keras-hub-nightly 0.20.0.dev202504020401__py3-none-any.whl → 0.20.0.dev202504030357__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -6,7 +6,9 @@ from keras import ops
6
6
 
7
7
  from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
8
8
  from keras_hub.src.utils.keras_utils import clone_initializer
9
- from keras_hub.src.utils.keras_utils import has_flash_attention_support
9
+ from keras_hub.src.utils.keras_utils import fused_attention_op_available
10
+ from keras_hub.src.utils.keras_utils import gpu_supports_fused_attention_op
11
+ from keras_hub.src.utils.keras_utils import running_on_gpu
10
12
  from keras_hub.src.utils.keras_utils import running_on_tpu
11
13
 
12
14
 
@@ -106,17 +108,22 @@ class CachedGemmaAttention(keras.layers.Layer):
106
108
  )
107
109
  return x
108
110
 
109
- def _can_use_flash_attention(self):
110
- if not has_flash_attention_support():
111
+ def _use_fused_attention_op(self):
112
+ if not fused_attention_op_available():
111
113
  return False
112
114
  if self.dropout > 0.0:
113
115
  return False
114
- if self.logit_soft_cap is None:
115
- return True
116
- sig = inspect.signature(ops.dot_product_attention)
117
- # We can currently only run soft capped attention for keras >= 3.10
118
- # and only on TPU.
119
- return running_on_tpu() and "attn_logits_soft_cap" in sig.parameters
116
+ if running_on_gpu():
117
+ # GPU never supports softcap in the fused op.
118
+ if self.logit_soft_cap is not None:
119
+ return False
120
+ return gpu_supports_fused_attention_op()
121
+ elif running_on_tpu():
122
+ # TPU supports softcap with on keras >= 3.10.
123
+ sig = inspect.signature(ops.dot_product_attention)
124
+ return "attn_logits_soft_cap" in sig.parameters
125
+ else:
126
+ return False
120
127
 
121
128
  def _compute_attention(
122
129
  self,
@@ -140,7 +147,7 @@ class CachedGemmaAttention(keras.layers.Layer):
140
147
  cache_update_index=cache_update_index,
141
148
  )
142
149
 
143
- if self._can_use_flash_attention():
150
+ if self._use_fused_attention_op():
144
151
  if attention_mask is not None:
145
152
  attention_mask = ops.expand_dims(attention_mask, axis=1)
146
153
  attention_mask = ops.cast(attention_mask, dtype="bool")
@@ -7,7 +7,7 @@ from keras import ops
7
7
  from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
8
8
  from keras_hub.src.models.gemma.rms_normalization import RMSNormalization
9
9
  from keras_hub.src.utils.keras_utils import clone_initializer
10
- from keras_hub.src.utils.keras_utils import has_flash_attention_support
10
+ from keras_hub.src.utils.keras_utils import fused_attention_op_available
11
11
  from keras_hub.src.utils.keras_utils import running_on_tpu
12
12
 
13
13
 
@@ -140,7 +140,7 @@ class CachedGemma3Attention(keras.layers.Layer):
140
140
  return x
141
141
 
142
142
  def _can_use_flash_attention(self):
143
- if not has_flash_attention_support():
143
+ if not fused_attention_op_available():
144
144
  return False
145
145
  if self.dropout > 0.0:
146
146
  return False
@@ -5,7 +5,7 @@ from keras import ops
5
5
 
6
6
  from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
7
7
  from keras_hub.src.utils.keras_utils import clone_initializer
8
- from keras_hub.src.utils.keras_utils import has_flash_attention_support
8
+ from keras_hub.src.utils.keras_utils import fused_attention_op_available
9
9
 
10
10
 
11
11
  class GPTNeoXAttention(keras.layers.Layer):
@@ -125,7 +125,7 @@ class GPTNeoXAttention(keras.layers.Layer):
125
125
  def _compute_attention(
126
126
  self, query, key, value, attention_mask=None, training=None
127
127
  ):
128
- if has_flash_attention_support() and self.dropout == 0:
128
+ if fused_attention_op_available() and self.dropout == 0:
129
129
  # Use `dot_product_attention` with Flash Attention support if
130
130
  # available.
131
131
  if attention_mask is not None:
@@ -5,7 +5,7 @@ from keras import ops
5
5
 
6
6
  from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
7
7
  from keras_hub.src.utils.keras_utils import clone_initializer
8
- from keras_hub.src.utils.keras_utils import has_flash_attention_support
8
+ from keras_hub.src.utils.keras_utils import fused_attention_op_available
9
9
 
