keras-hub-nightly 0.21.0.dev202504220402__py3-none-any.whl → 0.21.0.dev202504250023__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,155 @@
1
+ import tensorflow as tf
2
+
3
+ from keras_hub.src.tokenizers.tokenizer import Tokenizer
4
+ from keras_hub.src.utils.tensor_utils import convert_to_ragged_batch
5
+ from keras_hub.src.utils.tensor_utils import is_int_dtype
6
+ from keras_hub.src.utils.tensor_utils import is_string_dtype
7
+ from keras_hub.src.utils.tensor_utils import preprocessing_function
8
+
9
+
10
+ class MockGemma3Tokenizer(Tokenizer):
11
+ def __init__(
12
+ self,
13
+ proto=None,
14
+ sequence_length=None,
15
+ dtype="int32",
16
+ add_bos=False,
17
+ add_eos=False,
18
+ **kwargs,
19
+ ):
20
+ if not is_int_dtype(dtype) and not is_string_dtype(dtype):
21
+ raise ValueError(
22
+ "Output dtype must be an integer type or a string. "
23
+ f"Received: dtype={dtype}"
24
+ )
25
+
26
+ super().__init__(dtype=dtype, **kwargs)
27
+
28
+ self.vocabulary = [
29
+ "<pad>",
30
+ "<bos>",
31
+ "<eos>",
32
+ "<unk>",
33
+ "<start_of_image>",
34
+ "<end_of_image>",
35
+ "<start_of_turn>",
36
+ "<end_of_turn>",
37
+ "<img>",
38
+ "the",
39
+ "brown",
40
+ "earth",
41
+ "fox",
42
+ "is",
43
+ "quick",
44
+ "round",
45
+ "\n\n",
46
+ ]
47
+ self.string_to_id = tf.lookup.StaticHashTable(
48
+ tf.lookup.KeyValueTensorInitializer(
49
+ self.vocabulary, list(range(len(self.vocabulary)))
50
+ ),
51
+ default_value=3,
52
+ )
53
+ self.id_to_string = tf.lookup.StaticHashTable(
54
+ tf.lookup.KeyValueTensorInitializer(
55
+ list(range(len(self.vocabulary))), self.vocabulary
56
+ ),
57
+ default_value="<unk>",
58
+ )
59
+
60
+ # The usual tokens.
61
+ self._add_special_token("<bos>", "start_token")
62
+ self._add_special_token("<eos>", "end_token")
63
+ self._add_special_token("<pad>", "pad_token")
64
+
65
+ # Image placeholder token.
66
+ self._add_special_token("<img>", "image_placeholder")
67
+
68
+ # Some tokens which are used in the preprocessor. We need to keep them
69
+ # here so that the preprocessor works with `tf.data`.
70
+ self._add_special_token("<start_of_image>", "start_of_image_token")
71
+ self._add_special_token("<end_of_image>", "end_of_image_token")
72
+
73
+ # self.special_token_ids = [
74
+ # 0, 1, 2, 4, 5, 8
75
+ # ]
76
+
77
+ self.sequence_length = sequence_length
78
+ self.add_bos = add_bos
79
+ self.add_eos = add_eos
80
+
81
+ def vocabulary_size(self):
82
+ return len(self.vocabulary)
83
+
84
+ def get_vocabulary(self):
85
+ return self.vocabulary
86
+
87
+ def id_to_token(self, id):
88
+ return self.vocabulary[id]
89
+
90
+ def token_to_id(self, token):
91
+ return self.vocabulary.index(token)
92
+
93
+ @preprocessing_function
94
+ def tokenize(self, inputs):
95
+ inputs = tf.convert_to_tensor(inputs)
96
+ unbatched = inputs.shape.rank == 0
97
+ if unbatched:
98
+ inputs = tf.expand_dims(inputs, 0)
99
+
100
+ inputs = tf.strings.regex_replace(
101
+ inputs, self.start_of_image_token, f" {self.start_of_image_token} "
102
+ )
103
+ inputs = tf.strings.regex_replace(
104
+ inputs, self.end_of_image_token, f" {self.end_of_image_token} "
105
+ )
106
+ inputs = tf.strings.regex_replace(
107
+ inputs, self.image_placeholder, f" {self.image_placeholder} "
108
+ )
109
+ inputs = tf.strings.regex_replace(inputs, " ", " ")
110
+
111
+ sep_inputs = tf.strings.split(inputs, sep=" ")
112
+ tokens = self.string_to_id.lookup(sep_inputs)
113
+
114
+ if self.add_bos:
115
+ bos_tensor = tf.fill(
116
+ value=self.start_token_id,
117
+ dims=tokens.shape.as_list()[0:1] + [1],
118
+ )
119
+ tokens = tf.concat((bos_tensor, tokens), axis=-1)
120
+ if self.add_eos:
121
+ eos_tensor = tf.fill(
122
+ value=self.end_token_id, dims=tokens.shape.as_list()[0:1] + [1]
123
+ )
124
+ tokens = tf.concat((tokens, eos_tensor), axis=-1)
125
+
126
+ # Convert to a dense output if input was a scalar.
