keras-hub-nightly 0.20.0.dev202504020401__py3-none-any.whl → 0.20.0.dev202504030357__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/src/models/gemma/gemma_attention.py +17 -10
- keras_hub/src/models/gemma3/gemma3_attention.py +2 -2
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +2 -2
- keras_hub/src/models/llama/llama_attention.py +2 -2
- keras_hub/src/models/mistral/mistral_attention.py +2 -2
- keras_hub/src/models/phi3/phi3_attention.py +2 -2
- keras_hub/src/models/qwen/qwen_attention.py +2 -2
- keras_hub/src/models/stable_diffusion_3/mmdit.py +2 -2
- keras_hub/src/utils/keras_utils.py +44 -1
- keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.20.0.dev202504020401.dist-info → keras_hub_nightly-0.20.0.dev202504030357.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.20.0.dev202504020401.dist-info → keras_hub_nightly-0.20.0.dev202504030357.dist-info}/RECORD +14 -14
- {keras_hub_nightly-0.20.0.dev202504020401.dist-info → keras_hub_nightly-0.20.0.dev202504030357.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.20.0.dev202504020401.dist-info → keras_hub_nightly-0.20.0.dev202504030357.dist-info}/top_level.txt +0 -0
@@ -6,7 +6,9 @@ from keras import ops
|
|
6
6
|
|
7
7
|
from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
|
8
8
|
from keras_hub.src.utils.keras_utils import clone_initializer
|
9
|
-
from keras_hub.src.utils.keras_utils import
|
9
|
+
from keras_hub.src.utils.keras_utils import fused_attention_op_available
|
10
|
+
from keras_hub.src.utils.keras_utils import gpu_supports_fused_attention_op
|
11
|
+
from keras_hub.src.utils.keras_utils import running_on_gpu
|
10
12
|
from keras_hub.src.utils.keras_utils import running_on_tpu
|
11
13
|
|
12
14
|
|
@@ -106,17 +108,22 @@ class CachedGemmaAttention(keras.layers.Layer):
|
|
106
108
|
)
|
107
109
|
return x
|
108
110
|
|
109
|
-
def
|
110
|
-
if not
|
111
|
+
def _use_fused_attention_op(self):
|
112
|
+
if not fused_attention_op_available():
|
111
113
|
return False
|
112
114
|
if self.dropout > 0.0:
|
113
115
|
return False
|
114
|
-
if
|
115
|
-
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
116
|
+
if running_on_gpu():
|
117
|
+
# GPU never supports softcap in the fused op.
|
118
|
+
if self.logit_soft_cap is not None:
|
119
|
+
return False
|
120
|
+
return gpu_supports_fused_attention_op()
|
121
|
+
elif running_on_tpu():
|
122
|
+
# TPU supports softcap with on keras >= 3.10.
|
123
|
+
sig = inspect.signature(ops.dot_product_attention)
|
124
|
+
return "attn_logits_soft_cap" in sig.parameters
|
125
|
+
else:
|
126
|
+
return False
|
120
127
|
|
121
128
|
def _compute_attention(
|
122
129
|
self,
|
@@ -140,7 +147,7 @@ class CachedGemmaAttention(keras.layers.Layer):
|
|
140
147
|
cache_update_index=cache_update_index,
|
141
148
|
)
|
142
149
|
|
143
|
-
if self.