10
10
 
11
11
  class LlamaAttention(keras.layers.Layer):
@@ -185,7 +185,7 @@ class LlamaAttention(keras.layers.Layer):
185
185
  return self._softmax(attention_scores)
186
186
 
187
187
  def _compute_attention(self, query, key, value, attention_mask=None):
188
- if has_flash_attention_support():
188
+ if fused_attention_op_available():
189
189
  # Use `dot_product_attention` with Flash Attention support if
190
190
  # available.
191
191
  if attention_mask is not None:
@@ -5,7 +5,7 @@ from keras import ops
5
5
 
6
6
  from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
7
7
  from keras_hub.src.utils.keras_utils import clone_initializer
8
- from keras_hub.src.utils.keras_utils import has_flash_attention_support
8
+ from keras_hub.src.utils.keras_utils import fused_attention_op_available
9
9
 
10
10
 
11
11
  # This is just a self-attention layer in Mistral. But it can be generalized
@@ -196,7 +196,7 @@ class CachedMistralAttention(keras.layers.Layer):
196
196
  return self._softmax(attention_scores)
197
197
 
198
198
  def _compute_attention(self, query, key, value, attention_mask=None):
199
- if has_flash_attention_support():
199
+ if fused_attention_op_available():
200
200
  # Use `dot_product_attention` with Flash Attention support if
201
201
  # available.
202
202
  if attention_mask is not None:
@@ -8,7 +8,7 @@ from keras_hub.src.models.phi3.phi3_rotary_embedding import (
8
8
  Phi3SuScaledRotaryEmbedding,
9
9
  )
10
10
  from keras_hub.src.utils.keras_utils import clone_initializer
11
- from keras_hub.src.utils.keras_utils import has_flash_attention_support
11
+ from keras_hub.src.utils.keras_utils import fused_attention_op_available
12
12
 
13
13
 
14
14
  class Phi3Attention(keras.layers.Layer):
@@ -217,7 +217,7 @@ class Phi3Attention(keras.layers.Layer):
217
217
  return self.softmax(attention_scores)
218
218
 
219
219
  def _compute_attention(self, query, key, value, attention_mask=None):
220
- if has_flash_attention_support():
220
+ if fused_attention_op_available():
221
221
  # Use `dot_product_attention` with Flash Attention support if
222
222
  # available.
223
223
  if attention_mask is not None:
@@ -5,7 +5,7 @@ from keras import ops
5
5
 
6
6
  from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
7
7
  from keras_hub.src.utils.keras_utils import clone_initializer
8
- from keras_hub.src.utils.keras_utils import has_flash_attention_support
8
+ from keras_hub.src.utils.keras_utils import fused_attention_op_available
9
9
 
10
10
 
11
11
  class QwenAttention(keras.layers.Layer):
@@ -263,7 +263,7 @@ class QwenAttention(keras.layers.Layer):
263
263
  Returns:
264
264
  attention_output: Output tensor after applying attention.
265
265
  """
266
- if has_flash_attention_support():
266
+ if fused_attention_op_available():
267
267
  # Use `dot_product_attention` with Flash Attention support if
268
268
  # available.
269
269
  if attention_mask is not None:
@@ -6,8 +6,8 @@ from keras import ops
6
6
 
7
7
  from keras_hub.src.layers.modeling.position_embedding import PositionEmbedding
8
8
  from keras_hub.src.models.backbone import Backbone
9
+ from keras_hub.src.utils.keras_utils import fused_attention_op_available
9
10
  from keras_hub.src.utils.keras_utils import gelu_approximate
10
- from keras_hub.src.utils.keras_utils import has_flash_attention_support
11
11
  from keras_hub.src.utils.keras_utils import standardize_data_format
12
12
 
13
13
 
@@ -771,7 +771,7 @@ class MMDiTBlock(layers.Layer):
771
771
  def _compute_attention(self, query, key, value):
772
772
  batch_size = ops.shape(query)[0]
773
773
 
774
- if has_flash_attention_support():
774
+ if fused_attention_op_available():
775
775
  # Use `dot_product_attention` with Flash Attention support if
776
776
  # available.
777
777
  encoded = ops.dot_product_attention(
@@ -55,7 +55,7 @@ def standardize_data_format(data_format):
55
55
  return data_format
56
56
 