127
+ if unbatched:
128
+ tokens = tf.squeeze(tokens, 0)
129
+
130
+ return tokens
131
+
132
+ @preprocessing_function
133
+ def detokenize(self, inputs):
134
+ inputs, unbatched, rectangular = convert_to_ragged_batch(inputs)
135
+ # tf-text sentencepiece does not handle int64.
136
+ inputs = tf.cast(inputs, "int32")
137
+
138
+ outputs = self.id_to_string.lookup(inputs)
139
+ outputs = tf.strings.reduce_join(outputs, axis=-1, separator=" ")
140
+
141
+ for token in [
142
+ self.start_token,
143
+ self.end_token,
144
+ self.pad_token,
145
+ ]:
146
+ outputs = tf.strings.regex_replace(outputs, token, "")
147
+
148
+ outputs = tf.strings.strip(outputs)
149
+
150
+ if unbatched:
151
+ outputs = tf.squeeze(outputs, 0)
152
+ return outputs
153
+
154
+ def __call__(self, inputs):
155
+ return self.tokenize(inputs)
File without changes
@@ -0,0 +1,133 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+
3
+
4
+ @keras_hub_export("keras_hub.utils.coco_id_to_name")
5
+ def coco_id_to_name(id):
6
+ """Convert a single COCO class name to a class ID.
7
+
8
+ Args:
9
+ id: An integer class id from 0 to 91.
10
+
11
+ Returns:
12
+ The human readable image class name, e.g. "bicycle".
13
+
14
+ Example:
15
+ >>> keras_hub.utils.coco_id_to_name(2)
16
+ 'bicycle'
17
+ """
18
+ return COCO_NAMES[id]
19
+
20
+
21
+ @keras_hub_export("keras_hub.utils.coco_name_to_id")
22
+ def coco_name_to_id(name):
23
+ """Convert a single COCO class name to a class ID.
24
+
25
+ Args:
26
+ name: A human readable image class name, e.g. "bicycle".
27
+
28
+ Returns:
29
+ The integer class id from 0 to 999.
30
+
31
+ Example:
32
+ >>> keras_hub.utils.coco_name_to_id("bicycle")
33
+ 2
34
+ """
35
+ return COCO_IDS[name]
36
+
37
+
38
+ COCO_NAMES = {
39
+ 0: "unlabeled",
40
+ 1: "person",
41
+ 2: "bicycle",
42
+ 3: "car",
43
+ 4: "motorcycle",
44
+ 5: "airplane",
45
+ 6: "bus",
46
+ 7: "train",
47
+ 8: "truck",
48
+ 9: "boat",
49
+ 10: "traffic_light",
50
+ 11: "fire_hydrant",
51
+ 12: "street_sign",
52
+ 13: "stop_sign",
53
+ 14: "parking_meter",
54
+ 15: "bench",
55
+ 16: "bird",
56
+ 17: "cat",
57
+ 18: "dog",
58
+ 19: "horse",
59
+ 20: "sheep",
60
+ 21: "cow",
61
+ 22: "elephant",
62
+ 23: "bear",
63
+ 24: "zebra",
64
+ 25: "giraffe",
65
+ 26: "hat",
66
+ 27: "backpack",
67
+ 28: "umbrella",
68
+ 29: "shoe",
69
+ 30: "eye_glasses",
70
+ 31: "handbag",
71
+ 32: "tie",
72
+ 33: "suitcase",
73
+ 34: "frisbee",
74
+ 35: "skis",
75
+ 36: "snowboard",
76
+ 37: "sports_ball",
77
+ 38: "kite",
78
+ 39: "baseball_bat",
79
+ 40: "baseball_glove",
80
+ 41: "skateboard",
81
+ 42: "surfboard",
82
+ 43: "tennis_racket",
83
+ 44: "bottle",
84
+ 45: "plate",
85
+ 46: "wine_glass",
86
+ 47: "cup",
87
+ 48: "fork",
88
+ 49: "knife",
89
+ 50: "spoon",
90
+ 51: "bowl",
91
+ 52: "banana",
92
+ 53: "apple",
93
+ 54: "sandwich",
94
+ 55: "orange",
95
+ 56: "broccoli",
