keras-hub-nightly 0.21.0.dev202505050407__py3-none-any.whl → 0.21.0.dev202505060405__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/models/__init__.py +21 -0
- keras_hub/src/models/backbone.py +5 -2
- keras_hub/src/models/mixtral/mixtral_attention.py +263 -0
- keras_hub/src/models/mixtral/mixtral_backbone.py +207 -0
- keras_hub/src/models/mixtral/mixtral_causal_lm.py +281 -0
- keras_hub/src/models/mixtral/mixtral_causal_lm_preprocessor.py +76 -0
- keras_hub/src/models/mixtral/mixtral_decoder.py +494 -0
- keras_hub/src/models/mixtral/mixtral_layer_norm.py +34 -0
- keras_hub/src/models/mixtral/mixtral_tokenizer.py +21 -0
- keras_hub/src/models/qwen/qwen_attention.py +3 -1
- keras_hub/src/models/qwen/qwen_presets.py +61 -0
- keras_hub/src/models/qwen_moe/__init__.py +0 -0
- keras_hub/src/models/qwen_moe/qwen_moe_attention.py +377 -0
- keras_hub/src/models/qwen_moe/qwen_moe_backbone.py +373 -0
- keras_hub/src/models/qwen_moe/qwen_moe_causal_lm.py +350 -0
- keras_hub/src/models/qwen_moe/qwen_moe_causal_lm_preprocessor.py +17 -0
- keras_hub/src/models/qwen_moe/qwen_moe_decoder.py +625 -0
- keras_hub/src/models/qwen_moe/qwen_moe_layernorm.py +32 -0
- keras_hub/src/models/qwen_moe/qwen_moe_tokenizer.py +46 -0
- keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -13
- keras_hub/src/models/retinanet/retinanet_presets.py +2 -2
- keras_hub/src/models/task.py +5 -2
- keras_hub/src/utils/keras_utils.py +11 -0
- keras_hub/src/utils/preset_utils.py +69 -9
- keras_hub/src/utils/tensor_utils.py +27 -1
- keras_hub/src/utils/transformers/convert_mixtral.py +139 -0
- keras_hub/src/utils/transformers/convert_qwen_moe.py +253 -0
- keras_hub/src/utils/transformers/preset_loader.py +6 -0
- keras_hub/src/version.py +1 -1
- keras_hub/tokenizers/__init__.py +6 -0
- {keras_hub_nightly-0.21.0.dev202505050407.dist-info → keras_hub_nightly-0.21.0.dev202505060405.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.21.0.dev202505050407.dist-info → keras_hub_nightly-0.21.0.dev202505060405.dist-info}/RECORD +34 -16
- {keras_hub_nightly-0.21.0.dev202505050407.dist-info → keras_hub_nightly-0.21.0.dev202505060405.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.21.0.dev202505050407.dist-info → keras_hub_nightly-0.21.0.dev202505060405.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,281 @@
|
|
1
|
+
import keras
|
2
|
+
from keras import ops
|
3
|
+
|
4
|
+
from keras_hub.src.api_export import keras_hub_export
|
5
|
+
from keras_hub.src.models.causal_lm import CausalLM
|
6
|
+
from keras_hub.src.models.mixtral.mixtral_backbone import MixtralBackbone
|
7
|
+
from keras_hub.src.models.mixtral.mixtral_causal_lm_preprocessor import (
|
8
|
+
MixtralCausalLMPreprocessor,
|
9
|
+
)
|
10
|
+
from keras_hub.src.utils.tensor_utils import any_equal
|
11
|
+
|
12
|
+
|
13
|
+
@keras_hub_export("keras_hub.models.MixtralCausalLM")
|
14
|
+
class MixtralCausalLM(CausalLM):
|
15
|
+
"""An end-to-end Mixtral model for causal language modeling.
|
16
|
+
|
17
|
+
A causal language model (LM) predicts the next token based on previous
|
18
|
+
tokens. This task setup can be used to train the model unsupervised on
|
19
|
+
plain text input, or to autoregressively generate plain text similar to
|
20
|
+
the data used for training. This task can be used for pre-training or
|
21
|
+
fine-tuning a GPT-NeoX model, simply by calling `fit()`.
|
22
|
+
|
23
|
+
This model has a `generate()` method, which generates text based on a
|
24
|
+
prompt. The generation strategy used is controlled by an additional
|
25
|
+
`sampler` argument on `compile()`. You can recompile the model with
|
26
|
+
different `keras_hub.samplers` objects to control the generation. By
|
27
|
+
default, `"top_k"` sampling will be used.