57
57
 
58
- def has_flash_attention_support():
58
+ def fused_attention_op_available():
59
59
  if (
60
60
  hasattr(keras.config, "is_flash_attention_enabled")
61
61
  and keras.config.backend() == "jax"
@@ -104,3 +104,46 @@ def running_on_gpu():
104
104
  import torch
105
105
 
106
106
  return torch.cuda.is_available()
107
+
108
+
109
+ def gpu_supports_fused_attention_op():
110
+ deny_list = ["T4"]
111
+ for denied_gpu in deny_list:
112
+ if any(denied_gpu in gpu.upper() for gpu in get_gpu_names()):
113
+ return False
114
+ return True
115
+
116
+
117
+ def get_gpu_names():
118
+ """Detects and returns the names of available GPUs based on the backend.
119
+
120
+ Note:
121
+ The format and content of the returned GPU names are **not normalized**
122
+ and vary significantly depending on the active backend. This function
123
+ provides the names as reported by the respective backend's API."
124
+ """
125
+ backend = keras.config.backend()
126
+ if backend == "jax":
127
+ import jax
128
+
129
+ devices = jax.devices()
130
+
131
+ return [getattr(d, "device_kind", "") for d in devices]
132
+
133
+ elif backend == "tensorflow":
134
+ import tensorflow as tf
135
+
136
+ gpus = tf.config.list_physical_devices("GPU")
137
+ return [
138
+ tf.config.experimental.get_device_details(gpu)["device_name"]
139
+ for gpu in gpus
140
+ ]
141
+ elif backend == "torch":
142
+ import torch
143
+
144
+ return [
145
+ torch.cuda.get_device_name(i)
146
+ for i in range(torch.cuda.device_count())
147
+ ]
148
+ else:
149
+ return [""]
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.20.0.dev202504020401"
4
+ __version__ = "0.20.0.dev202504030357"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.20.0.dev202504020401
3
+ Version: 0.20.0.dev202504030357
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -8,7 +8,7 @@ keras_hub/api/tokenizers/__init__.py,sha256=NCQSOg3vf3KlM2YBsxApcJUVu9MH2jV0NQrM
8
8
  keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
9
9
  keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
10
  keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
11
- keras_hub/src/version_utils.py,sha256=Cu7L8D-l2tjToEgezwk_RlRVOFOvu5Fs_mSsbhAGc_4,222
11
+ keras_hub/src/version_utils.py,sha256=KUNpoaGt9bHctmG36tc-lZMvjmS45Cl5DVx4BKBtx_E,222
12
12
  keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
13
  keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
14
14
  keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
@@ -187,7 +187,7 @@ keras_hub/src/models/flux/flux_presets.py,sha256=z7C_FbI1_F5YETXuWpc7Yh_0w-5N0eB
187
187
  keras_hub/src/models/flux/flux_text_to_image.py,sha256=Rf5dD2EhG0bE8Gyg9sqaA8YEexS1kdraofIkxiZDjvc,4166
188
188
  keras_hub/src/models/flux/flux_text_to_image_preprocessor.py,sha256=Fs9jr97QtmRUbRRz1kITpkuhDM2GoV3n0XSFC-qQA14,2252
189
189
  keras_hub/src/models/gemma/__init__.py,sha256=rVzOJMJ39bgVlT8UdC0t8PlN2c237GKTBmfHIsbPuOQ,251
190
- keras_hub/src/models/gemma/gemma_attention.py,sha256=j-YjkcUIv2ZqQCrJ2GW1nMgpO2ZQsxNedSvxAyKaHNA,9783
190
+ keras_hub/src/models/gemma/gemma_attention.py,sha256=iKSdBRkKEOnryXjz6K-thz70Dgp7LGXo5vYx8D-VMgY,10083