|
150
|
+
if self._use_fused_attention_op():
|
144
151
|
if attention_mask is not None:
|
145
152
|
attention_mask = ops.expand_dims(attention_mask, axis=1)
|
146
153
|
attention_mask = ops.cast(attention_mask, dtype="bool")
|
@@ -7,7 +7,7 @@ from keras import ops
|
|
7
7
|
from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
|
8
8
|
from keras_hub.src.models.gemma.rms_normalization import RMSNormalization
|
9
9
|
from keras_hub.src.utils.keras_utils import clone_initializer
|
10
|
-
from keras_hub.src.utils.keras_utils import
|
10
|
+
from keras_hub.src.utils.keras_utils import fused_attention_op_available
|
11
11
|
from keras_hub.src.utils.keras_utils import running_on_tpu
|
12
12
|
|
13
13
|
|
@@ -140,7 +140,7 @@ class CachedGemma3Attention(keras.layers.Layer):
|
|
140
140
|
return x
|
141
141
|
|
142
142
|
def _can_use_flash_attention(self):
|
143
|
-
if not
|
143
|
+
if not fused_attention_op_available():
|
144
144
|
return False
|
145
145
|
if self.dropout > 0.0:
|
146
146
|
return False
|
@@ -5,7 +5,7 @@ from keras import ops
|
|
5
5
|
|
6
6
|
from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
|
7
7
|
from keras_hub.src.utils.keras_utils import clone_initializer
|
8
|
-
from keras_hub.src.utils.keras_utils import
|
8
|
+
from keras_hub.src.utils.keras_utils import fused_attention_op_available
|
9
9
|
|
10
10
|
|
11
11
|
class GPTNeoXAttention(keras.layers.Layer):
|
@@ -125,7 +125,7 @@ class GPTNeoXAttention(keras.layers.Layer):
|
|
125
125
|
def _compute_attention(
|
126
126
|
self, query, key, value, attention_mask=None, training=None
|
127
127
|
):
|
128
|
-
if
|
128
|
+
if fused_attention_op_available() and self.dropout == 0:
|
129
129
|
# Use `dot_product_attention` with Flash Attention support if
|
130
130
|
# available.
|
131
131
|
if attention_mask is not None:
|
@@ -5,7 +5,7 @@ from keras import ops
|
|
5
5
|
|
6
6
|
from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
|
7
7
|
from keras_hub.src.utils.keras_utils import clone_initializer
|
8
|
-
from keras_hub.src.utils.keras_utils import
|
8
|
+
from keras_hub.src.utils.keras_utils import fused_attention_op_available
|
9
9
|
|
10
10
|
|
11
11
|
class LlamaAttention(keras.layers.Layer):
|
@@ -185,7 +185,7 @@ class LlamaAttention(keras.layers.Layer):
|
|
185
185
|
return self._softmax(attention_scores)
|
186
186
|
|
187
187
|
def _compute_attention(self, query, key, value, attention_mask=None):
|
188
|
-
if
|
188
|
+
if fused_attention_op_available():
|
189
189
|
# Use `dot_product_attention` with Flash Attention support if
|
190
190
|
# available.
|
191
191
|
if attention_mask is not None:
|
@@ -5,7 +5,7 @@ from keras import ops
|
|
5
5
|
|
6
6
|
from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
|
7
7
|
from keras_hub.src.utils.keras_utils import clone_initializer
|
8
|
-
from keras_hub.src.utils.keras_utils import
|
8
|
+
from keras_hub.src.utils.keras_utils import fused_attention_op_available
|
9
9
|
|
10
10
|
|
11
11
|
# This is just a self-attention layer in Mistral. But it can be generalized
|
@@ -196,7 +196,7 @@ class CachedMistralAttention(keras.layers.Layer):
|
|
196
196
|
return self._softmax(attention_scores)
|
197
197
|
|
198
198
|
def _compute_attention(self, query, key, value, attention_mask=None):
|
199
|
-
if
|
199
|
+
if fused_attention_op_available():
|
200
200
|
# Use `dot_product_attention` with Flash Attention support if
|
201
201
|
# available.
|
202
202
|
if attention_mask is not None:
|
@@ -8,7 +8,7 @@ from keras_hub.src.models.phi3.phi3_rotary_embedding import (
|
|
8
8
|
Phi3SuScaledRotaryEmbedding,
|
9
9
|
)
|
10
10
|
from keras_hub.src.utils.keras_utils import clone_initializer
|
11
|
-
from keras_hub.src.utils.keras_utils import
|
11
|
+
from keras_hub.src.utils.keras_utils import fused_attention_op_available
|
12
12
|
|
13
13
|
|
14
14
|
class Phi3Attention(keras.layers.Layer):
|
@@ -217,7 +217,7 @@ class Phi3Attention(keras.layers.Layer):
|
|
217
217
|
return self.softmax(attention_scores)
|
218
218
|
|
219
219
|
def _compute_attention(self, query, key, value, attention_mask=None):
|
220
|
-
if
|
220
|
+
if fused_attention_op_available():
