keras-hub-nightly 0.22.0.dev202505290412__py3-none-any.whl → 0.22.0.dev202505310408__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/layers/__init__.py +3 -0
- keras_hub/models/__init__.py +16 -0
- keras_hub/src/models/deit/__init__.py +0 -0
- keras_hub/src/models/deit/deit_backbone.py +154 -0
- keras_hub/src/models/deit/deit_image_classifier.py +171 -0
- keras_hub/src/models/deit/deit_image_classifier_preprocessor.py +12 -0
- keras_hub/src/models/deit/deit_image_converter.py +8 -0
- keras_hub/src/models/deit/deit_layers.py +519 -0
- keras_hub/src/models/deit/deit_presets.py +49 -0
- keras_hub/src/models/mixtral/mixtral_presets.py +4 -4
- keras_hub/src/models/qwen/qwen_presets.py +6 -6
- keras_hub/src/models/qwen3/qwen3_attention.py +369 -0
- keras_hub/src/models/qwen3/qwen3_backbone.py +191 -0
- keras_hub/src/models/qwen3/qwen3_causal_lm_preprocessor.py +10 -0
- keras_hub/src/models/qwen3/qwen3_decoder.py +309 -0
- keras_hub/src/models/qwen3/qwen3_layernorm.py +38 -0
- keras_hub/src/models/qwen3/qwen3_tokenizer.py +48 -0
- keras_hub/src/models/qwen_moe/qwen_moe_presets.py +2 -2
- keras_hub/src/utils/transformers/convert_deit.py +155 -0
- keras_hub/src/utils/transformers/convert_qwen3.py +145 -0
- keras_hub/src/utils/transformers/preset_loader.py +7 -1
- keras_hub/src/version.py +1 -1
- {keras_hub_nightly-0.22.0.dev202505290412.dist-info → keras_hub_nightly-0.22.0.dev202505310408.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.22.0.dev202505290412.dist-info → keras_hub_nightly-0.22.0.dev202505310408.dist-info}/RECORD +26 -11
- {keras_hub_nightly-0.22.0.dev202505290412.dist-info → keras_hub_nightly-0.22.0.dev202505310408.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.22.0.dev202505290412.dist-info → keras_hub_nightly-0.22.0.dev202505310408.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,145 @@
|
|
1
|
+
import numpy as np
|
2
|
+
|
3
|
+
from keras_hub.src.models.qwen3.qwen3_backbone import Qwen3Backbone
|
4
|
+
from keras_hub.src.utils.preset_utils import load_json
|
5
|
+
|
6
|
+
backbone_cls = Qwen3Backbone
|
7
|
+
|
8
|
+
|
9
|
+
def convert_backbone_config(transformers_config):
|
10
|
+
return {
|
11
|
+
"vocabulary_size": transformers_config["vocab_size"],
|
12
|
+
"head_dim": transformers_config["head_dim"],
|
13
|
+
"hidden_dim": transformers_config["hidden_size"],
|
14
|
+
"num_layers": transformers_config["num_hidden_layers"],
|
15
|
+
"num_query_heads": transformers_config["num_attention_heads"],
|
16
|
+
"num_key_value_heads": transformers_config["num_key_value_heads"],
|
17
|
+
"intermediate_dim": transformers_config["intermediate_size"],
|
18
|
+
"layer_norm_epsilon": transformers_config["rms_norm_eps"],
|
19
|
+
"rope_max_wavelength": transformers_config["rope_theta"],
|
20
|
+
"sliding_window_size": transformers_config["sliding_window"]
|
21
|
+
if transformers_config["use_sliding_window"]
|
22
|
+
else None,
|
23
|
+
"tie_word_embeddings": transformers_config["tie_word_embeddings"],
|
24
|
+
}
|
25
|
+
|
26
|
+
|
27
|
+
def convert_weights(backbone, loader, transformers_config):
|
28
|
+
loader.port_weight(
|
29
|
+
keras_variable=backbone.get_layer("token_embedding").embeddings,
|
30
|
+
hf_weight_key="model.embed_tokens.weight",
|
31
|
+
)
|
32
|
+
if not backbone.tie_word_embeddings:
|
33
|