191
191
  keras_hub/src/models/gemma/gemma_backbone.py,sha256=GzAUSArw_pN9dtWQzTVhWDbW-XyWt4GyMcFLn9hwmh0,13391
192
192
  keras_hub/src/models/gemma/gemma_causal_lm.py,sha256=3OXaIXlrKqMIuUnBk-bUz-0SYFL-XkkQTWm8qRY2YII,16770
193
193
  keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py,sha256=bpKkEurWIfa6Kp9s4pz84-sBDSA6ZFNHP8nXG1fFQrg,2912
@@ -196,7 +196,7 @@ keras_hub/src/models/gemma/gemma_presets.py,sha256=lWPjEb_6pFC1vdX7mwxf-C2im93Yy
196
196
  keras_hub/src/models/gemma/gemma_tokenizer.py,sha256=FhcyNL4lo63MqOhTQPFr07-u3BddL0fVM4TmOm8ku-I,2622
197
197
  keras_hub/src/models/gemma/rms_normalization.py,sha256=fku-JEo2sNy-ytX7ySD1sRzdhRAPmYex_z8oFk1NiG8,833
198
198
  keras_hub/src/models/gemma3/__init__.py,sha256=oPFadkdK5DRLD6sYx83iTetY5daWuSzmJilLjokHcbU,257
199
- keras_hub/src/models/gemma3/gemma3_attention.py,sha256=bEAgo88D4HjhGLyLhvjDc_-cYgvYb73TJIp4IkzvLl4,11131
199
+ keras_hub/src/models/gemma3/gemma3_attention.py,sha256=Zvu9i1b2QZlFhs3LVV3POOQnRQiiL8iylnxNWG9_8_A,11133
200
200
  keras_hub/src/models/gemma3/gemma3_backbone.py,sha256=aogg-VF3lFOQj84vFqI16Y_rWzTFyDxB6w6wOxO9fJs,14019
201
201
  keras_hub/src/models/gemma3/gemma3_causal_lm.py,sha256=6sQ88eU_31PLl-PW-9risgNWOxRFp1GSnbS-vUUBPfQ,11666
202
202
  keras_hub/src/models/gemma3/gemma3_causal_lm_preprocessor.py,sha256=YDbai1LyjMDZLuMLPzsZyiEviojCi26s6k6q9IvOC0s,25419
@@ -215,14 +215,14 @@ keras_hub/src/models/gpt2/gpt2_preprocessor.py,sha256=eYMIXw8Oebsr14GhqBh1CEhbLb
215
215
  keras_hub/src/models/gpt2/gpt2_presets.py,sha256=1mflR1dVuEwFfNe3Fkra6vt7DrjmkAckjyP-LclNLFc,1897
216
216
  keras_hub/src/models/gpt2/gpt2_tokenizer.py,sha256=-wA7ZTiRZDVdEKAskyQiXB5GLYuj9TkuADtyyYpoBuA,2615
217
217
  keras_hub/src/models/gpt_neo_x/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
218
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py,sha256=IwfmmAlndr8W1VfXXMK9lkncBxo-AHYqzLo_3hS-k_s,9285
218
+ keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py,sha256=eJd7OUFT2rmpBElmQ4bVXT9BlqEzsFm6HGZKSuJzjvA,9287
219
219
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py,sha256=yov92B8j9lXz-9ZOpLa_PLT7WgcRKWG8fwB824Z_1hw,6508
220
220
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py,sha256=HriMXNVjGlFTjCIgfLRR3AvsOPbjGToDM_XY-bdger0,7690
221
221
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py,sha256=YiVz9qBHjQlwKgtUVrgBTFitHcX5pbmhhfHwaulyRxY,1957
222
222
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py,sha256=hmB81V0SuI6bEsxEuFkYgq58wbcrv1YLvmXGin5T3E0,9732
223
223
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py,sha256=aKso-8yGrynn3tZ5xm2egcXIBQo3__sWZDBtjmS3ZgU,1991
224
224
  keras_hub/src/models/llama/__init__.py,sha256=svVZjGi71R3lVbq0AdbqlXj909mr3Rp9EPXdiO0w0G0,251
225
- keras_hub/src/models/llama/llama_attention.py,sha256=i2OHkBAuC7iKDZmZF9eRUilxTKjbmLYXXyO2vbSLT8A,7929
225
+ keras_hub/src/models/llama/llama_attention.py,sha256=Q5N37sAESAjdFg9GNlanvNbD-dHS3mNNtt3vMXAFKMs,7931
226
226
  keras_hub/src/models/llama/llama_backbone.py,sha256=tjNEIKIL9ncoEL5KNFE5i0oTUkysjmJmh3mHmCz4RCw,11861
227
227
  keras_hub/src/models/llama/llama_causal_lm.py,sha256=9bP4-XDCMgsZuH1ILIMzmwq2Fyy6vkk1Vsht-lMGCNo,13258
