keras-hub-nightly 0.21.0.dev202505220409__py3-none-any.whl → 0.21.0.dev202505240409__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/src/models/audio_to_text.py +66 -0
- keras_hub/src/models/audio_to_text_preprocessor.py +80 -0
- keras_hub/src/models/gemma/gemma_presets.py +10 -10
- keras_hub/src/models/gemma3/gemma3_presets.py +8 -8
- keras_hub/src/models/llama/llama_presets.py +3 -3
- keras_hub/src/models/llama3/llama3_presets.py +2 -2
- keras_hub/src/models/mistral/mistral_presets.py +3 -3
- keras_hub/src/models/mixtral/mixtral_presets.py +2 -2
- keras_hub/src/models/moonshine/__init__.py +5 -0
- keras_hub/src/models/moonshine/moonshine_audio_to_text.py +2 -2
- keras_hub/src/models/moonshine/moonshine_audio_to_text_preprocessor.py +4 -2
- keras_hub/src/models/moonshine/moonshine_presets.py +2 -2
- keras_hub/src/models/pali_gemma/pali_gemma_presets.py +11 -11
- keras_hub/src/models/qwen/qwen_presets.py +6 -6
- keras_hub/src/models/qwen_moe/qwen_moe_presets.py +1 -1
- keras_hub/src/version.py +1 -1
- {keras_hub_nightly-0.21.0.dev202505220409.dist-info → keras_hub_nightly-0.21.0.dev202505240409.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.21.0.dev202505220409.dist-info → keras_hub_nightly-0.21.0.dev202505240409.dist-info}/RECORD +20 -18
- {keras_hub_nightly-0.21.0.dev202505220409.dist-info → keras_hub_nightly-0.21.0.dev202505240409.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.21.0.dev202505220409.dist-info → keras_hub_nightly-0.21.0.dev202505240409.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,66 @@
|
|
1
|
+
from keras_hub.src.models.seq_2_seq_lm import Seq2SeqLM
|
2
|
+
|
3
|
+
|
4
|
+
class AudioToText(Seq2SeqLM):
|
5
|
+
"""Base class for audio-to-text models.
|
6
|
+
|
7
|
+
`AudioToText` tasks wrap a `keras_hub.models.Backbone` (capable of
|
8
|
+
processing audio and text features) and a
|
9
|
+
`keras_hub.models.AudioToTextPreprocessor` to create a model for
|
10
|
+
audio-to-text tasks like speech recognition or audio transcription.
|
11
|
+
|
12
|
+
These models typically consist of an encoder that processes audio input
|
13
|
+
and a decoder that generates a textual representation.
|
14
|
+
|
15
|
+
`AudioToText` tasks provide a high-level `generate()` method for
|
16
|
+
auto-regressively generating text from audio input. An optional text
|
17
|
+
prompt can also be provided to the decoder to guide generation. The
|
18
|
+
sampling strategy for generation (e.g., greedy, top-k, top-p) can be
|
19
|
+
controlled via the `sampler` argument in the `compile()` method.
|
20
|
+
|
21
|
+
When calling `fit()`, inputs should consist of audio data and corresponding
|
22
|
+
target text transcriptions. The model is trained to predict the target text
|
23
|
+
token-by-token.
|
24
|
+
|
25
|
+
All `AudioToText` tasks include a `from_preset()` constructor which
|
26
|
+
can be used to load pre-trained configurations and weights for specific
|
27
|
+
audio-to-text models.
|
28
|
+
This constructor can also be called on the base `AudioToText` class,
|
29
|
+
which will automatically select the correct subclass based on the preset.
|
30
|
+
|
31
|
+
Examples:
|
32
|
+
```python
|
33
|
+
# Load a Moonshine backbone with pre-trained weights.
|
34
|
+
# AudioToText is a base class. You will typically work with a specific
|
35
|
+
# implementation, such as `keras_hub.models.MoonshineAudioToText`.
|
36
|
+
# The following examples demonstrate common usage patterns.
|
37
|
+
|
38
|
+
# Initialize a model from a preset using the specific subclass.
|
39
|
+
audio_to_text = keras_hub.models.MoonshineAudioToText.from_preset(
|
40
|
+
"moonshine_base_en"
|
41
|
+
)
|
42
|
+
|
43
|
+
# Initialize a model from a preset using the base class.
|
44
|
+
audio_to_text_model_base = keras_hub.models.AudioToText.from_preset(
|
45
|
+
"moonshine_base_en"
|
46
|
+
)
|
47
|
+
|
48
|
+
# Generate text from an audio input.
|
49
|
+
audio_input_tensor = keras.random.normal((1, 16000, 1))
|
50
|
+
generated_output = audio_to_text_model.generate(
|
51
|
+
{"audio": audio_input_tensor}
|
52
|
+
)
|
53
|
+
|
54
|
+
# Generate conditioned on the `"The quick brown fox."` as an input sequence.
|
55
|
+
prompted_output = audio_to_text_model.generate(
|
56
|
+
{"audio": audio_input_tensor, "text": "The quick brown fox."}
|
57
|
+
)
|
58
|
+
|
59
|
+
# Use a different sampling strategy for generation.
|
60
|
+
audio_to_text_model.compile(sampler="greedy")
|
61
|
+
greedy_output = audio_to_text_model.generate(
|
62
|
+
{"audio": audio_input_tensor}
|
63
|
+
)
|
64
|
+
"""
|
65
|
+
|
66
|
+
# TODO: Fill in once audio to text task model requirements are clearer.
|
@@ -0,0 +1,80 @@
|
|
1
|
+
from keras_hub.src.models.seq_2_seq_lm_preprocessor import Seq2SeqLMPreprocessor
|
2
|
+
|
3
|
+
|
4
|
+
class AudioToTextPreprocessor(Seq2SeqLMPreprocessor):
|
5
|
+
"""Base class for audio-to-text preprocessing layers.
|
6
|
+
|
7
|
+
`AudioToTextPreprocessor` layers wrap an audio feature extractor (specific
|
8
|
+
to the subclass) and a `keras_hub.tokenizer.Tokenizer` to create a
|
9
|
+
preprocessing layer for audio-to-text tasks. It is intended to be
|
10
|
+
paired with a `keras_hub.models.AudioToText` task.
|
11
|
+
|
12
|
+
Subclasses are expected to handle the conversion of raw audio data into
|
13
|
+
numerical features suitable for an encoder, and raw text data into token IDs
|
14
|
+
for a decoder.
|
15
|
+
|
16
|
+
All `AudioToTextPreprocessor` layers take a dictionary as input,
|
17
|
+
typically with keys like `"audio"` (for audio data) and `"text"` (for
|
18
|
+
target transcriptions or decoder prompts).
|
19
|
+
|
20
|
+
This layer will always output a `(x, y, sample_weight)` tuple, where `x`
|
21
|
+
is a dictionary containing processed audio features for the encoder and
|
22
|
+
tokenized text inputs for the decoder. `y` contains the target token IDs
|
23
|
+
(decoder input tokens shifted by one position), and `sample_weight`
|
24
|
+
indicates padding in `y`. The exact keys and structure of features within
|
25
|
+
`x` will depend on the specific subclass and the paired `AudioToText` model.
|
26
|
+
|
27
|
+
An `AudioToTextPreprocessor` includes `generate_preprocess` and
|
28
|
+
`generate_postprocess` methods for use during inference with an
|
29
|
+
`AudioToText` model's `generate()` method.
