.py,sha256=C8wwCw0FpmOWQq8H1IeTn25-6_EzDRD-8UXAN77-5gk,7060
|
|
388
388
|
keras_hub/src/models/roformer_v2/roformer_v2_backbone.py,sha256=a5gG47Gvo-dFoToMe6Q3oOYJz8HypPZWIhY-cGwS9_c,7187
|
|
389
389
|
keras_hub/src/models/roformer_v2/roformer_v2_encoder.py,sha256=o_M3dDtebBtXRAxwhiRmdWA59tu1_MNKLINf4GQYfeA,4218
|
|
390
390
|
keras_hub/src/models/roformer_v2/roformer_v2_masked_lm.py,sha256=4uQ6DKFDdBOu0bHaL45bqtpL-CMZw59inXirD9zWFlI,5950
|
|
@@ -422,7 +422,7 @@ keras_hub/src/models/siglip/siglip_vision_encoder.py,sha256=CaNaFq5thBC3TUXXOf2q
|
|
|
422
422
|
keras_hub/src/models/stable_diffusion_3/__init__.py,sha256=ZKYQuaRObyhKq8GVAHmoRvlXp6FpU8ChvutVCHyXKuc,343
|
|
423
423
|
keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py,sha256=1K_B3d3fNn50eY84OgxVHyIHHZhmlJY03b71pMSmE9s,3246
|
|
424
424
|
keras_hub/src/models/stable_diffusion_3/mmdit.py,sha256=emyDmtpJiFU_9crSDBC5CaXoZnM1Eti8uAQtwv2v8B0,42794
|
|
425
|
-
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py,sha256=
|
|
425
|
+
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py,sha256=BEtMwYaxrJxHpNT_E1wK-SPCBCp4hgbnX-UjgqGrQ7g,24362
|
|
426
426
|
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py,sha256=uNsNSQ4EFceGfIMzgjYWFMuL0XdfM58rubTcrCVPrts,5532
|
|
427
427
|
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py,sha256=2UIRz11DRbHJ7IVbkjpBjtbkZGC3-eYhMtVUWTmWMH8,6437
|
|
428
428
|
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py,sha256=x7Ez4L955MJE4ABtBy-63YpU9XpR0Ro8QWPzYYJs1yE,2167
|
|
@@ -532,7 +532,7 @@ keras_hub/src/utils/transformers/convert_distilbert.py,sha256=SlfIRhSRk5c1ir2HGi
|
|
|
532
532
|
keras_hub/src/utils/transformers/convert_esm.py,sha256=rOgGnNY37ZbYnoVC3L-Y-yGGAxTRmYtQV0nJoandH2Y,6214
|
|
533
533
|
keras_hub/src/utils/transformers/convert_gemma.py,sha256=ElCgwBpSN5Q7rV5PJawTsoytPzs5ZjuwoY60YAe8y_A,6533
|
|
534
534
|
keras_hub/src/utils/transformers/convert_gpt2.py,sha256=HCeHN_-GiQJRxLCM9OCJJ1watPVpIBF8ujS8pGbBOWc,5703
|
|
535
|
-
keras_hub/src/utils/transformers/convert_llama3.py,sha256=
|
|
535
|
+
keras_hub/src/utils/transformers/convert_llama3.py,sha256=DjVUyQbl4AV-h8VqSIzmxiCd7cYOKIJTYoLM__NtyY0,6413
|
|
536
536
|
keras_hub/src/utils/transformers/convert_mistral.py,sha256=kVhN9h1ZFVhwkNW8p3wnS7eANJUXIsNy1RxWXy20Gqw,4760
|
|
537
537
|
keras_hub/src/utils/transformers/convert_mixtral.py,sha256=PxeCY8Xe7U_caICugwOCEjuSZ51ZUtmef6rUxh-Wt54,5508
|
|
538
538
|
keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYumf66hIid07k5NLqoeWAJgPnaLs,10649
|
|
@@ -546,7 +546,7 @@ keras_hub/src/utils/transformers/export/gemma.py,sha256=NpTSgRUSWp3WXQil1CjYUVFV
|
|
|
546
546
|
keras_hub/src/utils/transformers/export/hf_exporter.py,sha256=oTdRS8SalPCbi_cZPC55aZUBc-1_pdviUIp0XysA4cI,3234
|
|
547
547
|
keras_hub/tokenizers/__init__.py,sha256=gQIESc4erRLuwxHyxtYy_Z0ePQXw_uhXAa4GVHMffYk,4244
|
|
548
548
|
keras_hub/utils/__init__.py,sha256=jXPqVGBpJr_PpYmqD8aDG-fRMlxH-ulqCR2SZMn288Y,646
|
|
549
|
-
keras_hub_nightly-0.22.0.
|
|
550
|
-
keras_hub_nightly-0.22.0.
|
|
551
|
-
keras_hub_nightly-0.22.0.
|
|
552
|
-
keras_hub_nightly-0.22.0.
|
|
549
|
+
keras_hub_nightly-0.22.0.dev202508140419.dist-info/METADATA,sha256=fWp2bszOsVXkWuBituiIzhaEi47PdPePBMvy0ufhYP8,7395
|
|
550
|
+
keras_hub_nightly-0.22.0.dev202508140419.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
551
|
+
keras_hub_nightly-0.22.0.dev202508140419.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
|
552
|
+
keras_hub_nightly-0.22.0.dev202508140419.dist-info/RECORD,,
|
|
File without changes
|