|
221
221
|
# Use `dot_product_attention` with Flash Attention support if
|
222
222
|
# available.
|
223
223
|
if attention_mask is not None:
|
@@ -5,7 +5,7 @@ from keras import ops
|
|
5
5
|
|
6
6
|
from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
|
7
7
|
from keras_hub.src.utils.keras_utils import clone_initializer
|
8
|
-
from keras_hub.src.utils.keras_utils import
|
8
|
+
from keras_hub.src.utils.keras_utils import fused_attention_op_available
|
9
9
|
|
10
10
|
|
11
11
|
class QwenAttention(keras.layers.Layer):
|
@@ -263,7 +263,7 @@ class QwenAttention(keras.layers.Layer):
|
|
263
263
|
Returns:
|
264
264
|
attention_output: Output tensor after applying attention.
|
265
265
|
"""
|
266
|
-
if
|
266
|
+
if fused_attention_op_available():
|
267
267
|
# Use `dot_product_attention` with Flash Attention support if
|
268
268
|
# available.
|
269
269
|
if attention_mask is not None:
|
@@ -6,8 +6,8 @@ from keras import ops
|
|
6
6
|
|
7
7
|
from keras_hub.src.layers.modeling.position_embedding import PositionEmbedding
|
8
8
|
from keras_hub.src.models.backbone import Backbone
|
9
|
+
from keras_hub.src.utils.keras_utils import fused_attention_op_available
|
9
10
|
from keras_hub.src.utils.keras_utils import gelu_approximate
|
10
|
-
from keras_hub.src.utils.keras_utils import has_flash_attention_support
|
11
11
|
from keras_hub.src.utils.keras_utils import standardize_data_format
|
12
12
|
|
13
13
|
|
@@ -771,7 +771,7 @@ class MMDiTBlock(layers.Layer):
|
|
771
771
|
def _compute_attention(self, query, key, value):
|
772
772
|
batch_size = ops.shape(query)[0]
|
773
773
|
|
774
|
-
if
|
774
|
+
if fused_attention_op_available():
|
775
775
|
# Use `dot_product_attention` with Flash Attention support if
|
776
776
|
# available.
|
777
777
|
encoded = ops.dot_product_attention(
|
@@ -55,7 +55,7 @@ def standardize_data_format(data_format):
|
|
55
55
|
return data_format
|
56
56
|
|
57
57
|
|
58
|
-
def
|
58
|
+
def fused_attention_op_available():
|
59
59
|
if (
|
60
60
|
hasattr(keras.config, "is_flash_attention_enabled")
|
61
61
|
and keras.config.backend() == "jax"
|
@@ -104,3 +104,46 @@ def running_on_gpu():
|
|
104
104
|
import torch
|
105
105
|
|
106
106
|
return torch.cuda.is_available()
|
107
|
+
|
108
|
+
|
109
|
+
def gpu_supports_fused_attention_op():
|
110
|
+
deny_list = ["T4"]
|
111
|
+
for denied_gpu in deny_list:
|
112
|
+
if any(denied_gpu in gpu.upper() for gpu in get_gpu_names()):
|
113
|
+
return False
|
114
|
+
return True
|
115
|
+
|
116
|
+
|
117
|
+
def get_gpu_names():
|
118
|
+
"""Detects and returns the names of available GPUs based on the backend.
|
119
|
+
|
120
|
+
Note:
|
121
|
+
The format and content of the returned GPU names are **not normalized**
|
122
|
+
and vary significantly depending on the active backend. This function
|
123
|
+
provides the names as reported by the respective backend's API."
