keras-hub-nightly 0.22.0.dev202506110415__py3-none-any.whl → 0.22.0.dev202506130413__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -772,7 +772,11 @@ class KerasPresetSaver:
772
772
  backbone_size_in_gb = backbone_size_in_bytes / (1024**3)
773
773
  # If the size of the backbone is larger than `max_shard_size`, save
774
774
  # sharded weights.
775
- if sharded_weights_available() and backbone_size_in_gb > max_shard_size:
775
+ if (
776
+ sharded_weights_available()
777
+ and max_shard_size is not None
778
+ and backbone_size_in_gb > max_shard_size
779
+ ):
776
780
  backbone_sharded_weights_config_path = os.path.join(
777
781
  self.preset_dir, SHARDED_MODEL_WEIGHTS_CONFIG_FILE
778
782
  )
keras_hub/src/version.py CHANGED
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.22.0.dev202506110415"
4
+ __version__ = "0.22.0.dev202506130413"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.22.0.dev202506110415
3
+ Version: 0.22.0.dev202506130413
4
4
  Summary: Pretrained models for Keras.
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License-Expression: Apache-2.0
@@ -5,7 +5,7 @@ keras_hub/models/__init__.py,sha256=7MhCw7S-uIPcko-R6g5a-Jy1idKe7BwlI836PfekhHc,
5
5
  keras_hub/samplers/__init__.py,sha256=aFQIkiqbZpi8vjrPp2MVII4QUfE-eQjra5fMeHsoy7k,886
6
6
  keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
7
  keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
8
- keras_hub/src/version.py,sha256=7XMO-zzcuBcx_DNZZgrD5B4usbYR5bGnbC0lql_ZpsQ,222
8
+ keras_hub/src/version.py,sha256=FephU1X5Ynqo3Gv2RA9sk9KMA0fo_so8k6INZpbPopk,222
9
9
  keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
10
  keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
11
  keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
@@ -482,7 +482,7 @@ keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=cylrs02ZrYQ1TuZr
482
482
  keras_hub/src/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
483
483
  keras_hub/src/utils/keras_utils.py,sha256=2qrh4F-rqceVFSx0-cbsFBfWae5hBXFb_sEtPPcImf4,4628
484
484
  keras_hub/src/utils/pipeline_model.py,sha256=jgzB6NQPSl0KOu08N-TazfOnXnUJbZjH2EXXhx25Ftg,9084
485
- keras_hub/src/utils/preset_utils.py,sha256=fx0gNqOTdvW-ZdP0Y3ZaCGE7frYBhwi3lG_GO0swG4w,34602
485
+ keras_hub/src/utils/preset_utils.py,sha256=pj10MW-cHcfTpogWOucEaovRjWT3Q4-xW8wuVphzhOA,34681
486
486
  keras_hub/src/utils/python_utils.py,sha256=N8nWeO3san4YnGkffRXG3Ix7VEIMTKSN21FX5TuL7G8,202
487
487
  keras_hub/src/utils/tensor_utils.py,sha256=WrohV6-hvxtLE6rRRhtN4hy8GkHikV-NrRnVEYUwJQo,16133
488
488
  keras_hub/src/utils/coco/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -517,7 +517,7 @@ keras_hub/src/utils/transformers/preset_loader.py,sha256=K5FzDAtCuXS9rmZc0Zj7UCw
517
517
  keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
518
518
  keras_hub/tokenizers/__init__.py,sha256=uMjjm0mzUkRb0e4Ac_JK8aJ9cKGUi5UqmzWoWAFJprE,4164
519
519
  keras_hub/utils/__init__.py,sha256=jXPqVGBpJr_PpYmqD8aDG-fRMlxH-ulqCR2SZMn288Y,646
520
- keras_hub_nightly-0.22.0.dev202506110415.dist-info/METADATA,sha256=f3xtyaGZe4XGclRSmisP0V_TGS7LU1TUVDAXE9dgIzE,7393
521
- keras_hub_nightly-0.22.0.dev202506110415.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
522
- keras_hub_nightly-0.22.0.dev202506110415.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
523
- keras_hub_nightly-0.22.0.dev202506110415.dist-info/RECORD,,
520
+ keras_hub_nightly-0.22.0.dev202506130413.dist-info/METADATA,sha256=NUvyM-Xm6p12h-58IjQHLfYlt-3dZcjM5C3eCWQZbKo,7393
521
+ keras_hub_nightly-0.22.0.dev202506130413.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
522
+ keras_hub_nightly-0.22.0.dev202506130413.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
523
+ keras_hub_nightly-0.22.0.dev202506130413.dist-info/RECORD,,