96
+ 57: "carrot",
97
+ 58: "hot_dog",
98
+ 59: "pizza",
99
+ 60: "donut",
100
+ 61: "cake",
101
+ 62: "chair",
102
+ 63: "couch",
103
+ 64: "potted_plant",
104
+ 65: "bed",
105
+ 66: "mirror",
106
+ 67: "dining_table",
107
+ 68: "window",
108
+ 69: "desk",
109
+ 70: "toilet",
110
+ 71: "door",
111
+ 72: "tv",
112
+ 73: "laptop",
113
+ 74: "mouse",
114
+ 75: "remote",
115
+ 76: "keyboard",
116
+ 77: "cell_phone",
117
+ 78: "microwave",
118
+ 79: "oven",
119
+ 80: "toaster",
120
+ 81: "sink",
121
+ 82: "refrigerator",
122
+ 83: "blender",
123
+ 84: "book",
124
+ 85: "clock",
125
+ 86: "vase",
126
+ 87: "scissors",
127
+ 88: "teddy_bear",
128
+ 89: "hair_drier",
129
+ 90: "toothbrush",
130
+ 91: "hair_brush",
131
+ }
132
+
133
+ COCO_IDS = {v: k for k, v in COCO_NAMES.items()}
@@ -3,6 +3,40 @@ from keras import ops
3
3
  from keras_hub.src.api_export import keras_hub_export
4
4
 
5
5
 
6
+ @keras_hub_export("keras_hub.utils.imagenet_id_to_name")
7
+ def imagenet_id_to_name(id):
8
+ """Convert a single ImageNet class ID to a class name.
9
+
10
+ Args:
11
+ id: An integer class id from 0 to 999.
12
+
13
+ Returns:
14
+ The human readable image class name, e.g. "goldfish".
15
+
16
+ Example:
17
+ >>> keras_hub.utils.imagenet_id_to_name(1)
18
+ 'goldfish'
19
+ """
20
+ return IMAGENET_NAMES[id][1]
21
+
22
+
23
+ @keras_hub_export("keras_hub.utils.imagenet_name_to_id")
24
+ def imagenet_name_to_id(name):
25
+ """Convert a single ImageNet class name to a class ID.
26
+
27
+ Args:
28
+ name: A human readable image class name, e.g. "goldfish".
29
+
30
+ Returns:
31
+ The integer class id from 0 to 999.
32
+
33
+ Example:
34
+ >>> keras_hub.utils.imagenet_name_to_id("goldfish")
35
+ 1
36
+ """
37
+ return IMAGENET_IDS[name]
38
+
39
+
6
40
  @keras_hub_export("keras_hub.utils.decode_imagenet_predictions")
7
41
  def decode_imagenet_predictions(preds, top=5, include_synset_ids=False):
8
42
  """Decodes the predictions for an ImageNet-1k prediction.
@@ -1052,3 +1086,5 @@ IMAGENET_NAMES = {
1052
1086
  998: ("n13133613", "ear"),
1053
1087
  999: ("n15075141", "toilet_tissue"),
1054
1088
  }
1089
+
1090
+ IMAGENET_IDS = {v[1]: k for k, v in IMAGENET_NAMES.items()}
@@ -801,7 +801,7 @@ class KerasPresetSaver:
801
801
 
802
802
  def _save_metadata(self, layer):
803
803
  from keras_hub.src.models.task import Task
804
- from keras_hub.src.version_utils import __version__ as keras_hub_version
804
+ from keras_hub.src.version import __version__ as keras_hub_version
805
805
 
806
806
  # Find all tasks that are compatible with the backbone.
807
807
  # E.g. for `BertBackbone` we would have `TextClassifier` and `MaskedLM`.
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.21.0.dev202504220402"
4
+ __version__ = "0.21.0.dev202504250023"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -0,0 +1,108 @@
1
+ """DO NOT EDIT.