+
loader.port_weight(
|
34
|
+
keras_variable=backbone.get_layer(
|
35
|
+
"token_embedding"
|
36
|
+
).reverse_embeddings,
|
37
|
+
hf_weight_key="lm_head.weight",
|
38
|
+
# rearrange_pattern="b a -> a b",
|
39
|
+
hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
|
40
|
+
)
|
41
|
+
|
42
|
+
def transpose_and_reshape(x, shape):
|
43
|
+
return np.reshape(np.transpose(x), shape)
|
44
|
+
|
45
|
+
for i in range(backbone.num_layers):
|
46
|
+
decoder_layer = backbone.get_layer(f"transformer_layer_{i}")
|
47
|
+
|
48
|
+
# Input layernorm
|
49
|
+
loader.port_weight(
|
50
|
+
keras_variable=decoder_layer._self_attention_layernorm.scale,
|
51
|
+
hf_weight_key=f"model.layers.{i}.input_layernorm.weight",
|
52
|
+
)
|
53
|
+
|
54
|
+
# Attention layers
|
55
|
+
|
56
|
+
## Query
|
57
|
+
loader.port_weight(
|
58
|
+
keras_variable=decoder_layer._self_attention_layer._query_dense.kernel,
|
59
|
+
hf_weight_key=f"model.layers.{i}.self_attn.q_proj.weight",
|
60
|
+
hook_fn=transpose_and_reshape,
|
61
|
+
)
|
62
|
+
loader.port_weight(
|
63
|
+
keras_variable=decoder_layer._self_attention_layer._query_dense_layer_norm.scale,
|
64
|
+
hf_weight_key=f"model.layers.{i}.self_attn.q_norm.weight",
|
65
|
+
)
|
66
|
+
## Key
|
67
|
+
loader.port_weight(
|
68
|
+
keras_variable=decoder_layer._self_attention_layer._key_dense.kernel,
|
69
|
+
hf_weight_key=f"model.layers.{i}.self_attn.k_proj.weight",
|
70
|
+
hook_fn=transpose_and_reshape,
|
71
|
+
)
|
72
|
+
loader.port_weight(
|
73
|
+
keras_variable=decoder_layer._self_attention_layer._key_dense_layer_norm.scale,
|
74
|
+
hf_weight_key=f"model.layers.{i}.self_attn.k_norm.weight",
|
75
|
+
)
|
76
|
+
## Value
|
77
|
+
loader.port_weight(
|
78
|
+
keras_variable=decoder_layer._self_attention_layer._value_dense.kernel,
|
79
|
+
hf_weight_key=f"model.layers.{i}.self_attn.v_proj.weight",
|
80
|
+
hook_fn=transpose_and_reshape,
|
81
|
+
)
|
82
|
+
## Output
|
83
|
+
loader.port_weight(
|
84
|
+
keras_variable=decoder_layer._self_attention_layer._output_dense.kernel,
|
85
|
+
hf_weight_key=f"model.layers.{i}.self_attn.o_proj.weight",
|
86
|
+
# rearrange_patterns="c (a b) -> a b c",
|
87
|
+
# rearrange_dims={"a": backbone.num_query_heads},
|
88
|
+
hook_fn=transpose_and_reshape,
|
89
|
+
)
|
90
|
+
|
91
|
+
# MLP layers
|
92
|
+
loader.port_weight(
|
93
|
+
keras_variable=decoder_layer._feedforward_intermediate_dense.kernel,
|
94
|
+
hf_weight_key=f"model.layers.{i}.mlp.up_proj.weight",
|
95
|
+
# rearrange_patterns="b a -> a b",
|
96
|
+
hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
|
97
|
+
)
|
98
|
+
loader.port_weight(
|
99
|
+
keras_variable=decoder_layer._feedforward_output_dense.kernel,
|
100
|
+
hf_weight_key=f"model.layers.{i}.mlp.down_proj.weight",
|
101
|
+
# rearrange_patterns="b a -> a b",
|
102
|
+
hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
|
103
|
+
)
|
104
|
+
loader.port_weight(
|
105
|
+
keras_variable=decoder_layer._feedforward_gate_dense.kernel,
|
106
|
+
hf_weight_key=f"model.layers.{i}.mlp.gate_proj.weight",
|
107
|
+
# rearrange_patterns="b a -> a b",
|
108
|
+
hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
|
109
|
+
)
|
110
|
+
|
111
|
+
# Feedforward layernorm
|
112
|
+
loader.port_weight(
|
113
|
+
keras_variable=decoder_layer._feedforward_layernorm.scale,