|
30
|
+
|
31
|
+
All `AudioToTextPreprocessor` tasks include a `from_preset()` constructor
|
32
|
+
which can be used to load a pre-trained configuration, including tokenizer
|
33
|
+
vocabularies and audio feature extraction settings. Calling `from_preset()`
|
34
|
+
on this base class can instantiate the correct subclass registered for the
|
35
|
+
given preset.
|
36
|
+
|
37
|
+
Examples:
|
38
|
+
```python
|
39
|
+
preprocessor = keras_hub.models.AudioToTextPreprocessor.from_preset(
|
40
|
+
"moonshine_base_en",
|
41
|
+
decoder_sequence_length=10
|
42
|
+
)
|
43
|
+
|
44
|
+
# Process a single audio-text pair.
|
45
|
+
x = {
|
46
|
+
"audio": keras.random.normal((1, 16000, 1)),
|
47
|
+
"text": ["the quick brown fox"]
|
48
|
+
}
|
49
|
+
x, y, sample_weight = preprocessor(x)
|
50
|
+
|
51
|
+
# Process a batch of audio-text pairs.
|
52
|
+
x = {
|
53
|
+
"audio": keras.random.normal((2, 16000, 1)),
|
54
|
+
"text": ["first sentence", "second sentence"]
|
55
|
+
}
|
56
|
+
x, y, sample_weight = preprocessor(x)
|
57
|
+
|
58
|
+
# With a `tf.data.Dataset`.
|
59
|
+
audio_tf = keras.ops.convert_to_tensor(batch_input["audio"])
|
60
|
+
text_tf = batch_input["text"] # List of strings
|
61
|
+
x = {"audio": audio_tf, "text": text_tf}
|
62
|
+
ds = tf.data.Dataset.from_tensor_slices(x)
|
63
|
+
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
64
|
+
ds = ds.batch(2) # Batching after map
|
65
|
+
|
66
|
+
# Generate preprocess and postprocess.
|
67
|
+
x = preprocessor.generate_preprocess({
|
68
|
+
"audio": keras.random.normal((1, 16000, 1)),
|
69
|
+
"text": ["optional prompt text"]
|
70
|
+
})
|
71
|
+
x = preprocessor.generate_postprocess({
|
72
|
+
"decoder_token_ids": keras.ops.array([[10, 20, 30, 2, 0]]),
|
73
|
+
"decoder_padding_mask": keras.ops.array([
|
74
|
+
[True, True, True, True, False]
|
75
|
+
])
|
76
|
+
})
|
77
|
+
```
|
78
|
+
"""
|
79
|
+
|
80
|
+
# TODO: Fill in once audio to text task model requirements are clearer.
|
@@ -61,7 +61,7 @@ backbone_presets = {
|
|
61
61
|
"params": 8537680896,
|
62
62
|
"path": "gemma",
|
63
63
|
},
|
64
|
-
"kaggle_handle": "kaggle://keras/gemma/keras/gemma_7b_en/
|
64
|
+
"kaggle_handle": "kaggle://keras/gemma/keras/gemma_7b_en/4",
|
65
65
|
},
|
66
66
|
"gemma_instruct_7b_en": {
|
67
67
|
"metadata": {
|
@@ -71,7 +71,7 @@ backbone_presets = {
|
|
71
71
|
"params": 8537680896,
|
72
72
|
"path": "gemma",
|
73
73
|
},
|
74
|
-
"kaggle_handle": "kaggle://keras/gemma/keras/gemma_instruct_7b_en/
|
74
|
+
"kaggle_handle": "kaggle://keras/gemma/keras/gemma_instruct_7b_en/4",
|
75
75
|
},
|
76
76
|
"gemma_1.1_instruct_7b_en": {
|
77
77
|
"metadata": {
|
@@ -82,7 +82,7 @@ backbone_presets = {
|
|
82
82
|
"params": 8537680896,
|
83
83
|
"path": "gemma",
|
84
84
|
},
|
85
|
-
"kaggle_handle": "kaggle://keras/gemma/keras/gemma_1.1_instruct_7b_en/
|
85
|
+
"kaggle_handle": "kaggle://keras/gemma/keras/gemma_1.1_instruct_7b_en/5",
|
86
86
|
},
|
87
87
|
"code_gemma_7b_en": {
|
88
88
|
"metadata": {
|
@@ -94,7 +94,7 @@ backbone_presets = {
|
|
94
94
|
"params": 8537680896,
|
95
95
|
"path": "gemma",
|
96
96
|
},
|
97
|
-
"kaggle_handle": "kaggle://keras/codegemma/keras/code_gemma_7b_en/
|
97
|
+
"kaggle_handle": "kaggle://keras/codegemma/keras/code_gemma_7b_en/3",
|
98
98
|
},
|
99
99
|
"code_gemma_instruct_7b_en": {
|
100
100
|
"metadata": {
|
@@ -106,7 +106,7 @@ backbone_presets = {
|
|
106
106
|
"params": 8537680896,
|
107
107
|
"path": "gemma",
|
108
108
|
},
|
109
|
-
"kaggle_handle": "kaggle://keras/codegemma/keras/code_gemma_instruct_7b_en/
|
109
|
+
"kaggle_handle": "kaggle://keras/codegemma/keras/code_gemma_instruct_7b_en/3",
|
110
110
|
},
|
111
111
|
"code_gemma_1.1_instruct_7b_en": {
|
112
112
|
"metadata": {
|
@@ -118,7 +118,7 @@ backbone_presets = {
|
|
118
118
|
"params": 8537680896,
|
119
119
|
"path": "gemma",
|
120
120
|
},
|
121
|
-
"kaggle_handle": "kaggle://keras/codegemma/keras/code_gemma_1.1_instruct_7b_en/
|
121
|
+
"kaggle_handle": "kaggle://keras/codegemma/keras/code_gemma_1.1_instruct_7b_en/3",
|
122
122
|
},
|
123
123
|
"gemma2_2b_en": {
|
124
124
|
"metadata": {
|
@@ -144,7 +144,7 @@ backbone_presets = {
|
|
144
144
|
"params": 9241705984,
|
145
145
|
"path": "gemma",
|
146
146
|
},
|
147
|
-
"kaggle_handle": "kaggle://keras/gemma2/keras/gemma2_9b_en/
|
147
|
+
"kaggle_handle": "kaggle://keras/gemma2/keras/gemma2_9b_en/4",
|
148
148
|
},
|
149
149
|
"gemma2_instruct_9b_en": {
|
150
150
|
"metadata": {
|
@@ -154,7 +154,7 @@ backbone_presets = {
|
|
154
154
|
"params": 9241705984,
|
155
155
|
"path": "gemma",
|
156
156
|
},
|
157
|
-
"kaggle_handle": "kaggle://keras/gemma2/keras/gemma2_instruct_9b_en/