2
+
3
+ This file was autogenerated. Do not edit it by hand,
4
+ since your modifications would be overwritten.
5
+ """
6
+
7
+ from keras_hub.src.models.albert.albert_tokenizer import (
8
+ AlbertTokenizer as AlbertTokenizer,
9
+ )
10
+ from keras_hub.src.models.bart.bart_tokenizer import (
11
+ BartTokenizer as BartTokenizer,
12
+ )
13
+ from keras_hub.src.models.bert.bert_tokenizer import (
14
+ BertTokenizer as BertTokenizer,
15
+ )
16
+ from keras_hub.src.models.bloom.bloom_tokenizer import (
17
+ BloomTokenizer as BloomTokenizer,
18
+ )
19
+ from keras_hub.src.models.clip.clip_tokenizer import (
20
+ CLIPTokenizer as CLIPTokenizer,
21
+ )
22
+ from keras_hub.src.models.deberta_v3.deberta_v3_tokenizer import (
23
+ DebertaV3Tokenizer as DebertaV3Tokenizer,
24
+ )
25
+ from keras_hub.src.models.distil_bert.distil_bert_tokenizer import (
26
+ DistilBertTokenizer as DistilBertTokenizer,
27
+ )
28
+ from keras_hub.src.models.electra.electra_tokenizer import (
29
+ ElectraTokenizer as ElectraTokenizer,
30
+ )
31
+ from keras_hub.src.models.f_net.f_net_tokenizer import (
32
+ FNetTokenizer as FNetTokenizer,
33
+ )
34
+ from keras_hub.src.models.falcon.falcon_tokenizer import (
35
+ FalconTokenizer as FalconTokenizer,
36
+ )
37
+ from keras_hub.src.models.gemma.gemma_tokenizer import (
38
+ GemmaTokenizer as GemmaTokenizer,
39
+ )
40
+ from keras_hub.src.models.gemma3.gemma3_tokenizer import (
41
+ Gemma3Tokenizer as Gemma3Tokenizer,
42
+ )
43
+ from keras_hub.src.models.gpt2.gpt2_tokenizer import (
44
+ GPT2Tokenizer as GPT2Tokenizer,
45
+ )
46
+ from keras_hub.src.models.gpt_neo_x.gpt_neo_x_tokenizer import (
47
+ GPTNeoXTokenizer as GPTNeoXTokenizer,
48
+ )
49
+ from keras_hub.src.models.llama.llama_tokenizer import (
50
+ LlamaTokenizer as LlamaTokenizer,
51
+ )
52
+ from keras_hub.src.models.llama3.llama3_tokenizer import (
53
+ Llama3Tokenizer as Llama3Tokenizer,
54
+ )
55
+ from keras_hub.src.models.mistral.mistral_tokenizer import (
56
+ MistralTokenizer as MistralTokenizer,
57
+ )
58
+ from keras_hub.src.models.opt.opt_tokenizer import OPTTokenizer as OPTTokenizer
59
+ from keras_hub.src.models.pali_gemma.pali_gemma_tokenizer import (
60
+ PaliGemmaTokenizer as PaliGemmaTokenizer,
61
+ )
62
+ from keras_hub.src.models.phi3.phi3_tokenizer import (
63
+ Phi3Tokenizer as Phi3Tokenizer,
64
+ )
65
+ from keras_hub.src.models.qwen.qwen_tokenizer import (
66
+ QwenTokenizer as Qwen2Tokenizer,
67
+ )
68
+ from keras_hub.src.models.qwen.qwen_tokenizer import (
69
+ QwenTokenizer as QwenTokenizer,
70
+ )
71
+ from keras_hub.src.models.roberta.roberta_tokenizer import (
72
+ RobertaTokenizer as RobertaTokenizer,
73
+ )
74
+ from keras_hub.src.models.roformer_v2.roformer_v2_tokenizer import (
75
+ RoformerV2Tokenizer as RoformerV2Tokenizer,
76
+ )
77
+ from keras_hub.src.models.siglip.siglip_tokenizer import (
78
+ SigLIPTokenizer as SigLIPTokenizer,
79
+ )
80
+ from keras_hub.src.models.t5.t5_tokenizer import T5Tokenizer as T5Tokenizer
81
+ from keras_hub.src.models.whisper.whisper_tokenizer import (
82
+ WhisperTokenizer as WhisperTokenizer,
83
+ )
84
+ from keras_hub.src.models.xlm_roberta.xlm_roberta_tokenizer import (