|
114
|
+
hf_weight_key=f"model.layers.{i}.post_attention_layernorm.weight",
|
115
|
+
)
|
116
|
+
|
117
|
+
# Final normalization layer
|
118
|
+
loader.port_weight(
|
119
|
+
keras_variable=backbone.get_layer("sequence_output_layernorm").scale,
|
120
|
+
hf_weight_key="model.norm.weight",
|
121
|
+
)
|
122
|
+
|
123
|
+
return backbone
|
124
|
+
|
125
|
+
|
126
|
+
def convert_tokenizer(cls, preset, **kwargs):
|
127
|
+
tokenizer_config = load_json(preset, "tokenizer.json")
|
128
|
+
vocab = tokenizer_config["model"]["vocab"]
|
129
|
+
merges = tokenizer_config["model"]["merges"]
|
130
|
+
merges = [" ".join(item) for item in merges]
|
131
|
+
|
132
|
+
# Load all special tokens with the exception of "reserved" ones.
|
133
|
+
special_tokens = set()
|
134
|
+
for token in tokenizer_config["added_tokens"]:
|
135
|
+
if not token["content"].startswith("<|reserved_special_token_"):
|
136
|
+
vocab[token["content"]] = token["id"]
|
137
|
+
special_tokens.add(token["content"])
|
138
|
+
|
139
|
+
kwargs.update(
|
140
|
+
{
|
141
|
+
"unsplittable_tokens": list(special_tokens),
|
142
|
+
}
|
143
|
+
)
|
144
|
+
|
145
|
+
return cls(vocabulary=vocab, merges=merges, **kwargs)
|
@@ -6,6 +6,7 @@ from keras_hub.src.utils.preset_utils import jax_memory_cleanup
|
|
6
6
|
from keras_hub.src.utils.transformers import convert_albert
|
7
7
|
from keras_hub.src.utils.transformers import convert_bart
|
8
8
|
from keras_hub.src.utils.transformers import convert_bert
|
9
|
+
from keras_hub.src.utils.transformers import convert_deit
|
9
10
|
from keras_hub.src.utils.transformers import convert_distilbert
|
10
11
|
from keras_hub.src.utils.transformers import convert_gemma
|
11
12
|
from keras_hub.src.utils.transformers import convert_gpt2
|
@@ -14,6 +15,7 @@ from keras_hub.src.utils.transformers import convert_mistral
|
|
14
15
|
from keras_hub.src.utils.transformers import convert_mixtral
|
15
16
|
from keras_hub.src.utils.transformers import convert_pali_gemma
|
16
17
|
from keras_hub.src.utils.transformers import convert_qwen
|
18
|
+
from keras_hub.src.utils.transformers import convert_qwen3
|
17
19
|
from keras_hub.src.utils.transformers import convert_qwen_moe
|
18
20
|
from keras_hub.src.utils.transformers import convert_vit
|
19
21
|
from keras_hub.src.utils.transformers.safetensor_utils import SafetensorLoader
|
@@ -29,6 +31,8 @@ class TransformersPresetLoader(PresetLoader):
|
|
29
31
|
self.converter = convert_bart
|
30
32
|
elif model_type == "bert":
|
31
33
|
self.converter = convert_bert
|
34
|
+
elif model_type == "deit":
|
35
|
+
self.converter = convert_deit
|
32
36
|
elif model_type == "distilbert":
|
33
37
|
self.converter = convert_distilbert
|
34
38
|
elif model_type == "gemma" or model_type == "gemma2":
|
@@ -50,6 +54,8 @@ class TransformersPresetLoader(PresetLoader):
|
|
50
54
|
self.converter = convert_mixtral
|
51
55
|
elif model_type == "qwen2_moe":
|
52
56
|
self.converter = convert_qwen_moe
|
57
|
+
elif model_type == "qwen3":
|
58
|
+
self.converter = convert_qwen3
|
53
59
|
else:
|
54
60
|
raise ValueError(
|
55
61
|
"KerasHub has no converter for huggingface/transformers models "
|
@@ -79,7 +85,7 @@ class TransformersPresetLoader(PresetLoader):
|
|
79
85
|
cls, load_weights, load_task_weights, **kwargs
|
80
86
|
)