|
157
|
+
"kaggle_handle": "kaggle://keras/gemma2/keras/gemma2_instruct_9b_en/4",
|
158
158
|
},
|
159
159
|
"gemma2_27b_en": {
|
160
160
|
"metadata": {
|
@@ -162,7 +162,7 @@ backbone_presets = {
|
|
162
162
|
"params": 27227128320,
|
163
163
|
"path": "gemma",
|
164
164
|
},
|
165
|
-
"kaggle_handle": "kaggle://keras/gemma2/keras/gemma2_27b_en/
|
165
|
+
"kaggle_handle": "kaggle://keras/gemma2/keras/gemma2_27b_en/3",
|
166
166
|
},
|
167
167
|
"gemma2_instruct_27b_en": {
|
168
168
|
"metadata": {
|
@@ -172,7 +172,7 @@ backbone_presets = {
|
|
172
172
|
"params": 27227128320,
|
173
173
|
"path": "gemma",
|
174
174
|
},
|
175
|
-
"kaggle_handle": "kaggle://keras/gemma2/keras/gemma2_instruct_27b_en/
|
175
|
+
"kaggle_handle": "kaggle://keras/gemma2/keras/gemma2_instruct_27b_en/3",
|
176
176
|
},
|
177
177
|
"shieldgemma_2b_en": {
|
178
178
|
"metadata": {
|
@@ -55,7 +55,7 @@ backbone_presets = {
|
|
55
55
|
"params": 11765788416,
|
56
56
|
"path": "gemma3",
|
57
57
|
},
|
58
|
-
"kaggle_handle": "kaggle://keras/gemma3/keras/gemma3_12b_text/
|
58
|
+
"kaggle_handle": "kaggle://keras/gemma3/keras/gemma3_12b_text/3",
|
59
59
|
},
|
60
60
|
"gemma3_instruct_12b_text": {
|
61
61
|
"metadata": {
|
@@ -66,7 +66,7 @@ backbone_presets = {
|
|
66
66
|
"params": 11765788416,
|
67
67
|
"path": "gemma3",
|
68
68
|
},
|
69
|
-
"kaggle_handle": "kaggle://keras/gemma3/keras/gemma3_instruct_12b_text/
|
69
|
+
"kaggle_handle": "kaggle://keras/gemma3/keras/gemma3_instruct_12b_text/3",
|
70
70
|
},
|
71
71
|
"gemma3_27b_text": {
|
72
72
|
"metadata": {
|
@@ -77,7 +77,7 @@ backbone_presets = {
|
|
77
77
|
"params": 27009002240,
|
78
78
|
"path": "gemma3",
|
79
79
|
},
|
80
|
-
"kaggle_handle": "kaggle://keras/gemma3/keras/gemma3_27b_text/
|
80
|
+
"kaggle_handle": "kaggle://keras/gemma3/keras/gemma3_27b_text/4",
|
81
81
|
},
|
82
82
|
"gemma3_instruct_27b_text": {
|
83
83
|
"metadata": {
|
@@ -88,7 +88,7 @@ backbone_presets = {
|
|
88
88
|
"params": 27009002240,
|
89
89
|
"path": "gemma3",
|
90
90
|
},
|
91
|
-
"kaggle_handle": "kaggle://keras/gemma3/keras/gemma3_instruct_27b_text/
|
91
|
+
"kaggle_handle": "kaggle://keras/gemma3/keras/gemma3_instruct_27b_text/3",
|
92
92
|
},
|
93
93
|
"gemma3_4b": {
|
94
94
|
"metadata": {
|
@@ -121,7 +121,7 @@ backbone_presets = {
|
|
121
121
|
"params": 12187079280,
|
122
122
|
"path": "gemma3",
|
123
123
|
},
|
124
|
-
"kaggle_handle": "kaggle://keras/gemma3/keras/gemma3_12b/
|
124
|
+
"kaggle_handle": "kaggle://keras/gemma3/keras/gemma3_12b/2",
|
125
125
|
},
|
126
126
|
"gemma3_instruct_12b": {
|
127
127
|
"metadata": {
|
@@ -132,7 +132,7 @@ backbone_presets = {
|
|
132
132
|
"params": 12187079280,
|
133
133
|
"path": "gemma3",
|
134
134
|
},
|
135
|
-
"kaggle_handle": "kaggle://keras/gemma3/keras/gemma3_instruct_12b/
|
135
|
+
"kaggle_handle": "kaggle://keras/gemma3/keras/gemma3_instruct_12b/2",
|
136
136
|
},
|
137
137
|
"gemma3_27b": {
|
138
138
|
"metadata": {
|
@@ -143,7 +143,7 @@ backbone_presets = {
|
|
143
143
|
"params": 27432062576,
|
144
144
|
"path": "gemma3",
|
145
145
|
},
|
146
|
-
"kaggle_handle": "kaggle://keras/gemma3/keras/gemma3_27b/
|
146
|
+
"kaggle_handle": "kaggle://keras/gemma3/keras/gemma3_27b/2",
|
147
147
|
},
|
148
148
|
"gemma3_instruct_27b": {
|
149
149
|
"metadata": {
|
@@ -154,6 +154,6 @@ backbone_presets = {
|
|
154
154
|
"params": 27432062576,
|
155
155
|
"path": "gemma3",
|
156
156
|
},
|
157
|
-
"kaggle_handle": "kaggle://keras/gemma3/keras/gemma3_instruct_27b/
|
157
|
+
"kaggle_handle": "kaggle://keras/gemma3/keras/gemma3_instruct_27b/2",
|
158
158
|
},
|
159
159
|
}
|
@@ -8,7 +8,7 @@ backbone_presets = {
|
|
8
8
|
"params": 6738415616,
|
9
9
|
"path": "llama",
|
10
10
|
},
|
11
|
-
"kaggle_handle": "kaggle://keras/llama2/keras/llama2_7b_en/
|
11
|
+
"kaggle_handle": "kaggle://keras/llama2/keras/llama2_7b_en/3",
|
12
12
|
},
|
13
13
|
"llama2_7b_en_int8": {
|
14
14
|
"metadata": {
|
@@ -30,7 +30,7 @@ backbone_presets = {
|
|
30
30
|
"params": 6738415616,
|
31
31
|
"path": "llama",
|
32
32
|
},
|
33
|
-
"kaggle_handle": "kaggle://keras/llama2/keras/llama2_instruct_7b_en/
|
33
|
+
"kaggle_handle": "kaggle://keras/llama2/keras/llama2_instruct_7b_en/3",
|
34
34
|
},
|
35
35
|
"llama2_instruct_7b_en_int8": {
|
36
36
|
"metadata": {
|
@@ -52,6 +52,6 @@ backbone_presets = {
|
|
52
52
|
"params": 6738415616,
|
53
53
|
"path": "llama",
|
54
54
|
},
|
55
|
-
"kaggle_handle": "kaggle://keras/vicuna/keras/vicuna_1.5_7b_en/
|
55
|
+
"kaggle_handle": "kaggle://keras/vicuna/keras/vicuna_1.5_7b_en/3",
|
56
56
|
},
|
57
57
|
}
|
@@ -8,7 +8,7 @@ backbone_presets = {
|