|
124
|
+
"""
|
125
|
+
backend = keras.config.backend()
|
126
|
+
if backend == "jax":
|
127
|
+
import jax
|
128
|
+
|
129
|
+
devices = jax.devices()
|
130
|
+
|
131
|
+
return [getattr(d, "device_kind", "") for d in devices]
|
132
|
+
|
133
|
+
elif backend == "tensorflow":
|
134
|
+
import tensorflow as tf
|
135
|
+
|
136
|
+
gpus = tf.config.list_physical_devices("GPU")
|
137
|
+
return [
|
138
|
+
tf.config.experimental.get_device_details(gpu)["device_name"]
|
139
|
+
for gpu in gpus
|
140
|
+
]
|
141
|
+
elif backend == "torch":
|
142
|
+
import torch
|
143
|
+
|
144
|
+
return [
|
145
|
+
torch.cuda.get_device_name(i)
|
146
|
+
for i in range(torch.cuda.device_count())
|
147
|
+
]
|
148
|
+
else:
|
149
|
+
return [""]
|
keras_hub/src/version_utils.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: keras-hub-nightly
|
3
|
-
Version: 0.20.0.
|
3
|
+
Version: 0.20.0.dev202504030357
|
4
4
|
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
5
|
Home-page: https://github.com/keras-team/keras-hub
|
6
6
|
Author: Keras team
|
@@ -8,7 +8,7 @@ keras_hub/api/tokenizers/__init__.py,sha256=NCQSOg3vf3KlM2YBsxApcJUVu9MH2jV0NQrM
|
|
8
8
|
keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
|
9
9
|
keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
10
10
|
keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
|
11
|
-
keras_hub/src/version_utils.py,sha256=
|
11
|
+
keras_hub/src/version_utils.py,sha256=KUNpoaGt9bHctmG36tc-lZMvjmS45Cl5DVx4BKBtx_E,222
|
12
12
|
keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
13
13
|
keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
14
14
|
keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
|
@@ -187,7 +187,7 @@ keras_hub/src/models/flux/flux_presets.py,sha256=z7C_FbI1_F5YETXuWpc7Yh_0w-5N0eB
|
|
187
187
|
keras_hub/src/models/flux/flux_text_to_image.py,sha256=Rf5dD2EhG0bE8Gyg9sqaA8YEexS1kdraofIkxiZDjvc,4166
|
188
188
|
keras_hub/src/models/flux/flux_text_to_image_preprocessor.py,sha256=Fs9jr97QtmRUbRRz1kITpkuhDM2GoV3n0XSFC-qQA14,2252
|
189
189
|
keras_hub/src/models/gemma/__init__.py,sha256=rVzOJMJ39bgVlT8UdC0t8PlN2c237GKTBmfHIsbPuOQ,251
|
190
|
-
keras_hub/src/models/gemma/gemma_attention.py,sha256=
|
190
|
+
keras_hub/src/models/gemma/gemma_attention.py,sha256=iKSdBRkKEOnryXjz6K-thz70Dgp7LGXo5vYx8D-VMgY,10083
|
191
191
|
keras_hub/src/models/gemma/gemma_backbone.py,sha256=GzAUSArw_pN9dtWQzTVhWDbW-XyWt4GyMcFLn9hwmh0,13391
|
192
192
|
keras_hub/src/models/gemma/gemma_causal_lm.py,sha256=3OXaIXlrKqMIuUnBk-bUz-0SYFL-XkkQTWm8qRY2YII,16770
|
193
193
|
keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py,sha256=bpKkEurWIfa6Kp9s4pz84-sBDSA6ZFNHP8nXG1fFQrg,2912
|
@@ -196,7 +196,7 @@ keras_hub/src/models/gemma/gemma_presets.py,sha256=lWPjEb_6pFC1vdX7mwxf-C2im93Yy
|
|
196
196
|