228
228
  keras_hub/src/models/llama/llama_causal_lm_preprocessor.py,sha256=VTboOMiRBoxHrwP343upLUTsv3AG65r2H8h_PNPVphE,3047
@@ -237,7 +237,7 @@ keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py,sha256=twbXel9hsQgG
237
237
  keras_hub/src/models/llama3/llama3_presets.py,sha256=PWEW_hLMCD9SIYm3QLhRVIcwjrPuqv-KDebXACXRNbM,1579
238
238
  keras_hub/src/models/llama3/llama3_tokenizer.py,sha256=J-KxRc08vGs4olFw_4mtJs0W_dTeUyj_XxMycazBmxI,1934
239
239
  keras_hub/src/models/mistral/__init__.py,sha256=vjBlzcrIsFSwJKnfwfTNMKstIEKGFTE3kVcdAdfwlnE,263
240
- keras_hub/src/models/mistral/mistral_attention.py,sha256=00_bwlkBkxZoCuqhy4aMV6o-8kc4Ek06_m-ZeyPlsE8,8607
240
+ keras_hub/src/models/mistral/mistral_attention.py,sha256=nGDlD4NcIwIGlfbt3ArxdT5QAvamY7yiNEGDlTgWirU,8609
241
241
  keras_hub/src/models/mistral/mistral_backbone.py,sha256=oatoqSX0z-xjKfXeSveL4P0Dcr84kd0o0pK_kuTbJtY,7257
242
242
  keras_hub/src/models/mistral/mistral_causal_lm.py,sha256=ujCKfsbuYzr8VusqPYcnTH6rTb0MRfzsinEraVhQksc,13234
243
243
  keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py,sha256=_4qq-uKktfIg_i081ZWjZGEIYZpedBwtBGpchQQ-qEk,3079
@@ -275,7 +275,7 @@ keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=zF04iShXky_c3IfUbmL
275
275
  keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=ljTiADHo0Ok88q-jVzwJIle2C8xcxnudLTsBLzIySaM,2415
276
276
  keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=mwzhdo6wjemOjic4p6vECMlScxyI_meXMWBZ76YlblE,18308
277
277
  keras_hub/src/models/phi3/__init__.py,sha256=zIbf1MU-ks91mEkjTRJAsk51N3BBnXDF2JM1vO-13PQ,245
278
- keras_hub/src/models/phi3/phi3_attention.py,sha256=7eeEP3za6arfqzyLtrJV6desV2_9b6bR5LkupeURrHs,9978
278
+ keras_hub/src/models/phi3/phi3_attention.py,sha256=pojx23rG2NPqy0MRo_OspnxipJCZvexZ2V25xucimHY,9980
279
279
  keras_hub/src/models/phi3/phi3_backbone.py,sha256=fY-OY2ZrqxDHglYjTM0OCacBdEQHwj-XNmU0MnXL7iU,8885
280
280
  keras_hub/src/models/phi3/phi3_causal_lm.py,sha256=kMMq7fQ8hlb_mLO_nU1lGVqILayulVvzzZgl2EvY9_k,8389
281
281
  keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py,sha256=gNx1k-n7d0XDwpNbcZiO9yLkwdXYCvwGyA3b0QCnPAE,3043
@@ -285,7 +285,7 @@ keras_hub/src/models/phi3/phi3_presets.py,sha256=sb2ce7Gq1OikFEf2KIYG69rFKHYKj8q
285
285
  keras_hub/src/models/phi3/phi3_rotary_embedding.py,sha256=wqiRn8nETNcLc5Vsm_d_8s11Ro6ibWZbWvODdLqIOo4,5013
286
286
  keras_hub/src/models/phi3/phi3_tokenizer.py,sha256=bOPH14wTVVHJHq8mgzXLjsgvKMNhfO8eayevAPpjYVA,1992
287
287
  keras_hub/src/models/qwen/__init__.py,sha256=hskG3tZUY_AYZPp0WVzbCtw37AIYENyp3DOnqHmdRBw,65
288
- keras_hub/src/models/qwen/qwen_attention.py,sha256=vBPGdNMRnfuETxxdwDzwpObOvt3zB2qqc9kbWRRKuQg,12951
288
+ keras_hub/src/models/qwen/qwen_attention.py,sha256=FL_09-eCFugktDNzFPm6beZLD04pNg9TFKgfXdhWUwk,12953
289
289
  keras_hub/src/models/qwen/qwen_backbone.py,sha256=xBu2zEzFFAjKgaHOqPnxLU-j4oL3N2G2KT-uwL2zEM0,13018
290
290
  keras_hub/src/models/qwen/qwen_causal_lm.py,sha256=_f-UHaKHp0ncxknpkpEJiW3jlng3E4CmddjQfz2QzJo,12249
291
291
  keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py,sha256=Va-4TLJD3ycEnkS41rF3dVj4_6K0j-gxLTrREFRcyr0,609