|
8
8
|
"params": 8030261248,
|
9
9
|
"path": "llama3",
|
10
10
|
},
|
11
|
-
"kaggle_handle": "kaggle://keras/llama3/keras/llama3_8b_en/
|
11
|
+
"kaggle_handle": "kaggle://keras/llama3/keras/llama3_8b_en/5",
|
12
12
|
},
|
13
13
|
"llama3_8b_en_int8": {
|
14
14
|
"metadata": {
|
@@ -30,7 +30,7 @@ backbone_presets = {
|
|
30
30
|
"params": 8030261248,
|
31
31
|
"path": "llama3",
|
32
32
|
},
|
33
|
-
"kaggle_handle": "kaggle://keras/llama3/keras/llama3_instruct_8b_en/
|
33
|
+
"kaggle_handle": "kaggle://keras/llama3/keras/llama3_instruct_8b_en/5",
|
34
34
|
},
|
35
35
|
"llama3_instruct_8b_en_int8": {
|
36
36
|
"metadata": {
|
@@ -8,7 +8,7 @@ backbone_presets = {
|
|
8
8
|
"params": 7241732096,
|
9
9
|
"path": "mistral",
|
10
10
|
},
|
11
|
-
"kaggle_handle": "kaggle://keras/mistral/keras/mistral_7b_en/
|
11
|
+
"kaggle_handle": "kaggle://keras/mistral/keras/mistral_7b_en/8",
|
12
12
|
},
|
13
13
|
"mistral_instruct_7b_en": {
|
14
14
|
"metadata": {
|
@@ -16,7 +16,7 @@ backbone_presets = {
|
|
16
16
|
"params": 7241732096,
|
17
17
|
"path": "mistral",
|
18
18
|
},
|
19
|
-
"kaggle_handle": "kaggle://keras/mistral/keras/mistral_instruct_7b_en/
|
19
|
+
"kaggle_handle": "kaggle://keras/mistral/keras/mistral_instruct_7b_en/8",
|
20
20
|
},
|
21
21
|
"mistral_0.2_instruct_7b_en": {
|
22
22
|
"metadata": {
|
@@ -24,6 +24,6 @@ backbone_presets = {
|
|
24
24
|
"params": 7241732096,
|
25
25
|
"path": "mistral",
|
26
26
|
},
|
27
|
-
"kaggle_handle": "kaggle://keras/mistral/keras/mistral_0.2_instruct_7b_en/
|
27
|
+
"kaggle_handle": "kaggle://keras/mistral/keras/mistral_0.2_instruct_7b_en/3",
|
28
28
|
},
|
29
29
|
}
|
@@ -10,7 +10,7 @@ backbone_presets = {
|
|
10
10
|
"params": 46702792704,
|
11
11
|
"path": "mixtral",
|
12
12
|
},
|
13
|
-
"kaggle_handle": "kaggle://keras/mixtral/keras/mixtral_8_7b_en",
|
13
|
+
"kaggle_handle": "kaggle://keras/mixtral/keras/mixtral_8_7b_en/3",
|
14
14
|
},
|
15
15
|
"mixtral_8_instruct_7b_en": {
|
16
16
|
"metadata": {
|
@@ -21,6 +21,6 @@ backbone_presets = {
|
|
21
21
|
"params": 46702792704,
|
22
22
|
"path": "mixtral",
|
23
23
|
},
|
24
|
-
"kaggle_handle": "kaggle://keras/mixtral/keras/mixtral_8_instruct_7b_en",
|
24
|
+
"kaggle_handle": "kaggle://keras/mixtral/keras/mixtral_8_instruct_7b_en/3",
|
25
25
|
},
|
26
26
|
}
|
@@ -0,0 +1,5 @@
|
|
1
|
+
from keras_hub.src.models.moonshine.moonshine_backbone import MoonshineBackbone
|
2
|
+
from keras_hub.src.models.moonshine.moonshine_presets import backbone_presets
|
3
|
+
from keras_hub.src.utils.preset_utils import register_presets
|
4
|
+
|
5
|
+
register_presets(backbone_presets, MoonshineBackbone)
|
@@ -1,6 +1,7 @@
|
|
1
1
|
import keras
|
2
2
|
|
3
3
|
from keras_hub.src.api_export import keras_hub_export
|
4
|
+
from keras_hub.src.models.audio_to_text import AudioToText
|
4
5
|
from keras_hub.src.models.moonshine.moonshine_audio_to_text_preprocessor import ( # noqa: E501
|
5
6
|
MoonshineAudioToTextPreprocessor,
|
6
7
|
)
|
@@ -9,12 +10,11 @@ from keras_hub.src.models.moonshine.moonshine_backbone import MoonshineBackbone
|
|
9
10
|
from keras_hub.src.models.moonshine.moonshine_backbone import (
|
10
11
|
compute_output_lengths,
|
11
12
|
)
|
12
|
-
from keras_hub.src.models.seq_2_seq_lm import Seq2SeqLM
|
13
13
|
from keras_hub.src.utils.tensor_utils import any_equal
|
14
14
|
|
15
15
|
|
16
16
|
@keras_hub_export("keras_hub.models.MoonshineAudioToText")
|
17
|
-
class MoonshineAudioToText(
|
17
|
+
class MoonshineAudioToText(AudioToText):
|
18
18
|
"""An end-to-end Moonshine model for audio-to-text tasks.
|
19
19
|
|
20
20
|
A Seq2Seq LM designed for audio-to-text tasks, such as speech recognition.
|
@@ -6,16 +6,18 @@ except ImportError:
|
|
6
6
|
tf = None
|
7
7
|
from keras_hub.src.api_export import keras_hub_export
|
8
8
|
from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
|
9
|
+
from keras_hub.src.models.audio_to_text_preprocessor import (
|
10
|
+
AudioToTextPreprocessor,
|
11
|
+
)
|
9
12
|
from keras_hub.src.models.moonshine.moonshine_backbone import MoonshineBackbone
|
10
13
|
from keras_hub.src.models.moonshine.moonshine_tokenizer import (
|
11
14
|
MoonshineTokenizer,
|
12
15
|
)
|
13
|
-
from keras_hub.src.models.seq_2_seq_lm_preprocessor import Seq2SeqLMPreprocessor
|
14
16
|
from keras_hub.src.utils.tensor_utils import preprocessing_function
|
15
17
|
|
16
18
|
|
17
19
|
@keras_hub_export("keras_hub.models.MoonshineAudioToTextPreprocessor")
|
18
|
-
class MoonshineAudioToTextPreprocessor(
|
20
|
+
class MoonshineAudioToTextPreprocessor(AudioToTextPreprocessor):
|
19
21
|
"""Moonshine Seq2Seq LM preprocessor for audio-to-text tasks.