keras_hub/src/models/gemma/gemma_tokenizer.py,sha256=FhcyNL4lo63MqOhTQPFr07-u3BddL0fVM4TmOm8ku-I,2622
|
197
197
|
keras_hub/src/models/gemma/rms_normalization.py,sha256=fku-JEo2sNy-ytX7ySD1sRzdhRAPmYex_z8oFk1NiG8,833
|
198
198
|
keras_hub/src/models/gemma3/__init__.py,sha256=oPFadkdK5DRLD6sYx83iTetY5daWuSzmJilLjokHcbU,257
|
199
|
-
keras_hub/src/models/gemma3/gemma3_attention.py,sha256=
|
199
|
+
keras_hub/src/models/gemma3/gemma3_attention.py,sha256=Zvu9i1b2QZlFhs3LVV3POOQnRQiiL8iylnxNWG9_8_A,11133
|
200
200
|
keras_hub/src/models/gemma3/gemma3_backbone.py,sha256=aogg-VF3lFOQj84vFqI16Y_rWzTFyDxB6w6wOxO9fJs,14019
|
201
201
|
keras_hub/src/models/gemma3/gemma3_causal_lm.py,sha256=6sQ88eU_31PLl-PW-9risgNWOxRFp1GSnbS-vUUBPfQ,11666
|
202
202
|
keras_hub/src/models/gemma3/gemma3_causal_lm_preprocessor.py,sha256=YDbai1LyjMDZLuMLPzsZyiEviojCi26s6k6q9IvOC0s,25419
|
@@ -215,14 +215,14 @@ keras_hub/src/models/gpt2/gpt2_preprocessor.py,sha256=eYMIXw8Oebsr14GhqBh1CEhbLb
|
|
215
215
|
keras_hub/src/models/gpt2/gpt2_presets.py,sha256=1mflR1dVuEwFfNe3Fkra6vt7DrjmkAckjyP-LclNLFc,1897
|
216
216
|
keras_hub/src/models/gpt2/gpt2_tokenizer.py,sha256=-wA7ZTiRZDVdEKAskyQiXB5GLYuj9TkuADtyyYpoBuA,2615
|
217
217
|
keras_hub/src/models/gpt_neo_x/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
218
|
-
keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py,sha256=
|
218
|
+
keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py,sha256=eJd7OUFT2rmpBElmQ4bVXT9BlqEzsFm6HGZKSuJzjvA,9287
|
219
219
|
keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py,sha256=yov92B8j9lXz-9ZOpLa_PLT7WgcRKWG8fwB824Z_1hw,6508
|
220
220
|
keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py,sha256=HriMXNVjGlFTjCIgfLRR3AvsOPbjGToDM_XY-bdger0,7690
|
221
221
|
keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py,sha256=YiVz9qBHjQlwKgtUVrgBTFitHcX5pbmhhfHwaulyRxY,1957
|
222
222
|
keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py,sha256=hmB81V0SuI6bEsxEuFkYgq58wbcrv1YLvmXGin5T3E0,9732
|
223
223
|
keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py,sha256=aKso-8yGrynn3tZ5xm2egcXIBQo3__sWZDBtjmS3ZgU,1991
|
224
224
|
keras_hub/src/models/llama/__init__.py,sha256=svVZjGi71R3lVbq0AdbqlXj909mr3Rp9EPXdiO0w0G0,251
|
225
|
-
keras_hub/src/models/llama/llama_attention.py,sha256=
|
225
|
+
keras_hub/src/models/llama/llama_attention.py,sha256=Q5N37sAESAjdFg9GNlanvNbD-dHS3mNNtt3vMXAFKMs,7931
|
226
226
|
keras_hub/src/models/llama/llama_backbone.py,sha256=tjNEIKIL9ncoEL5KNFE5i0oTUkysjmJmh3mHmCz4RCw,11861
|
227
227
|
keras_hub/src/models/llama/llama_causal_lm.py,sha256=9bP4-XDCMgsZuH1ILIMzmwq2Fyy6vkk1Vsht-lMGCNo,13258
|
228
228
|
keras_hub/src/models/llama/llama_causal_lm_preprocessor.py,sha256=VTboOMiRBoxHrwP343upLUTsv3AG65r2H8h_PNPVphE,3047
|
@@ -237,7 +237,7 @@ keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py,sha256=twbXel9hsQgG
|
|