@@ -353,7 +353,7 @@ keras_hub/src/models/siglip/siglip_tokenizer.py,sha256=j_67JbIHJDRk-CbiemG2dgAO6
353
353
  keras_hub/src/models/siglip/siglip_vision_encoder.py,sha256=CaNaFq5thBC3TUXXOf2qknk5vWsauM20ZoaDPYRnXcs,5927
354
354
  keras_hub/src/models/stable_diffusion_3/__init__.py,sha256=ZKYQuaRObyhKq8GVAHmoRvlXp6FpU8ChvutVCHyXKuc,343
355
355
  keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py,sha256=vtVhieAv277mAiZj7Kvvqg_Ba7klfQxZVk4PPxNNQ0s,3062
356
- keras_hub/src/models/stable_diffusion_3/mmdit.py,sha256=ls0DCsyAP2VMdaKSZ4xm_LaWkvxokCMFWgQCKVWJRLQ,40857
356
+ keras_hub/src/models/stable_diffusion_3/mmdit.py,sha256=jkO7uP3fNrbuFLiOJV-7_S8hz-DqkasZNkoJIdsg58Q,40859
357
357
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py,sha256=w8lsMampk34M9xQi96mEnXmkaKQqFQtoFTW8zP7ilEA,24078
358
358
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py,sha256=oQcVCWOwrdUTrr_JNekoMqdSlKYMGz5tG6v8uD25lTc,5479
359
359
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py,sha256=t4uw920Jn1k80air3WRGimKf71aMVu6q73oWFH348vk,6384
@@ -430,7 +430,7 @@ keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py,sha256=hRv_XxoPIPDpHfO0Z
430
430
  keras_hub/src/tokenizers/word_piece_tokenizer.py,sha256=vP6AZgbzsRiuPCt3W_n94nsF7XiERnagWcH_rqJHtVU,19943
431
431
  keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=cylrs02ZrYQ1TuZr9oyS3NrVbDwGctA3VXbIh1pFJMQ,6743
432
432
  keras_hub/src/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
433
- keras_hub/src/utils/keras_utils.py,sha256=IB_eIrln3N5sVyCapwv1jzLEmuBv8vBRwSVd3toSgyI,3097
433
+ keras_hub/src/utils/keras_utils.py,sha256=mtj5Kr9EROso10SafmQ-C9uCLbIId4cXAuJSNDRqHb8,4290
434
434
  keras_hub/src/utils/pipeline_model.py,sha256=jgzB6NQPSl0KOu08N-TazfOnXnUJbZjH2EXXhx25Ftg,9084
435
435
  keras_hub/src/utils/preset_utils.py,sha256=BqTqtLouPQrTKelup2og_yziRBcu9dXFbbAST0I-XlE,32012
436
436
  keras_hub/src/utils/python_utils.py,sha256=N8nWeO3san4YnGkffRXG3Ix7VEIMTKSN21FX5TuL7G8,202
@@ -459,7 +459,7 @@ keras_hub/src/utils/transformers/convert_qwen.py,sha256=I2bfwo8AQd_JfwFpiAuCQ3k_
459
459
  keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
460
460
  keras_hub/src/utils/transformers/preset_loader.py,sha256=0Hi7R8HnATcwFVLsJwMMIMWTCXHNfep4IPiRpQXqM-w,3933
461
461
  keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
462
- keras_hub_nightly-0.20.0.dev202504020401.dist-info/METADATA,sha256=UdVE9mpAcH4RH9b_-tSwYDep5ldoTNBEeDdj3uk1XnU,7715
463
- keras_hub_nightly-0.20.0.dev202504020401.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
464
- keras_hub_nightly-0.20.0.dev202504020401.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
465
- keras_hub_nightly-0.20.0.dev202504020401.dist-info/RECORD,,
462
+ keras_hub_nightly-0.20.0.dev202504030357.dist-info/METADATA,sha256=sd9s0yxPsKnlKuvSjOvdNoe10H3_1y6bskN04hjrYMU,7715
463
+ keras_hub_nightly-0.20.0.dev202504030357.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
464
+ keras_hub_nightly-0.20.0.dev202504030357.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
465
+ keras_hub_nightly-0.20.0.dev202504030357.dist-info/RECORD,,