|
20
22
|
|
21
23
|
This preprocessor converts raw audio and text inputs into a format suitable
|
@@ -9,7 +9,7 @@ backbone_presets = {
|
|
9
9
|
"params": 27092736,
|
10
10
|
"path": "moonshine",
|
11
11
|
},
|
12
|
-
"kaggle_handle": "kaggle://keras/moonshine/Keras/moonshine_tiny_en",
|
12
|
+
"kaggle_handle": "kaggle://keras/moonshine/Keras/moonshine_tiny_en/1",
|
13
13
|
},
|
14
14
|
"moonshine_base_en": {
|
15
15
|
"metadata": {
|
@@ -20,6 +20,6 @@ backbone_presets = {
|
|
20
20
|
"params": 61513920,
|
21
21
|
"path": "moonshine",
|
22
22
|
},
|
23
|
-
"kaggle_handle": "kaggle://keras/moonshine/Keras/moonshine_base_en",
|
23
|
+
"kaggle_handle": "kaggle://keras/moonshine/Keras/moonshine_base_en/1",
|
24
24
|
},
|
25
25
|
}
|
@@ -81,7 +81,7 @@ backbone_presets = {
|
|
81
81
|
"path": "pali_gemma2",
|
82
82
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
83
83
|
},
|
84
|
-
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_ft_docci_10b_448/
|
84
|
+
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_ft_docci_10b_448/3",
|
85
85
|
},
|
86
86
|
"pali_gemma2_mix_3b_224": {
|
87
87
|
"metadata": {
|
@@ -126,7 +126,7 @@ backbone_presets = {
|
|
126
126
|
"path": "pali_gemma2",
|
127
127
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
128
128
|
},
|
129
|
-
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_mix_10b_224/
|
129
|
+
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_mix_10b_224/3",
|
130
130
|
},
|
131
131
|
"pali_gemma2_mix_10b_448": {
|
132
132
|
"metadata": {
|
@@ -141,7 +141,7 @@ backbone_presets = {
|
|
141
141
|
"path": "pali_gemma2",
|
142
142
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
143
143
|
},
|
144
|
-
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_mix_10b_448/
|
144
|
+
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_mix_10b_448/3",
|
145
145
|
},
|
146
146
|
"pali_gemma2_mix_28b_224": {
|
147
147
|
"metadata": {
|
@@ -156,7 +156,7 @@ backbone_presets = {
|
|
156
156
|
"path": "pali_gemma2",
|
157
157
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
158
158
|
},
|
159
|
-
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_28b_mix_224/
|
159
|
+
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_28b_mix_224/3",
|
160
160
|
},
|
161
161
|
"pali_gemma2_mix_28b_448": {
|
162
162
|
"metadata": {
|
@@ -171,7 +171,7 @@ backbone_presets = {
|
|
171
171
|
"path": "pali_gemma2",
|
172
172
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
173
173
|
},
|
174
|
-
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_28b_mix_448/
|
174
|
+
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_28b_mix_448/3",
|
175
175
|
},
|
176
176
|
"pali_gemma2_pt_3b_224": {
|
177
177
|
"metadata": {
|
@@ -231,7 +231,7 @@ backbone_presets = {
|
|
231
231
|
"path": "pali_gemma2",
|
232
232
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
233
233
|
},
|
234
|
-
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_10b_224/
|
234
|
+
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_10b_224/3",
|
235
235
|
},
|
236
236
|
"pali_gemma2_pt_10b_448": {
|
237
237
|
"metadata": {
|
@@ -246,7 +246,7 @@ backbone_presets = {
|
|
246
246
|
"path": "pali_gemma2",
|
247
247
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
248
248
|
},
|
249
|
-
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_10b_448/
|
249
|
+
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_10b_448/3",
|
250
250
|
},
|
251
251
|
"pali_gemma2_pt_10b_896": {
|
252
252
|
"metadata": {
|
@@ -261,7 +261,7 @@ backbone_presets = {
|
|
261
261
|
"path": "pali_gemma2",
|
262
262
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
263
263
|
},
|
264
|
-
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_10b_896/
|
264
|
+
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_10b_896/3",
|
265
265
|
},
|
266
266
|
"pali_gemma2_pt_28b_224": {
|
267
267
|
"metadata": {
|
@@ -276,7 +276,7 @@ backbone_presets = {
|
|
276
276
|
"path": "pali_gemma2",
|
277
277
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
278
278
|
},
|
279
|
-
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_28b_224/
|
279
|
+
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_28b_224/4",
|
280
280
|
},
|
281
281
|
"pali_gemma2_pt_28b_448": {
|
282
282
|
"metadata": {
|
@@ -291,7 +291,7 @@ backbone_presets = {
|
|
291
291
|
"path": "pali_gemma2",
|
292
292
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
293
293
|
},
|
294
|
-
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_28b_448/
|
294
|
+
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_28b_448/3",
|
295
295
|
},
|
296
296
|
"pali_gemma2_pt_28b_896": {
|
297
297
|
"metadata": {
|
@@ -306,6 +306,6 @@ backbone_presets = {
|
|
306
306
|
"path": "pali_gemma2",
|
307
307
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
308
308
|
},
|
309
|
-
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_28b_896/
|
309
|
+
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_28b_896/3",
|
310
310
|
},
|
311
311
|
}
|
@@ -7,7 +7,7 @@ backbone_presets = {
|
|
7
7
|
"params": 494032768,
|
8
8
|
"path": "qwen",
|
9
9
|
},
|
10
|
-
"kaggle_handle": "kaggle://keras/qwen/keras/qwen2.5_0.5b_en",