|
28
|
+
|
29
|
+
Args:
|
30
|
+
backbone: A `keras_hub.models.MixtralBackbone` instance.
|
31
|
+
preprocessor: A `keras_hub.models.MixtralCausalLMPreprocessor` or
|
32
|
+
`None`. If `None`, this model will not apply preprocessing, and
|
33
|
+
inputs should be preprocessed before calling the model.
|
34
|
+
"""
|
35
|
+
|
36
|
+
backbone_cls = MixtralBackbone
|
37
|
+
preprocessor_cls = MixtralCausalLMPreprocessor
|
38
|
+
|
39
|
+
def __init__(self, backbone, preprocessor=None, **kwargs):
|
40
|
+
# === Layers ===
|
41
|
+
self.backbone = backbone
|
42
|
+
self.preprocessor = preprocessor
|
43
|
+
|
44
|
+
# === Functional Model ===
|
45
|
+
# This must be "backbone.input" i.e. the full input structure,
|
46
|
+
# rather than "backbone.inputs" which is the flattened list of inputs.
|
47
|
+
inputs = backbone.input
|
48
|
+
hidden_states = backbone(inputs)
|
49
|
+
outputs = backbone.token_embedding(hidden_states, reverse=True)
|
50
|
+
super().__init__(
|
51
|
+
inputs=inputs,
|
52
|
+
outputs=outputs,
|
53
|
+
**kwargs,
|
54
|
+
)
|
55
|
+
|
56
|
+
def call_with_cache(
|
57
|
+
self,
|
58
|
+
token_ids,
|
59
|
+
cache,
|
60
|
+
cache_update_index,
|
61
|
+
):
|
62
|
+
"""Forward pass of `MixtralCausalLM` with cache.
|
63
|
+
|
64
|
+
`call_with_cache` adds an additional forward pass for the model for
|
65
|
+
autoregressive inference. Unlike calling the model directly, this method
|
66
|
+
allows caching previous key/value Tensors in multi-head attention layer,
|
67
|
+
and avoids recomputing the outputs of seen tokens.
|
68
|
+
|
69
|
+
Args:
|
70
|
+
token_ids: a dense int Tensor with shape `(batch_size, max_length)`.
|
71
|
+
cache: a dense float Tensor, the cache of key and value.
|
72
|
+
cache_update_index: int, or int Tensor. The index of current inputs
|
73
|
+
in the whole sequence.
|
74
|
+
|
75
|
+
Returns:
|
76
|
+
A (logits, hidden_states, cache) tuple. Where `logits` is the
|
77
|
+
language model logits for the input token_ids, `hidden_states` is
|
78
|
+
the final hidden representation of the input tokens, and `cache` is
|
79
|
+
the decoding cache.
|
80
|
+
"""
|
81
|
+
x = self.backbone.token_embedding(token_ids)
|
82
|
+
# Each decoder layer has a cache; we update them separately.
|
83
|
+
updated_cache = []
|
84
|
+
for i in range(self.backbone.num_layers):
|
85
|
+
current_cache = cache[:, i, ...]
|
86
|
+
x, next_cache = self.backbone.transformer_layers[i](
|
87
|
+
x,
|
88
|
+
self_attention_cache=current_cache,
|
89
|
+
self_attention_cache_update_index=cache_update_index,
|
90
|
+
)
|
91
|
+
updated_cache.append(next_cache)
|
92
|
+
cache = ops.stack(updated_cache, axis=1)
|
93
|
+
hidden_states = x = self.backbone.layer_norm(x)
|
94
|
+
logits = self.backbone.token_embedding(x, reverse=True)
|
95
|
+
return logits, hidden_states, cache
|
96
|
+
|
97
|
+
def _build_cache(self, token_ids):
|
98
|
+
"""Build an empty cache for use with `call_with_cache()`."""
|
99
|
+
batch_size = ops.shape(token_ids)[0]
|
100
|
+
max_length = ops.shape(token_ids)[1]
|
101
|
+
num_layers = self.backbone.num_layers
|
102
|
+
num_key_value_heads = self.backbone.num_key_value_heads
|
103
|
+
head_dim = self.backbone.hidden_dim // self.backbone.num_query_heads
|
104
|
+
shape = [
|
105
|
+
batch_size,
|
106
|
+
num_layers,
|
107
|
+
2,
|
108
|
+
max_length,
|
109
|
+
num_key_value_heads,
|
110
|
+
head_dim,
|
111
|
+
]
|
112
|
+
cache = ops.zeros(shape, dtype=self.compute_dtype)
|
113
|
+
# Seed the cache.
|
114
|
+
_, hidden_states, cache = self.call_with_cache(token_ids, cache, 0)
|
115
|
+
return hidden_states, cache
|
116
|
+
|
117
|
+
def generate_step(
|
118
|
+
self,
|
119
|
+
inputs,
|
120
|
+
stop_token_ids=None,
|
121
|
+
):
|
122
|
+
"""A compilable generation function for a single batch of inputs.