237
237
|
keras_hub/src/models/llama3/llama3_presets.py,sha256=PWEW_hLMCD9SIYm3QLhRVIcwjrPuqv-KDebXACXRNbM,1579
|
238
238
|
keras_hub/src/models/llama3/llama3_tokenizer.py,sha256=J-KxRc08vGs4olFw_4mtJs0W_dTeUyj_XxMycazBmxI,1934
|
239
239
|
keras_hub/src/models/mistral/__init__.py,sha256=vjBlzcrIsFSwJKnfwfTNMKstIEKGFTE3kVcdAdfwlnE,263
|
240
|
-
keras_hub/src/models/mistral/mistral_attention.py,sha256=
|
240
|
+
keras_hub/src/models/mistral/mistral_attention.py,sha256=nGDlD4NcIwIGlfbt3ArxdT5QAvamY7yiNEGDlTgWirU,8609
|
241
241
|
keras_hub/src/models/mistral/mistral_backbone.py,sha256=oatoqSX0z-xjKfXeSveL4P0Dcr84kd0o0pK_kuTbJtY,7257
|
242
242
|
keras_hub/src/models/mistral/mistral_causal_lm.py,sha256=ujCKfsbuYzr8VusqPYcnTH6rTb0MRfzsinEraVhQksc,13234
|
243
243
|
keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py,sha256=_4qq-uKktfIg_i081ZWjZGEIYZpedBwtBGpchQQ-qEk,3079
|
@@ -275,7 +275,7 @@ keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=zF04iShXky_c3IfUbmL
|
|
275
275
|
keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=ljTiADHo0Ok88q-jVzwJIle2C8xcxnudLTsBLzIySaM,2415
|
276
276
|
keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=mwzhdo6wjemOjic4p6vECMlScxyI_meXMWBZ76YlblE,18308
|
277
277
|
keras_hub/src/models/phi3/__init__.py,sha256=zIbf1MU-ks91mEkjTRJAsk51N3BBnXDF2JM1vO-13PQ,245
|
278
|
-
keras_hub/src/models/phi3/phi3_attention.py,sha256=
|
278
|
+
keras_hub/src/models/phi3/phi3_attention.py,sha256=pojx23rG2NPqy0MRo_OspnxipJCZvexZ2V25xucimHY,9980
|
279
279
|
keras_hub/src/models/phi3/phi3_backbone.py,sha256=fY-OY2ZrqxDHglYjTM0OCacBdEQHwj-XNmU0MnXL7iU,8885
|
280
280
|
keras_hub/src/models/phi3/phi3_causal_lm.py,sha256=kMMq7fQ8hlb_mLO_nU1lGVqILayulVvzzZgl2EvY9_k,8389
|
281
281
|
keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py,sha256=gNx1k-n7d0XDwpNbcZiO9yLkwdXYCvwGyA3b0QCnPAE,3043
|
@@ -285,7 +285,7 @@ keras_hub/src/models/phi3/phi3_presets.py,sha256=sb2ce7Gq1OikFEf2KIYG69rFKHYKj8q
|
|
285
285
|
keras_hub/src/models/phi3/phi3_rotary_embedding.py,sha256=wqiRn8nETNcLc5Vsm_d_8s11Ro6ibWZbWvODdLqIOo4,5013
|
286
286
|
keras_hub/src/models/phi3/phi3_tokenizer.py,sha256=bOPH14wTVVHJHq8mgzXLjsgvKMNhfO8eayevAPpjYVA,1992
|
287
287
|
keras_hub/src/models/qwen/__init__.py,sha256=hskG3tZUY_AYZPp0WVzbCtw37AIYENyp3DOnqHmdRBw,65
|
288
|
-
keras_hub/src/models/qwen/qwen_attention.py,sha256=
|
288
|
+
keras_hub/src/models/qwen/qwen_attention.py,sha256=FL_09-eCFugktDNzFPm6beZLD04pNg9TFKgfXdhWUwk,12953
|
289
289
|
keras_hub/src/models/qwen/qwen_backbone.py,sha256=xBu2zEzFFAjKgaHOqPnxLU-j4oL3N2G2KT-uwL2zEM0,13018
|
290
290
|
keras_hub/src/models/qwen/qwen_causal_lm.py,sha256=_f-UHaKHp0ncxknpkpEJiW3jlng3E4CmddjQfz2QzJo,12249
|
291
291
|
keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py,sha256=Va-4TLJD3ycEnkS41rF3dVj4_6K0j-gxLTrREFRcyr0,609
|