|
10
|
+
"kaggle_handle": "kaggle://keras/qwen/keras/qwen2.5_0.5b_en/1",
|
11
11
|
},
|
12
12
|
"qwen2.5_3b_en": {
|
13
13
|
"metadata": {
|
@@ -15,7 +15,7 @@ backbone_presets = {
|
|
15
15
|
"params": 3085938688,
|
16
16
|
"path": "qwen",
|
17
17
|
},
|
18
|
-
"kaggle_handle": "kaggle://keras/qwen/keras/qwen2.5_3b_en",
|
18
|
+
"kaggle_handle": "kaggle://keras/qwen/keras/qwen2.5_3b_en/1",
|
19
19
|
},
|
20
20
|
"qwen2.5_7b_en": {
|
21
21
|
"metadata": {
|
@@ -23,7 +23,7 @@ backbone_presets = {
|
|
23
23
|
"params": 6993420288,
|
24
24
|
"path": "qwen",
|
25
25
|
},
|
26
|
-
"kaggle_handle": "kaggle://keras/qwen/keras/qwen2.5_7b_en/
|
26
|
+
"kaggle_handle": "kaggle://keras/qwen/keras/qwen2.5_7b_en/3",
|
27
27
|
},
|
28
28
|
"qwen2.5_instruct_0.5b_en": {
|
29
29
|
"metadata": {
|
@@ -34,7 +34,7 @@ backbone_presets = {
|
|
34
34
|
"params": 494032768,
|
35
35
|
"path": "qwen",
|
36
36
|
},
|
37
|
-
"kaggle_handle": "kaggle://keras/qwen/keras/qwen2.5_instruct_0.5b_en",
|
37
|
+
"kaggle_handle": "kaggle://keras/qwen/keras/qwen2.5_instruct_0.5b_en/1",
|
38
38
|
},
|
39
39
|
"qwen2.5_instruct_32b_en": {
|
40
40
|
"metadata": {
|
@@ -45,7 +45,7 @@ backbone_presets = {
|
|
45
45
|
"params": 32763876352,
|
46
46
|
"path": "qwen",
|
47
47
|
},
|
48
|
-
"kaggle_handle": "kaggle://keras/qwen/keras/qwen2.5_instruct_32b_en",
|
48
|
+
"kaggle_handle": "kaggle://keras/qwen/keras/qwen2.5_instruct_32b_en/2",
|
49
49
|
},
|
50
50
|
"qwen2.5_instruct_72b_en": {
|
51
51
|
"metadata": {
|
@@ -56,6 +56,6 @@ backbone_presets = {
|
|
56
56
|
"params": 72706203648,
|
57
57
|
"path": "qwen",
|
58
58
|
},
|
59
|
-
"kaggle_handle": "kaggle://keras/qwen/keras/qwen2.5_instruct_72b_en",
|
59
|
+
"kaggle_handle": "kaggle://keras/qwen/keras/qwen2.5_instruct_72b_en/2",
|
60
60
|
},
|
61
61
|
}
|
keras_hub/src/version.py
CHANGED
@@ -5,7 +5,7 @@ keras_hub/models/__init__.py,sha256=itSzodVUeuX6HQnmsSXY0Wv-5Htbu397410R-SFW_4I,
|
|
5
5
|
keras_hub/samplers/__init__.py,sha256=aFQIkiqbZpi8vjrPp2MVII4QUfE-eQjra5fMeHsoy7k,886
|
6
6
|
keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
7
7
|
keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
|
8
|
-
keras_hub/src/version.py,sha256=
|
8
|
+
keras_hub/src/version.py,sha256=AnU8tBqSqSoLY34F6O-fFt47PXgrGHUbqORa6_sXy6w,222
|
9
9
|
keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
10
10
|
keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
11
11
|
keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
|
@@ -41,6 +41,8 @@ keras_hub/src/metrics/rouge_base.py,sha256=Pt2DUznhTTeR-fX1nQ_wSbPtmuTgxQTvrGpu8
|
|
41
41
|
keras_hub/src/metrics/rouge_l.py,sha256=JlZhMBV6wS_6zMd57pkTc6yxHkEJT9fVQMlPZKekQzQ,2729
|
42
42
|
keras_hub/src/metrics/rouge_n.py,sha256=JoFtmgjF4Ic263ny6bfD6vMHKreH9le3HnOOxemupRc,3620
|
43
43
|
keras_hub/src/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
44
|
+
keras_hub/src/models/audio_to_text.py,sha256=XoOjXtKBX6K1fz-zOXcdVo3FpjuxCMnJZh2LQcYXb_0,2726
|
45
|
+
keras_hub/src/models/audio_to_text_preprocessor.py,sha256=GS-WWyJ6aSsPRxi_0bxvxA00h2mT2FEwSdAoQXAUYVI,3249
|
44
46
|
keras_hub/src/models/backbone.py,sha256=KS2x3HFWKhEYhroUFT3uZgSkeW_48zPGqUNvxCDDIQQ,11534
|
45
47
|
keras_hub/src/models/causal_lm.py,sha256=ReaF-i3SHsCkHh4c28jM72QjMQ8x7yiCwG39FRb-7KE,16786
|
46
48
|
keras_hub/src/models/causal_lm_preprocessor.py,sha256=YY7VJZicdmnjDSWi9g4_pEpd5bdJK166GlWcapvokF0,6663
|
@@ -189,7 +191,7 @@ keras_hub/src/models/gemma/gemma_backbone.py,sha256=GzAUSArw_pN9dtWQzTVhWDbW-XyW
|
|
189
191
|
keras_hub/src/models/gemma/gemma_causal_lm.py,sha256=3OXaIXlrKqMIuUnBk-bUz-0SYFL-XkkQTWm8qRY2YII,16770
|
190
192
|
keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py,sha256=bpKkEurWIfa6Kp9s4pz84-sBDSA6ZFNHP8nXG1fFQrg,2912
|
191
193
|
keras_hub/src/models/gemma/gemma_decoder_block.py,sha256=f5UsRO-VNsKJfm_WHVJWK4UahhzYm3sKprJ8jjr-zm4,7628
|
192
|
-
keras_hub/src/models/gemma/gemma_presets.py,sha256=
|
194
|
+
keras_hub/src/models/gemma/gemma_presets.py,sha256=ZOZEZP3MaIn4-y5i0-QxNeAVtNoWvVYTAu96wvIFMpA,7178
|
193
195
|
keras_hub/src/models/gemma/gemma_tokenizer.py,sha256=FhcyNL4lo63MqOhTQPFr07-u3BddL0fVM4TmOm8ku-I,2622
|
194
196
|
keras_hub/src/models/gemma/rms_normalization.py,sha256=fku-JEo2sNy-ytX7ySD1sRzdhRAPmYex_z8oFk1NiG8,833
|
195
197
|
keras_hub/src/models/gemma3/__init__.py,sha256=oPFadkdK5DRLD6sYx83iTetY5daWuSzmJilLjokHcbU,257
|
@@ -200,7 +202,7 @@ keras_hub/src/models/gemma3/gemma3_causal_lm_preprocessor.py,sha256=vjt4N-zr0Eb5
|
|
200
202
|
keras_hub/src/models/gemma3/gemma3_decoder_block.py,sha256=6PLlpDxxF67stDv74fw9nNgUHBWmTLx6qGygJwyu5FY,10819
|
201
203
|
keras_hub/src/models/gemma3/gemma3_image_converter.py,sha256=czi5JrTyKiK0nFzvonviBIX8jjvLHqvGNA9RyheB31k,536
|
202
204
|
keras_hub/src/models/gemma3/gemma3_interleave_embeddings.py,sha256=_Q5hvhA93HAJe-A2IBRKVu0_RDVht61lFQiYse_9Rm4,4597
|
203
|
-
keras_hub/src/models/gemma3/gemma3_presets.py,sha256
|
205
|
+
keras_hub/src/models/gemma3/gemma3_presets.py,sha256=tVxug3rX3w_lqZlFfyqUlVdOrfBjN0GJY5ooBx1Fe0M,5124
|
204
206
|
keras_hub/src/models/gemma3/gemma3_tokenizer.py,sha256=ZaBclFIwzJkSXDuZMBQLHUKV8RWEdZ_dsJMvMcc3qXw,3215
|
205
207
|