|
123
|
+
|
124
|
+
This function represents the inner, XLA-compilable, generation function
|
125
|
+
for a single batch of inputs. Inputs should have the same structure as
|
126
|
+
model inputs, a dictionary with keys `"token_ids"` and `"padding_mask"`.
|
127
|
+
|
128
|
+
Args:
|
129
|
+
inputs: A dictionary with two keys `"token_ids"` and
|
130
|
+
`"padding_mask"` and batched tensor values.
|
131
|
+
stop_token_ids: List of id's of end token's to stop on. If all
|
132
|
+
sequences have produced a new stop token, generation
|
133
|
+
will stop.
|
134
|
+
"""
|
135
|
+
token_ids, padding_mask = inputs["token_ids"], inputs["padding_mask"]
|
136
|
+
# Create and seed cache with a single forward pass.
|
137
|
+
hidden_states, cache = self._build_cache(token_ids)
|
138
|
+
# Compute the lengths of all user inputted tokens ids.
|
139
|
+
row_lengths = ops.sum(ops.cast(padding_mask, "int32"), axis=-1)
|
140
|
+
# Start at the first index that has no user inputted id.
|
141
|
+
index = ops.min(row_lengths)
|
142
|
+
|
143
|
+
def next(prompt, cache, index):
|
144
|
+
# The cache index is the index of our previous token.
|
145
|
+
cache_update_index = index - 1
|
146
|
+
batch_size = ops.shape(prompt)[0]
|
147
|
+
prompt = ops.slice(prompt, [0, cache_update_index], [batch_size, 1])
|
148
|
+
logits, hidden_states, cache = self.call_with_cache(
|
149
|
+
prompt,
|
150
|
+
cache,
|
151
|
+
cache_update_index,
|
152
|
+
)
|
153
|
+
return (
|
154
|
+
ops.squeeze(logits, axis=1),
|
155
|
+
ops.squeeze(hidden_states, axis=1),
|
156
|
+
cache,
|
157
|
+
)
|
158
|
+
|
159
|
+
token_ids = self.sampler(
|
160
|
+
next=next,
|
161
|
+
prompt=token_ids,
|
162
|
+
cache=cache,
|
163
|
+
index=index,
|
164
|
+
mask=padding_mask,
|
165
|
+
stop_token_ids=stop_token_ids,
|
166
|
+
hidden_states=hidden_states,
|
167
|
+
model=self,
|
168
|
+
)
|
169
|
+
|
170
|
+
# Compute an output padding mask with the token ids we updated.
|
171
|
+
if stop_token_ids is not None:
|
172
|
+
# Build a mask of stop_tokens locations not in the original
|
173
|
+
# prompt (not in locations where `padding_mask` is True).
|
174
|
+
end_locations = any_equal(
|
175
|
+
token_ids, stop_token_ids, ops.logical_not(padding_mask)
|
176
|
+
)
|
177
|
+
|
178
|
+
end_locations = ops.cast(end_locations, "int32")
|
179
|
+
# Use cumsum to get ones in all locations after end_locations.
|
180
|
+
cumsum = ops.cast(ops.cumsum(end_locations, axis=-1), "int32")
|
181
|
+
overflow = cumsum - end_locations
|
182
|
+
# Our padding mask is the inverse of these overflow locations.
|
183
|
+
padding_mask = ops.logical_not(ops.cast(overflow, "bool"))
|
184
|
+
else:
|
185
|
+
# Without early stopping, all locations will have been updated.
|
186
|
+
padding_mask = ops.ones_like(token_ids, dtype="bool")
|
187
|
+
return {
|
188
|
+
"token_ids": token_ids,
|
189
|
+
"padding_mask": padding_mask,
|
190
|
+
}
|
191
|
+
|
192
|
+
def score(
|
193
|
+
self,
|
194
|
+
token_ids,
|
195
|
+
padding_mask=None,
|
196
|
+
scoring_mode="logits",
|
197
|
+
layer_intercept_fn=None,
|
198
|
+
target_ids=None,
|
199
|
+
):
|
200
|
+
"""Score a generation represented by the provided token ids.