@@ -353,7 +353,7 @@ keras_hub/src/models/siglip/siglip_tokenizer.py,sha256=j_67JbIHJDRk-CbiemG2dgAO6
|
|
353
353
|
keras_hub/src/models/siglip/siglip_vision_encoder.py,sha256=CaNaFq5thBC3TUXXOf2qknk5vWsauM20ZoaDPYRnXcs,5927
|
354
354
|
keras_hub/src/models/stable_diffusion_3/__init__.py,sha256=ZKYQuaRObyhKq8GVAHmoRvlXp6FpU8ChvutVCHyXKuc,343
|
355
355
|
keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py,sha256=vtVhieAv277mAiZj7Kvvqg_Ba7klfQxZVk4PPxNNQ0s,3062
|
356
|
-
keras_hub/src/models/stable_diffusion_3/mmdit.py,sha256=
|
356
|
+
keras_hub/src/models/stable_diffusion_3/mmdit.py,sha256=jkO7uP3fNrbuFLiOJV-7_S8hz-DqkasZNkoJIdsg58Q,40859
|
357
357
|
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py,sha256=w8lsMampk34M9xQi96mEnXmkaKQqFQtoFTW8zP7ilEA,24078
|
358
358
|
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py,sha256=oQcVCWOwrdUTrr_JNekoMqdSlKYMGz5tG6v8uD25lTc,5479
|
359
359
|
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py,sha256=t4uw920Jn1k80air3WRGimKf71aMVu6q73oWFH348vk,6384
|
@@ -430,7 +430,7 @@ keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py,sha256=hRv_XxoPIPDpHfO0Z
|
|
430
430
|
keras_hub/src/tokenizers/word_piece_tokenizer.py,sha256=vP6AZgbzsRiuPCt3W_n94nsF7XiERnagWcH_rqJHtVU,19943
|
431
431
|
keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=cylrs02ZrYQ1TuZr9oyS3NrVbDwGctA3VXbIh1pFJMQ,6743
|
432
432
|
keras_hub/src/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
433
|
-
keras_hub/src/utils/keras_utils.py,sha256=
|
433
|
+
keras_hub/src/utils/keras_utils.py,sha256=mtj5Kr9EROso10SafmQ-C9uCLbIId4cXAuJSNDRqHb8,4290
|
434
434
|
keras_hub/src/utils/pipeline_model.py,sha256=jgzB6NQPSl0KOu08N-TazfOnXnUJbZjH2EXXhx25Ftg,9084
|
435
435
|
keras_hub/src/utils/preset_utils.py,sha256=BqTqtLouPQrTKelup2og_yziRBcu9dXFbbAST0I-XlE,32012
|
436
436
|
keras_hub/src/utils/python_utils.py,sha256=N8nWeO3san4YnGkffRXG3Ix7VEIMTKSN21FX5TuL7G8,202
|
@@ -459,7 +459,7 @@ keras_hub/src/utils/transformers/convert_qwen.py,sha256=I2bfwo8AQd_JfwFpiAuCQ3k_
|
|
459
459
|
keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
|
460
460
|
keras_hub/src/utils/transformers/preset_loader.py,sha256=0Hi7R8HnATcwFVLsJwMMIMWTCXHNfep4IPiRpQXqM-w,3933
|
461
461
|
keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
|
462
|
-
keras_hub_nightly-0.20.0.
|
463
|
-
keras_hub_nightly-0.20.0.
|
464
|
-
keras_hub_nightly-0.20.0.
|
465
|
-
keras_hub_nightly-0.20.0.
|
462
|
+
keras_hub_nightly-0.20.0.dev202504030357.dist-info/METADATA,sha256=sd9s0yxPsKnlKuvSjOvdNoe10H3_1y6bskN04hjrYMU,7715
|
463
|
+
keras_hub_nightly-0.20.0.dev202504030357.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
|
464
|
+
keras_hub_nightly-0.20.0.dev202504030357.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
465
|
+
keras_hub_nightly-0.20.0.dev202504030357.dist-info/RECORD,,
|
File without changes
|