85
+ XLMRobertaTokenizer as XLMRobertaTokenizer,
86
+ )
87
+ from keras_hub.src.tokenizers.byte_pair_tokenizer import (
88
+ BytePairTokenizer as BytePairTokenizer,
89
+ )
90
+ from keras_hub.src.tokenizers.byte_tokenizer import (
91
+ ByteTokenizer as ByteTokenizer,
92
+ )
93
+ from keras_hub.src.tokenizers.sentence_piece_tokenizer import (
94
+ SentencePieceTokenizer as SentencePieceTokenizer,
95
+ )
96
+ from keras_hub.src.tokenizers.sentence_piece_tokenizer_trainer import (
97
+ compute_sentence_piece_proto as compute_sentence_piece_proto,
98
+ )
99
+ from keras_hub.src.tokenizers.tokenizer import Tokenizer as Tokenizer
100
+ from keras_hub.src.tokenizers.unicode_codepoint_tokenizer import (
101
+ UnicodeCodepointTokenizer as UnicodeCodepointTokenizer,
102
+ )
103
+ from keras_hub.src.tokenizers.word_piece_tokenizer import (
104
+ WordPieceTokenizer as WordPieceTokenizer,
105
+ )
106
+ from keras_hub.src.tokenizers.word_piece_tokenizer_trainer import (
107
+ compute_word_piece_vocabulary as compute_word_piece_vocabulary,
108
+ )
@@ -0,0 +1,21 @@
1
+ """DO NOT EDIT.
2
+
3
+ This file was autogenerated. Do not edit it by hand,
4
+ since your modifications would be overwritten.
5
+ """
6
+
7
+ from keras_hub.src.utils.coco.coco_utils import (
8
+ coco_id_to_name as coco_id_to_name,
9
+ )
10
+ from keras_hub.src.utils.coco.coco_utils import (
11
+ coco_name_to_id as coco_name_to_id,
12
+ )
13
+ from keras_hub.src.utils.imagenet.imagenet_utils import (
14
+ decode_imagenet_predictions as decode_imagenet_predictions,
15
+ )
16
+ from keras_hub.src.utils.imagenet.imagenet_utils import (
17
+ imagenet_id_to_name as imagenet_id_to_name,
18
+ )
19
+ from keras_hub.src.utils.imagenet.imagenet_utils import (
20
+ imagenet_name_to_id as imagenet_name_to_id,
21
+ )
@@ -1,11 +1,11 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.21.0.dev202504220402
4
- Summary: Industry-strength Natural Language Processing extensions for Keras.
5
- Home-page: https://github.com/keras-team/keras-hub
6
- Author: Keras team
7
- Author-email: keras-hub@google.com
8
- License: Apache License 2.0
3
+ Version: 0.21.0.dev202504250023
4
+ Summary: Pretrained models for Keras.
5
+ Author-email: Keras team <keras-users@googlegroups.com>
6
+ License-Expression: Apache-2.0
7
+ Project-URL: Home, https://keras.io/keras_hub/
8
+ Project-URL: Repository, https://github.com/keras-team/keras/keras_hub
9
9
  Classifier: Development Status :: 3 - Alpha
10
10
  Classifier: Programming Language :: Python :: 3
11
11
  Classifier: Programming Language :: Python :: 3.9
@@ -28,20 +28,6 @@ Requires-Dist: regex
28
28
  Requires-Dist: rich
29
29
  Requires-Dist: kagglehub
30
30
  Requires-Dist: tensorflow-text; platform_system != "Windows"
31
- Provides-Extra: extras
32
- Requires-Dist: rouge-score; extra == "extras"
33
- Requires-Dist: sentencepiece; extra == "extras"
34
- Dynamic: author
35
- Dynamic: author-email
36
- Dynamic: classifier
37
- Dynamic: description
38
- Dynamic: description-content-type
39
- Dynamic: home-page
40
- Dynamic: license
41
- Dynamic: provides-extra
42
- Dynamic: requires-dist
43
- Dynamic: requires-python
44
- Dynamic: summary