keras_hub/src/models/gemma3/gemma3_vision_encoder.py,sha256=7XI0oBjIfJItV5w90t5bWb3C2KzjhvDnIC7wjIq4Cns,20850
|
206
208
|
keras_hub/src/models/gemma3/rms_normalization.py,sha256=fku-JEo2sNy-ytX7ySD1sRzdhRAPmYex_z8oFk1NiG8,833
|
@@ -225,14 +227,14 @@ keras_hub/src/models/llama/llama_causal_lm.py,sha256=9bP4-XDCMgsZuH1ILIMzmwq2Fyy
|
|
225
227
|
keras_hub/src/models/llama/llama_causal_lm_preprocessor.py,sha256=VTboOMiRBoxHrwP343upLUTsv3AG65r2H8h_PNPVphE,3047
|
226
228
|
keras_hub/src/models/llama/llama_decoder.py,sha256=CfWI8ru1-uWjDs0sL6H7g8ElYXWu6h7c5XIx-2Y8lX8,9668
|
227
229
|
keras_hub/src/models/llama/llama_layernorm.py,sha256=LfRbePHUJs00Ptf7dvNaw3Aj9n1xBMBpE_rS5zzsYMo,1050
|
228
|
-
keras_hub/src/models/llama/llama_presets.py,sha256=
|
230
|
+
keras_hub/src/models/llama/llama_presets.py,sha256=B-WwL4g0Oiml1pyVwQrfIwvjm8jyLlBvwEE-KvkXayU,1902
|
229
231
|
keras_hub/src/models/llama/llama_rotary_embedding.py,sha256=nqQGl7lFXJq7xGBfoONx2-wuuvKdoydnzUjy6FGQjwo,7300
|
230
232
|
keras_hub/src/models/llama/llama_tokenizer.py,sha256=NKWhxTutQ2jd6sd3NSTy9plQyKGCmuNG7U6kVxhZU4Y,1981
|
231
233
|
keras_hub/src/models/llama3/__init__.py,sha256=Vqvr2E10cnANkrRQGNBJtVLNAu-Bg9Lx6sqKOZWFy_8,257
|
232
234
|
keras_hub/src/models/llama3/llama3_backbone.py,sha256=TEocD8X7GihQFGJAz3jPwLCqDb86nyeZ1DqBF7RgQLE,3366
|
233
235
|
keras_hub/src/models/llama3/llama3_causal_lm.py,sha256=qk_onuf7S6d7rxAntilq2Q2orggMbPEJbNHJNVe2G0U,1541
|
234
236
|
keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py,sha256=twbXel9hsQgGxDAoQhEQuVm2udnEybI4fAQTJzXAuBs,3064
|
235
|
-
keras_hub/src/models/llama3/llama3_presets.py,sha256
|
237
|
+
keras_hub/src/models/llama3/llama3_presets.py,sha256=m5WEWOKm58wp7w_SDhYFVv3XhdY6d0GfSwxlbH07rwM,4302
|
236
238
|
keras_hub/src/models/llama3/llama3_tokenizer.py,sha256=J-KxRc08vGs4olFw_4mtJs0W_dTeUyj_XxMycazBmxI,1934
|
237
239
|
keras_hub/src/models/mistral/__init__.py,sha256=vjBlzcrIsFSwJKnfwfTNMKstIEKGFTE3kVcdAdfwlnE,263
|
238
240
|
keras_hub/src/models/mistral/mistral_attention.py,sha256=nGDlD4NcIwIGlfbt3ArxdT5QAvamY7yiNEGDlTgWirU,8609
|
@@ -240,7 +242,7 @@ keras_hub/src/models/mistral/mistral_backbone.py,sha256=oatoqSX0z-xjKfXeSveL4P0D
|
|
240
242
|
keras_hub/src/models/mistral/mistral_causal_lm.py,sha256=ujCKfsbuYzr8VusqPYcnTH6rTb0MRfzsinEraVhQksc,13234
|
241
243
|
keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py,sha256=_4qq-uKktfIg_i081ZWjZGEIYZpedBwtBGpchQQ-qEk,3079
|
242
244
|
keras_hub/src/models/mistral/mistral_layer_norm.py,sha256=nimMZ5CTPK8v9eflfrGuzqmv-2vd2rGlPvcHOMwYZyg,1063
|
243
|
-
keras_hub/src/models/mistral/mistral_presets.py,sha256=
|
245
|
+
keras_hub/src/models/mistral/mistral_presets.py,sha256=ggWQwKGDMFPzUWkQIJ6Tlk7NS-dClRO95WoSTaImL9s,939
|
244
246
|
keras_hub/src/models/mistral/mistral_tokenizer.py,sha256=wyzR_Y2XwrDiBV3jIeBChSPiaOkVVaxFuLxMH2F6EYA,2005
|
245
247
|
keras_hub/src/models/mistral/mistral_transformer_decoder.py,sha256=z5FCh9TEaznvhW3JOSKmFTotRbiuQhzJTZClW2m9sEw,9556
|
246
248
|
keras_hub/src/models/mit/__init__.py,sha256=F70_0PR_nPzPdMI8XOpXDRR_nxclGjcHv3iWSWUX3w8,316
|
@@ -256,7 +258,7 @@ keras_hub/src/models/mixtral/mixtral_causal_lm.py,sha256=JA1t6xTeaYX_fNo9ftRyvzd
|
|
256
258
|
keras_hub/src/models/mixtral/mixtral_causal_lm_preprocessor.py,sha256=q2qXa9QAUWBvOWv9DeNvwsBNXSORJAbQFoQsWQ7e8V8,3079
|
257
259
|
keras_hub/src/models/mixtral/mixtral_decoder.py,sha256=CvOjhTxPnGQ_HNknZXRI6Cx1kpuHG99_TiOh-mNcsDw,18190
|
258
260
|
keras_hub/src/models/mixtral/mixtral_layer_norm.py,sha256=zfbDKZEb45FTwP0zQd7WPPp8tuiGoSNfS-DRYWkZyWw,1031
|
259
|
-
keras_hub/src/models/mixtral/mixtral_presets.py,sha256=
|
261
|
+
keras_hub/src/models/mixtral/mixtral_presets.py,sha256=AteLrYXyVjooz_DHLnBA1OMlZS6LMu7Y7gGUWddn6go,856
|
260
262
|
keras_hub/src/models/mixtral/mixtral_tokenizer.py,sha256=Kc233k879QMyX164X_CzWbqpnqEkKWNqa648guTGkBk,661
|
261
263
|
keras_hub/src/models/mobilenet/__init__.py,sha256=hxkNGGj_iAMu62iooUDEPA818sNOIgjG7pXMLEMOsAE,275
|
262
264
|
keras_hub/src/models/mobilenet/mobilenet_backbone.py,sha256=aZBSFeLUObYYoi3od9DI1KfgPCqh5GHTcAI8Y2ZHShA,29536
|
@@ -265,16 +267,16 @@ keras_hub/src/models/mobilenet/mobilenet_image_classifier_preprocessor.py,sha256
|
|
265
267
|
keras_hub/src/models/mobilenet/mobilenet_image_converter.py,sha256=a3Ka0UYYK5wHSOjf2oMHSgofRazTAeUfttklVefq14w,360
|
266
268
|
keras_hub/src/models/mobilenet/mobilenet_presets.py,sha256=--nhaM6LmaiCtQlZPDwoQTHW7ciU0igzS4f9ssdD9Lo,1903
|
267
269
|
keras_hub/src/models/mobilenet/util.py,sha256=S7j4UacmVIJ3fU8cymyAoK49eHcpWIKTOyUQiEjcbzQ,721
|
268
|
-
keras_hub/src/models/moonshine/__init__.py,sha256=
|
270
|
+
keras_hub/src/models/moonshine/__init__.py,sha256=WK_9Cy1dp5KplNAaTsaJbd-2DGLsiHQsIL5ZnXuCbDQ,275
|
269
271
|
keras_hub/src/models/moonshine/moonshine_audio_converter.py,sha256=FnvR7SP44uVOsA3g9azUhQjsVg809eJ5nqoJZQ-DAq0,11854
|
270
|
-
keras_hub/src/models/moonshine/moonshine_audio_to_text.py,sha256=
|
271
|
-
keras_hub/src/models/moonshine/moonshine_audio_to_text_preprocessor.py,sha256=
|
272
|
+
keras_hub/src/models/moonshine/moonshine_audio_to_text.py,sha256=dXFtjaxL1jpcIAiiZY1-kcNL-S4RiRJiAC2uR_a3Fyc,15865
|
273
|
+