|
81
87
|
# Support loading the classification head for classifier models.
|
82
|
-
if
|
88
|
+
if "ForImageClassification" in architecture:
|
83
89
|
kwargs["num_classes"] = len(self.config["id2label"])
|
84
90
|
task = super().load_task(cls, load_weights, load_task_weights, **kwargs)
|
85
91
|
if load_task_weights:
|
keras_hub/src/version.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1
1
|
keras_hub/__init__.py,sha256=bJbUZkqwhZvTb1Tqx1fbkq6mzBYiEyq-Hin3oQIkhdE,558
|
2
|
-
keras_hub/layers/__init__.py,sha256=
|
2
|
+
keras_hub/layers/__init__.py,sha256=YQ4bW0_mI39Jqj2yoc8xcnynqoaXV2FBjHJviA9Ffas,5190
|
3
3
|
keras_hub/metrics/__init__.py,sha256=KYalsMPBnfwim9BdGHFfJ5WxUKFXOQ1QoKIMT_0lwlM,439
|
4
|
-
keras_hub/models/__init__.py,sha256=
|
4
|
+
keras_hub/models/__init__.py,sha256=7MhCw7S-uIPcko-R6g5a-Jy1idKe7BwlI836PfekhHc,27076
|
5
5
|
keras_hub/samplers/__init__.py,sha256=aFQIkiqbZpi8vjrPp2MVII4QUfE-eQjra5fMeHsoy7k,886
|
6
6
|
keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
7
7
|
keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
|
8
|
-
keras_hub/src/version.py,sha256=
|
8
|
+
keras_hub/src/version.py,sha256=A_oYO8DhCB-uOrecxZt2B7NMyEpt94fhLGZT7-dbdBg,222
|
9
9
|
keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
10
10
|
keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
11
11
|
keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
|
@@ -135,6 +135,13 @@ keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py,sha256
|
|
135
135
|
keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py,sha256=mz9nG55gdXSTDE96AXgeTCwUFB95DIpTuqrvWIt5Lco,7840
|
136
136
|
keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py,sha256=ZKYY8A7mV2QvwXwjDUd9xAbVHo58-Hgj_IqNUbuyCIU,625
|
137
137
|
keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py,sha256=pubi30sPJKLOpz9fRQff2FZt_53KBvwf2uyaJ5YL7J8,3726
|
138
|
+
keras_hub/src/models/deit/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
139
|
+
keras_hub/src/models/deit/deit_backbone.py,sha256=R5pBOqe8vcvD8VaRnsy_zIRIz6BLnUbkTeKUOoGNHPA,5942
|
140
|
+
keras_hub/src/models/deit/deit_image_classifier.py,sha256=pUS2638yBAxEBxcJoHyLABsgjCWv_Y0Mj_8u0YgDPdI,5758
|
141
|
+
keras_hub/src/models/deit/deit_image_classifier_preprocessor.py,sha256=s5pTcsUjlt1oIXFWIu-9gf2-sBesAyrjJIYmFOB96Xs,514
|
142
|
+
keras_hub/src/models/deit/deit_image_converter.py,sha256=wEGCLHS_i4wF9WA4m7uUXcHNbwf6TYgvPoM6C_t0rpM,330