45
31
 
46
32
  # KerasHub: Multi-framework Pretrained Models
47
33
  [![](https://github.com/keras-team/keras-hub/workflows/Tests/badge.svg?branch=master)](https://github.com/keras-team/keras-hub/actions?query=workflow%3ATests+branch%3Amaster)
@@ -1,14 +1,11 @@
1
- keras_hub/__init__.py,sha256=QGdXyHgYt6cMUAP1ebxwc6oR86dE0dkMxNy2eOCQtFo,855
2
- keras_hub/api/__init__.py,sha256=EzR6D-XWsm_gDrX5LDwKEmrah_gu3ffpj8GKBudE0yI,485
3
- keras_hub/api/layers/__init__.py,sha256=MXQbQ0PpkDDRmP7A38aHjF6V2WilFlOxqUx4psoyvFo,3818
4
- keras_hub/api/metrics/__init__.py,sha256=So8Ec-lOcTzn_UUMmAdzDm8RKkPu2dbRUm2px8gpUEI,381
5
- keras_hub/api/models/__init__.py,sha256=G0p58akoeEjmmkRdGpO_LSJ3DRTurLFmClRyZ4qzdgM,19764
6
- keras_hub/api/samplers/__init__.py,sha256=n-_SEXxr2LNUzK2FqVFN7alsrkx1P_HOVTeLZKeGCdE,730
7
- keras_hub/api/tokenizers/__init__.py,sha256=NCQSOg3vf3KlM2YBsxApcJUVu9MH2jV0NQrM3f4EhJ4,2927
8
- keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
1
+ keras_hub/__init__.py,sha256=bJbUZkqwhZvTb1Tqx1fbkq6mzBYiEyq-Hin3oQIkhdE,558
2
+ keras_hub/layers/__init__.py,sha256=LhMUEcl3xJwqr0XphTgRZ5Ayz5SsBAKV19c0XwSzj1I,4952
3
+ keras_hub/metrics/__init__.py,sha256=KYalsMPBnfwim9BdGHFfJ5WxUKFXOQ1QoKIMT_0lwlM,439
4
+ keras_hub/models/__init__.py,sha256=Np-V3YdZcIa0xwqhjmgm5NWnsCj647aClYW0Uhi3eSI,25108
5
+ keras_hub/samplers/__init__.py,sha256=aFQIkiqbZpi8vjrPp2MVII4QUfE-eQjra5fMeHsoy7k,886
9
6
  keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
7
  keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
11
- keras_hub/src/version_utils.py,sha256=qEYvTsEdaWDa-2SBF5PlzhdNTAggsbbADkED6_Bt7xk,222
8
+ keras_hub/src/version.py,sha256=dRsXOj26LXBv341d8FhxFfwIn0o0wJ6K2qWxXazTlck,222
12
9
  keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
10
  keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
14
11
  keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
@@ -427,6 +424,7 @@ keras_hub/src/samplers/top_k_sampler.py,sha256=WSyrhmOCan55X2JYAnNWE88rkx66sXqdo
427
424
  keras_hub/src/samplers/top_p_sampler.py,sha256=9r29WdqBlrW_2TBma6QqkRps2Uit4a6iZPmq1Gsiuko,3400
428
425
  keras_hub/src/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
429
426
  keras_hub/src/tests/test_case.py,sha256=lBIH6rNJU7wasOV-Iq4mymPg28kznqMi81LOEWWvUYY,27476
427
+ keras_hub/src/tests/mocks/mock_gemma3_tokenizer.py,sha256=a4mSer84-xh9dVJUVpFUPzglCh-7NcFqHRKPDR35c8c,4888
430
428
  keras_hub/src/tokenizers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
431
429
  keras_hub/src/tokenizers/byte_pair_tokenizer.py,sha256=WeUlHMAf5y_MUjFIfVhEcFoOZu-z4kkSj-Dq-pegM9w,24052
432
430
  keras_hub/src/tokenizers/byte_tokenizer.py,sha256=GPIKaddXugbfckfhodADsBpaYb72DgFMs_xfXHnK4qU,10418
@@ -439,11 +437,13 @@ keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=cylrs02ZrYQ1TuZr
439
437
  keras_hub/src/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
440
438
  keras_hub/src/utils/keras_utils.py,sha256=mtj5Kr9EROso10SafmQ-C9uCLbIId4cXAuJSNDRqHb8,4290
441
439
  keras_hub/src/utils/pipeline_model.py,sha256=jgzB6NQPSl0KOu08N-TazfOnXnUJbZjH2EXXhx25Ftg,9084
442
- keras_hub/src/utils/preset_utils.py,sha256=BqTqtLouPQrTKelup2og_yziRBcu9dXFbbAST0I-XlE,32012