keras_hub/src/models/moonshine/moonshine_audio_to_text_preprocessor.py,sha256=hTw941ww8cJrP5DRrxv2DtZUNLJ9A3cayFhnsG5Ef4g,10016
|
272
274
|
keras_hub/src/models/moonshine/moonshine_backbone.py,sha256=XtRUBe_VusXsFRk7-t1JNXM0lxp2UBOJk9v7gfTNDhA,19623
|
273
275
|
keras_hub/src/models/moonshine/moonshine_decoder.py,sha256=Exf5Gg1gsCBST53wxOgBetKkhjS8E8QIUIlUwHlOkIY,11816
|
274
276
|
keras_hub/src/models/moonshine/moonshine_encoder.py,sha256=NjjMO_FEBlWFSv6Appv8a3V7XovW2afvxxjXwQRgV60,8148
|
275
277
|
keras_hub/src/models/moonshine/moonshine_layers.py,sha256=EIiIMz-UK1nikrC7iusGqjb3jcvmu6VdNcnhWAQHs_M,9538
|
276
278
|
keras_hub/src/models/moonshine/moonshine_multi_head_attention.py,sha256=YaxWxdywUyOQDW-KSX9DqXkX0ttGL-p1hRtWuAnlMaE,13598
|
277
|
-
keras_hub/src/models/moonshine/moonshine_presets.py,sha256=
|
279
|
+
keras_hub/src/models/moonshine/moonshine_presets.py,sha256=oqawiALSEwZVUhGejyprF4r1009k8930bz3EWJ6YpU8,876
|
278
280
|
keras_hub/src/models/moonshine/moonshine_tokenizer.py,sha256=grD-x4hMZDJYEyxvCyV-FYvUFInYsUI08-vnBKLAl5Y,2215
|
279
281
|
keras_hub/src/models/opt/__init__.py,sha256=6Ybj8etxNaPsVcuZvaeHnKB3As92Px--dbiFAqOCIT0,239
|
280
282
|
keras_hub/src/models/opt/opt_backbone.py,sha256=mK5z_E5mSiIX5s0w4hr4IVQpT7K46W2ajZBmuMjxwaY,5873
|
@@ -288,7 +290,7 @@ keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py,sha256=AViEs6YltUqWnIVo7
|
|
288
290
|
keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py,sha256=F57y0fZ0wYYxfGIjfrJc1W9uQpViYFx5bvFjj5CqUbI,4814
|
289
291
|
keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py,sha256=24ABQ1vGlppV-KfWh0YqJjzM_Lu2GIwvyJ4X2XXie_A,5616
|
290
292
|
keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=5yM_jUtrFsWIieiwfFBoP7mtPmQAwywkeLKbd7fhmzk,371
|
291
|
-
keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=
|
293
|
+
keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=DAaSzquR4_AnSjToDjgXj2zbrT5skUpXmzKoyATwwHk,13006
|
292
294
|
keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=ljTiADHo0Ok88q-jVzwJIle2C8xcxnudLTsBLzIySaM,2415
|
293
295
|
keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=SbWanwCoONSwgiWQsc6lFdvhqKZ-zDW42XzQt8CNMtU,18311
|
294
296
|
keras_hub/src/models/phi3/__init__.py,sha256=zIbf1MU-ks91mEkjTRJAsk51N3BBnXDF2JM1vO-13PQ,245
|
@@ -308,7 +310,7 @@ keras_hub/src/models/qwen/qwen_causal_lm.py,sha256=_f-UHaKHp0ncxknpkpEJiW3jlng3E
|
|
308
310
|
keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py,sha256=Va-4TLJD3ycEnkS41rF3dVj4_6K0j-gxLTrREFRcyr0,609
|
309
311
|
keras_hub/src/models/qwen/qwen_decoder.py,sha256=utmAvZlU7_nP-6pjGPDinK4JaMzsQSwOARG0ote-jAg,11771
|
310
312
|
keras_hub/src/models/qwen/qwen_layernorm.py,sha256=DS35r3qd6g5ocL7Nhf_vNzLLMo1aI9VCSmL64dgNOYI,924
|
311
|
-
keras_hub/src/models/qwen/qwen_presets.py,sha256=
|
313
|
+
keras_hub/src/models/qwen/qwen_presets.py,sha256=DpRplWNwktM4KDgIP495PTUBJxQE_mS6KQSK5LGWOyc,1998
|
312
314
|
keras_hub/src/models/qwen/qwen_tokenizer.py,sha256=LCv3IyiDDHqVnM9N3lf5-BE3iwicIh0nKS1hjoPw9lE,1532
|
313
315
|
keras_hub/src/models/qwen_moe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
314
316
|
keras_hub/src/models/qwen_moe/qwen_moe_attention.py,sha256=pE79_iHUm2LGkoWL6zMJw_pNfzIvmyq3yJaiq47W2TY,13242
|
@@ -317,7 +319,7 @@ keras_hub/src/models/qwen_moe/qwen_moe_causal_lm.py,sha256=MeP60v7GcN_SmH5_ULRpq
|
|
317
319
|
keras_hub/src/models/qwen_moe/qwen_moe_causal_lm_preprocessor.py,sha256=uKaXRrJs02vkVudjdehzJPp0B84tPMkxNHlp166kceE,589
|
318
320
|
keras_hub/src/models/qwen_moe/qwen_moe_decoder.py,sha256=kmUjLpYTbJQ3J_31qWhLOd0Dg2_9cl_JX_zM8ZMH1Qo,23130
|
319
321
|
keras_hub/src/models/qwen_moe/qwen_moe_layernorm.py,sha256=DbkWJo7U0-cwdZwHPeAnFznYwtao6o0fjpoDJ9UWnpc,927
|
320
|
-
keras_hub/src/models/qwen_moe/qwen_moe_presets.py,sha256=
|
322
|
+
keras_hub/src/models/qwen_moe/qwen_moe_presets.py,sha256=uKrA9xLV3P3jtYUUsqdhKq_HPkB4lXmOYseB1wXTZnI,457
|
321
323
|
keras_hub/src/models/qwen_moe/qwen_moe_tokenizer.py,sha256=2c3X8jNGO0q0UL5NtUqSgHWLqhyJGi2ohNcTeOGhd84,1407
|
322
324
|
keras_hub/src/models/resnet/__init__.py,sha256=C5UqlQ6apm8WSp1bnrxB6Bi3BGaknxRQs-r3b2wpaGA,257
|
323
325
|
keras_hub/src/models/resnet/resnet_backbone.py,sha256=Q7nlqcTXZzjqd0e-DsjHC4ok58yOX7qxseotym3uZpM,31276
|
@@ -499,7 +501,7 @@ keras_hub/src/utils/transformers/preset_loader.py,sha256=1nfS5xVsl-JROGXJXltTqV1
|
|
499
501
|
keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
|
500
502
|
keras_hub/tokenizers/__init__.py,sha256=uMjjm0mzUkRb0e4Ac_JK8aJ9cKGUi5UqmzWoWAFJprE,4164
|
501
503
|
keras_hub/utils/__init__.py,sha256=jXPqVGBpJr_PpYmqD8aDG-fRMlxH-ulqCR2SZMn288Y,646
|
502
|
-
keras_hub_nightly-0.21.0.
|
503
|
-
keras_hub_nightly-0.21.0.
|
504
|
-
keras_hub_nightly-0.21.0.
|
505
|
-
keras_hub_nightly-0.21.0.
|
504
|
+
keras_hub_nightly-0.21.0.dev202505240409.dist-info/METADATA,sha256=BJHRD68RtZc8CA6kIFWZxphjYr6g2t62j1FvwLar_LU,7393
|
505
|
+
keras_hub_nightly-0.21.0.dev202505240409.dist-info/WHEEL,sha256=zaaOINJESkSfm_4HQVc5ssNzHCPXhJm0kEUakpsEHaU,91
|
506
|
+
keras_hub_nightly-0.21.0.dev202505240409.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
507
|
+
keras_hub_nightly-0.21.0.dev202505240409.dist-info/RECORD,,
|
File without changes
|