|
143
|
+
keras_hub/src/models/deit/deit_layers.py,sha256=A80-UTHEUV8g5rEG-fr8OQpGe3HeoYlYwpoDCtq71ZU,17278
|
144
|
+
keras_hub/src/models/deit/deit_presets.py,sha256=0c2jm2DIznOr6ciQoLM6QYopQTLiMx4jONGLaXvtt6g,1778
|
138
145
|
keras_hub/src/models/densenet/__init__.py,sha256=r7StyamnWeeZxOk9r4ZYNbS_YVhu9YGPyXhNxljvdPg,269
|
139
146
|
keras_hub/src/models/densenet/densenet_backbone.py,sha256=f2nfsXyXQert2aYHq-L-JZtp8inq1fs1K47rzZQ9nTI,6744
|
140
147
|
keras_hub/src/models/densenet/densenet_image_classifier.py,sha256=ye-Ix3oU42pfsDoh-h1PG4di1kzldO0ZO7Nj304p_X4,544
|
@@ -259,7 +266,7 @@ keras_hub/src/models/mixtral/mixtral_causal_lm.py,sha256=JA1t6xTeaYX_fNo9ftRyvzd
|
|
259
266
|
keras_hub/src/models/mixtral/mixtral_causal_lm_preprocessor.py,sha256=q2qXa9QAUWBvOWv9DeNvwsBNXSORJAbQFoQsWQ7e8V8,3079
|
260
267
|
keras_hub/src/models/mixtral/mixtral_decoder.py,sha256=CvOjhTxPnGQ_HNknZXRI6Cx1kpuHG99_TiOh-mNcsDw,18190
|
261
268
|
keras_hub/src/models/mixtral/mixtral_layer_norm.py,sha256=zfbDKZEb45FTwP0zQd7WPPp8tuiGoSNfS-DRYWkZyWw,1031
|
262
|
-
keras_hub/src/models/mixtral/mixtral_presets.py,sha256=
|
269
|
+
keras_hub/src/models/mixtral/mixtral_presets.py,sha256=pi5hHcwVSqr7ytf4dSnU_ew_t7NYw7EsZrmklQDqDVo,852
|
263
270
|
keras_hub/src/models/mixtral/mixtral_tokenizer.py,sha256=Kc233k879QMyX164X_CzWbqpnqEkKWNqa648guTGkBk,661
|
264
271
|
keras_hub/src/models/mobilenet/__init__.py,sha256=hxkNGGj_iAMu62iooUDEPA818sNOIgjG7pXMLEMOsAE,275
|
265
272
|
keras_hub/src/models/mobilenet/mobilenet_backbone.py,sha256=aZBSFeLUObYYoi3od9DI1KfgPCqh5GHTcAI8Y2ZHShA,29536
|
@@ -311,8 +318,14 @@ keras_hub/src/models/qwen/qwen_causal_lm.py,sha256=_f-UHaKHp0ncxknpkpEJiW3jlng3E
|
|
311
318
|
keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py,sha256=Va-4TLJD3ycEnkS41rF3dVj4_6K0j-gxLTrREFRcyr0,609
|
312
319
|
keras_hub/src/models/qwen/qwen_decoder.py,sha256=utmAvZlU7_nP-6pjGPDinK4JaMzsQSwOARG0ote-jAg,11771
|
313
320
|
keras_hub/src/models/qwen/qwen_layernorm.py,sha256=DS35r3qd6g5ocL7Nhf_vNzLLMo1aI9VCSmL64dgNOYI,924
|
314
|
-
keras_hub/src/models/qwen/qwen_presets.py,sha256=
|
321
|
+
keras_hub/src/models/qwen/qwen_presets.py,sha256=1FkKV6M3yqJz4EP1xa7bEvfIQ721xXT-_ikjWX0xvww,1992
|
315
322
|
keras_hub/src/models/qwen/qwen_tokenizer.py,sha256=LCv3IyiDDHqVnM9N3lf5-BE3iwicIh0nKS1hjoPw9lE,1532
|
323
|
+