|
201
|
+
|
202
|
+
Args:
|
203
|
+
token_ids: A <int>[batch_size, num_tokens] tensor containing tokens
|
204
|
+
to score. Typically, this tensor captures the output from a call
|
205
|
+
to `MixtralCausalLM.generate()`, i.e., tokens for both the input
|
206
|
+
text and the model-generated text.
|
207
|
+
padding_mask: A <bool>[batch_size, num_tokens] tensor indicating the
|
208
|
+
tokens that should be preserved during generation. This is an
|
209
|
+
artifact required by the MixtralBackbone and isn't influential
|
210
|
+
on the computation of this function. If omitted, this function
|
211
|
+
uses `keras.ops.ones()` to create a tensor of the appropriate
|
212
|
+
shape.
|
213
|
+
scoring_mode: The type of scores to return, either "logits" or
|
214
|
+
"loss", both will be per input token.
|
215
|
+
layer_intercept_fn: An optional function for augmenting activations
|
216
|
+
with additional computation, for example, as part of
|
217
|
+
interpretability research. This function will be passed the
|
218
|
+
activations as its first parameter and a numeric index
|
219
|
+
associated with that backbone layer. _This index _is not_ an
|
220
|
+
index into `self.backbone.layers`. The index -1 accompanies the
|
221
|
+
embeddings returned by calling `self.backbone.token_embedding()`
|
222
|
+
on `token_ids` in the forward direction. All subsequent indexes
|
223
|
+
will be 0-based indices for the activations returned by each of
|
224
|
+
the Transformers layers in the backbone. This function must
|
225
|
+
return a <float>[batch_size, num_tokens, hidden_dims] tensor
|
226
|
+
that can be passed as an input to the next layer in the model.
|
227
|
+
target_ids: An <bool>[batch_size, num_tokens] tensor containing the
|
228
|
+
predicted tokens against which the loss should be computed. If a
|
229
|
+
span of tokens is provided (sequential truthy values along
|
230
|
+
axis=1 in the tensor), the loss will be computed as the
|
231
|
+
aggregate across those tokens.
|
232
|
+
|
233
|
+
Raises:
|
234
|
+
ValueError: If an unsupported scoring_mode is provided, or if the
|
235
|
+
target_ids are not provided when using ScoringMode.LOSS.
|
236
|
+
|
237
|
+
Returns:
|
238
|
+
The per-token scores as a tensor of size
|
239
|
+
<float>[batch_size, num_tokens, vocab_size] in "logits" mode, or
|
240
|
+
<float>[batch_size, num_tokens] in "loss" mode.
|
241
|
+
```
|
242
|
+
"""
|
243
|
+
if scoring_mode not in ("logits", "loss"):
|
244
|
+
raise ValueError(
|
245
|
+
"Unsupported scoring_mode. Must be one of 'logits' or 'loss'."
|
246
|
+
)
|
247
|
+
|
248
|
+
if scoring_mode == "loss" and target_ids is None:
|
249
|
+
raise ValueError(
|
250
|
+
"Cannot compute loss without targets. Please provide target "
|
251
|
+
"token ids via the target_ids parameter."
|
252
|
+
)
|
253
|
+
|
254
|
+
batch_shape = ops.shape(token_ids)[:2]
|
255
|
+
assert len(batch_shape) == 2
|
256
|
+
|
257
|
+
if layer_intercept_fn is None:
|
258
|
+
|
259
|
+
def default_layer_intercept_fn(x, unused_i):
|
260
|
+
return x
|
261
|
+
|
262
|
+
layer_intercept_fn = default_layer_intercept_fn
|
263
|
+
|
264
|
+
token_embeddings = self.backbone.token_embedding(token_ids)
|
265
|
+
x = layer_intercept_fn(token_embeddings, -1)
|
266
|
+
|
267
|
+
for i, transformer_layer in enumerate(self.backbone.transformer_layers):
|
268
|
+
x = transformer_layer(x, decoder_padding_mask=padding_mask)
|
269
|
+
x = layer_intercept_fn(x, i)
|
270
|
+
|
271
|
+
x = self.backbone.layer_norm(x)
|
272
|
+
logits = self.backbone.token_embedding(x, reverse=True)
|
273
|
+
|
274
|
+
if scoring_mode == "logits":
|
275
|
+
return logits
|
276
|
+
|
277
|
+
per_token_loss_fn = keras.losses.SparseCategoricalCrossentropy(
|
278
|
+
from_logits=True, reduction="none"
|
279
|
+
)
|
280
|
+
per_token_loss = per_token_loss_fn(target_ids, logits)
|
281
|
+
return per_token_loss
|
@@ -0,0 +1,76 @@
|
|
1
|
+
from keras_hub.src.api_export import keras_hub_export
|
2
|
+
from keras_hub.src.models.causal_lm_preprocessor import CausalLMPreprocessor
|
3
|
+
from keras_hub.src.models.mixtral.mixtral_backbone import MixtralBackbone
|
4
|
+
from keras_hub.src.models.mixtral.mixtral_tokenizer import MixtralTokenizer
|
5
|
+
|
6
|
+
|
7
|
+
@keras_hub_export("keras_hub.models.MixtralCausalLMPreprocessor")
|
8
|
+
class MixtralCausalLMPreprocessor(CausalLMPreprocessor):
|
9
|
+
"""Mixtral Causal LM preprocessor.