440
+ keras_hub/src/utils/preset_utils.py,sha256=Zhc2xIHUagBajmdvuz-91gRnKqJA0CGPr_yIHI_UXEY,32006
443
441
  keras_hub/src/utils/python_utils.py,sha256=N8nWeO3san4YnGkffRXG3Ix7VEIMTKSN21FX5TuL7G8,202
444
442
  keras_hub/src/utils/tensor_utils.py,sha256=1Y9E2psWzN5hJqWz_r2kOoFU7kIp7mPBTX5xZbTsE_A,15144
443
+ keras_hub/src/utils/coco/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
444
+ keras_hub/src/utils/coco/coco_utils.py,sha256=x_QnUUvZ92zoFzMJugiInHORc4NrMdWVBkpp8BAYF6s,2586
445
445
  keras_hub/src/utils/imagenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
446
- keras_hub/src/utils/imagenet/imagenet_utils.py,sha256=MvIvv1WJo51ZXBxy4S7t_DsN3ZMtJWlC4cmRvKM2kIA,39304
446
+ keras_hub/src/utils/imagenet/imagenet_utils.py,sha256=07ilM5feeD7Ut6YSbVj99RXAZOQONSC1IeKa3I9U6UQ,40161
447
447
  keras_hub/src/utils/timm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
448
448
  keras_hub/src/utils/timm/convert_cspnet.py,sha256=O5HCdeKcSFWOoFr8_wIUQb4Noc0tBEo5Aogk2d6SEes,5676
449
449
  keras_hub/src/utils/timm/convert_densenet.py,sha256=fu8HBIQis5o3ib2tyI2qnmYScVrVIQySok8vTfa1qJ8,3393
@@ -466,7 +466,9 @@ keras_hub/src/utils/transformers/convert_qwen.py,sha256=WUxMAEFVqRs7TRw7QU5TH3_e
466
466
  keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
467
467
  keras_hub/src/utils/transformers/preset_loader.py,sha256=0Hi7R8HnATcwFVLsJwMMIMWTCXHNfep4IPiRpQXqM-w,3933
468
468
  keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
469
- keras_hub_nightly-0.21.0.dev202504220402.dist-info/METADATA,sha256=n1tiYmfgPAaKZm8Jqi1gtDV1H4t2BqNr1l2ZQ8WxtwE,7715
470
- keras_hub_nightly-0.21.0.dev202504220402.dist-info/WHEEL,sha256=pxyMxgL8-pra_rKaQ4drOZAegBVuX-G_4nRHjjgWbmo,91
471
- keras_hub_nightly-0.21.0.dev202504220402.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
472
- keras_hub_nightly-0.21.0.dev202504220402.dist-info/RECORD,,
469
+ keras_hub/tokenizers/__init__.py,sha256=1X8s88lzi6zM9XaMHbpACa4kpwjDILgmUV0tl1jXeeo,3839
470
+ keras_hub/utils/__init__.py,sha256=jXPqVGBpJr_PpYmqD8aDG-fRMlxH-ulqCR2SZMn288Y,646
471
+ keras_hub_nightly-0.21.0.dev202504250023.dist-info/METADATA,sha256=fnygXbMKQYMF4db1PFypMcXgTA5s26eY38i7E6CL6tI,7393
472
+ keras_hub_nightly-0.21.0.dev202504250023.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
473
+ keras_hub_nightly-0.21.0.dev202504250023.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
474
+ keras_hub_nightly-0.21.0.dev202504250023.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (79.0.0)
2
+ Generator: setuptools (79.0.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
keras_hub/api/__init__.py DELETED
@@ -1,15 +0,0 @@
1
- """DO NOT EDIT.
2
-
3
- This file was autogenerated. Do not edit it by hand,
4
- since your modifications would be overwritten.
5
- """
6
-
7
- from keras_hub.api import layers
8
- from keras_hub.api import metrics
9
- from keras_hub.api import models
10
- from keras_hub.api import samplers
11
- from keras_hub.api import tokenizers
12
- from keras_hub.api import utils
13
- from keras_hub.src.utils.preset_utils import upload_preset
14
- from keras_hub.src.version_utils import __version__
15
- from keras_hub.src.version_utils import version