keras_hub/src/models/qwen3/qwen3_attention.py,sha256=sewLjli290XvJ1efGZJEAYqUZfRll7cmhu0258s4C48,13042
|
324
|
+
keras_hub/src/models/qwen3/qwen3_backbone.py,sha256=Ylpk_rRWWRxy8irlAPjJU-YrxYGpo8c9lSEO1zZl4gU,7456
|
325
|
+
keras_hub/src/models/qwen3/qwen3_causal_lm_preprocessor.py,sha256=H4g-bgvuhAUnDwjJovydK16Kes38ZFZWPvflrgHqZis,458
|
326
|
+
keras_hub/src/models/qwen3/qwen3_decoder.py,sha256=68s9jQj53zFmXE4-SGXKYHu546fXOyi9LUbnKk-HGYY,11595
|
327
|
+
keras_hub/src/models/qwen3/qwen3_layernorm.py,sha256=EJxjf7Pr6ufPQnNeuYQxkExzPjPk4PQxqMsoBeSEkDo,1073
|
328
|
+
keras_hub/src/models/qwen3/qwen3_tokenizer.py,sha256=LmPtg0vprMchDvYfTj8m5PraXI2QS3-YgdIIpIm5iAs,1448
|
316
329
|
keras_hub/src/models/qwen_moe/__init__.py,sha256=5D8GUmVDsJs0J4sVZHcXOLkZf12U96l-WtwyVee4lu8,267
|
317
330
|
keras_hub/src/models/qwen_moe/qwen_moe_attention.py,sha256=pE79_iHUm2LGkoWL6zMJw_pNfzIvmyq3yJaiq47W2TY,13242
|
318
331
|
keras_hub/src/models/qwen_moe/qwen_moe_backbone.py,sha256=nrfELvIvRLmrgKrUNXci2CrecmeI6bWzJj7HH-RcWJA,15341
|
@@ -320,7 +333,7 @@ keras_hub/src/models/qwen_moe/qwen_moe_causal_lm.py,sha256=MeP60v7GcN_SmH5_ULRpq
|
|
320
333
|
keras_hub/src/models/qwen_moe/qwen_moe_causal_lm_preprocessor.py,sha256=uKaXRrJs02vkVudjdehzJPp0B84tPMkxNHlp166kceE,589
|
321
334
|
keras_hub/src/models/qwen_moe/qwen_moe_decoder.py,sha256=kmUjLpYTbJQ3J_31qWhLOd0Dg2_9cl_JX_zM8ZMH1Qo,23130
|
322
335
|
keras_hub/src/models/qwen_moe/qwen_moe_layernorm.py,sha256=DbkWJo7U0-cwdZwHPeAnFznYwtao6o0fjpoDJ9UWnpc,927
|
323
|
-
keras_hub/src/models/qwen_moe/qwen_moe_presets.py,sha256=
|
336
|
+
keras_hub/src/models/qwen_moe/qwen_moe_presets.py,sha256=LhOA3Ow-z3cNTan4AOrtyCXS58EgfvO_gtqiZt5cUQc,455
|
324
337
|
keras_hub/src/models/qwen_moe/qwen_moe_tokenizer.py,sha256=2c3X8jNGO0q0UL5NtUqSgHWLqhyJGi2ohNcTeOGhd84,1407
|
325
338
|
keras_hub/src/models/resnet/__init__.py,sha256=C5UqlQ6apm8WSp1bnrxB6Bi3BGaknxRQs-r3b2wpaGA,257
|
326
339
|
keras_hub/src/models/resnet/resnet_backbone.py,sha256=Q7nlqcTXZzjqd0e-DsjHC4ok58yOX7qxseotym3uZpM,31276
|
@@ -488,6 +501,7 @@ keras_hub/src/utils/transformers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRk
|
|
488
501
|
keras_hub/src/utils/transformers/convert_albert.py,sha256=VdKclZpCxtDWq3UbUUQZf4fR9DJK_JYZ73B4O_G9skg,7695
|
489
502
|
keras_hub/src/utils/transformers/convert_bart.py,sha256=Tk4h9Md9rwN5wjQbGIVrC7qzDpF8kI8qm-FKL8HlUok,14411