|
10
|
+
|
11
|
+
This preprocessing layer is meant for use with
|
12
|
+
`keras_hub.models.MixtralCausalLM`. By default, it will take in batches of
|
13
|
+
strings, and return outputs in a `(x, y, sample_weight)` format, where the
|
14
|
+
`y` label is the next token id in the `x` sequence.
|
15
|
+
|
16
|
+
For use with generation, the layer also exposes two methods
|
17
|
+
`generate_preprocess()` and `generate_postprocess()`. When this preprocessor
|
18
|
+
is attached to a `keras_hub.models.MixtralCausalLM` instance, these methods
|
19
|
+
will be called implicitly in `generate()`. They can also be called
|
20
|
+
standalone (e.g. to precompute preprocessing inputs for generation in a
|
21
|
+
separate process).
|
22
|
+
|
23
|
+
Args:
|
24
|
+
tokenizer: A `keras_hub.models.MixtralTokenizer` instance.
|
25
|
+
sequence_length: The length of the packed inputs.
|
26
|
+
add_start_token: If `True`, the preprocessor will prepend the tokenizer
|
27
|
+
start token to each input sequence. Default is `True`.
|
28
|
+
add_end_token: If `True`, the preprocessor will append the tokenizer
|
29
|
+
end token to each input sequence. Default is `False`.
|
30
|
+
|
31
|
+
Call arguments:
|
32
|
+
x: A string, `tf.Tensor` or list of python strings.
|
33
|
+
y: Label data. Should always be `None` as the layer generates labels.
|
34
|
+
sample_weight: Label weights. Should always be `None` as the layer
|
35
|
+
generates label weights.
|
36
|
+
sequence_length: Pass to override the configured `sequence_length` of
|
37
|
+
the layer.
|
38
|
+
|
39
|
+
Examples:
|
40
|
+
```python
|
41
|
+
# Load the preprocessor from a preset.
|
42
|
+
preprocessor = keras_hub.models.MixtralCausalLMPreprocessor.from_preset(
|
43
|
+
"mixtral_base_en"
|
44
|
+
)
|
45
|
+
|
46
|
+
# Tokenize and pack a single sentence.
|
47
|
+
sentence = tf.constant("League of legends")
|
48
|
+
preprocessor(sentence)
|
49
|
+
# Same output.
|
50
|
+
preprocessor("League of legends")
|
51
|
+
|
52
|
+
# Tokenize a batch of sentences.
|
53
|
+
sentences = tf.constant(["Taco tuesday", "Fish taco please!"])
|
54
|
+
preprocessor(sentences)
|
55
|
+
# Same output.
|
56
|
+
preprocessor(["Taco tuesday", "Fish taco please!"])
|
57
|
+
|
58
|
+
# Map a dataset to preprocess a single sentence.
|
59
|
+
features = tf.constant(
|
60
|
+
[
|
61
|
+
"Avatar 2 is amazing!",
|
62
|
+
"Well, I am not sure.",
|
63
|
+
]
|
64
|
+
)
|
65
|
+
labels = tf.constant([1, 0])
|
66
|
+
ds = tf.data.Dataset.from_tensor_slices((features, labels))
|
67
|
+
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
68
|
+
|
69
|
+
# Map a dataset to preprocess unlabled sentences.
|
70
|
+
ds = tf.data.Dataset.from_tensor_slices(features)
|
71
|
+
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
72
|
+
```
|
73
|
+
"""
|
74
|
+
|
75
|
+
backbone_cls = MixtralBackbone
|
76
|
+
tokenizer_cls = MixtralTokenizer
|