|
490
503
|
keras_hub/src/utils/transformers/convert_bert.py,sha256=4gQqXCJzC9QWdLPDUAq741K8t_kjPIET050YjUnLeDA,5977
|
504
|
+
keras_hub/src/utils/transformers/convert_deit.py,sha256=ubcqYzMlhWTCE2S_TsXICCMmqjN9RsQPaw_70vArnjo,5306
|
491
505
|
keras_hub/src/utils/transformers/convert_distilbert.py,sha256=SlfIRhSRk5c1ir2HGiDPiXa5XdOId_DbcnZO9lbwyZ8,6498
|
492
506
|
keras_hub/src/utils/transformers/convert_gemma.py,sha256=ElCgwBpSN5Q7rV5PJawTsoytPzs5ZjuwoY60YAe8y_A,6533
|
493
507
|
keras_hub/src/utils/transformers/convert_gpt2.py,sha256=HCeHN_-GiQJRxLCM9OCJJ1watPVpIBF8ujS8pGbBOWc,5703
|
@@ -496,13 +510,14 @@ keras_hub/src/utils/transformers/convert_mistral.py,sha256=kVhN9h1ZFVhwkNW8p3wnS
|
|
496
510
|
keras_hub/src/utils/transformers/convert_mixtral.py,sha256=PxeCY8Xe7U_caICugwOCEjuSZ51ZUtmef6rUxh-Wt54,5508
|
497
511
|
keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYumf66hIid07k5NLqoeWAJgPnaLs,10649
|
498
512
|
keras_hub/src/utils/transformers/convert_qwen.py,sha256=WUxMAEFVqRs7TRw7QU5TH3_ev4yf02R1xFVliMvTQqg,5886
|
513
|
+
keras_hub/src/utils/transformers/convert_qwen3.py,sha256=LIormvCMWPq6X9Wo2eNbADjtFZ0nI7tFGZFBxmo4GKw,5700
|
499
514
|
keras_hub/src/utils/transformers/convert_qwen_moe.py,sha256=a7R28aln-PdAcNuKAXdrtzvslho2Co6GypChxLMKPpc,10618
|
500
515
|
keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
|
501
|
-
keras_hub/src/utils/transformers/preset_loader.py,sha256=
|
516
|
+
keras_hub/src/utils/transformers/preset_loader.py,sha256=K5FzDAtCuXS9rmZc0Zj7UCwbz5J9_pf7ozWov1qRAfg,4495
|
502
517
|
keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
|
503
518
|
keras_hub/tokenizers/__init__.py,sha256=uMjjm0mzUkRb0e4Ac_JK8aJ9cKGUi5UqmzWoWAFJprE,4164
|
504
519
|
keras_hub/utils/__init__.py,sha256=jXPqVGBpJr_PpYmqD8aDG-fRMlxH-ulqCR2SZMn288Y,646
|
505
|
-
keras_hub_nightly-0.22.0.
|
506
|
-
keras_hub_nightly-0.22.0.
|
507
|
-
keras_hub_nightly-0.22.0.
|
508
|
-
keras_hub_nightly-0.22.0.
|
520
|
+
keras_hub_nightly-0.22.0.dev202505310408.dist-info/METADATA,sha256=v4Rvzln90tKecsbiwiU29ZFrct9xpLCV10RQDme4-DI,7393
|
521
|
+
keras_hub_nightly-0.22.0.dev202505310408.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
522
|
+
keras_hub_nightly-0.22.0.dev202505310408.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
523
|
+
keras_hub_nightly-0.22.0.dev202505310408.dist-info/RECORD,,
|
File without changes
|