keras-hub-nightly 0.20.0.dev202504010407__py3-none-any.whl → 0.20.0.dev202504030357__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (27) hide show
  1. keras_hub/api/models/__init__.py +18 -0
  2. keras_hub/api/tokenizers/__init__.py +3 -0
  3. keras_hub/src/models/gemma/gemma_attention.py +26 -17
  4. keras_hub/src/models/gemma3/gemma3_attention.py +2 -2
  5. keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +2 -2
  6. keras_hub/src/models/llama/llama_attention.py +2 -2
  7. keras_hub/src/models/mistral/mistral_attention.py +2 -2
  8. keras_hub/src/models/phi3/phi3_attention.py +2 -2
  9. keras_hub/src/models/qwen/qwen_attention.py +2 -2
  10. keras_hub/src/models/roformer_v2/__init__.py +0 -0
  11. keras_hub/src/models/roformer_v2/roformer_v2_attention.py +212 -0
  12. keras_hub/src/models/roformer_v2/roformer_v2_backbone.py +198 -0
  13. keras_hub/src/models/roformer_v2/roformer_v2_encoder.py +128 -0
  14. keras_hub/src/models/roformer_v2/roformer_v2_masked_lm.py +173 -0
  15. keras_hub/src/models/roformer_v2/roformer_v2_masked_lm_preprocessor.py +125 -0
  16. keras_hub/src/models/roformer_v2/roformer_v2_presets.py +0 -0
  17. keras_hub/src/models/roformer_v2/roformer_v2_text_classifier.py +121 -0
  18. keras_hub/src/models/roformer_v2/roformer_v2_text_classifier_preprocessor.py +128 -0
  19. keras_hub/src/models/roformer_v2/roformer_v2_tokenizer.py +62 -0
  20. keras_hub/src/models/stable_diffusion_3/mmdit.py +2 -2
  21. keras_hub/src/utils/keras_utils.py +44 -1
  22. keras_hub/src/utils/preset_utils.py +2 -1
  23. keras_hub/src/version_utils.py +1 -1
  24. {keras_hub_nightly-0.20.0.dev202504010407.dist-info → keras_hub_nightly-0.20.0.dev202504030357.dist-info}/METADATA +1 -1
  25. {keras_hub_nightly-0.20.0.dev202504010407.dist-info → keras_hub_nightly-0.20.0.dev202504030357.dist-info}/RECORD +27 -17
  26. {keras_hub_nightly-0.20.0.dev202504010407.dist-info → keras_hub_nightly-0.20.0.dev202504030357.dist-info}/WHEEL +0 -0
  27. {keras_hub_nightly-0.20.0.dev202504010407.dist-info → keras_hub_nightly-0.20.0.dev202504030357.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,62 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.models.bert.bert_tokenizer import BertTokenizer
3
+ from keras_hub.src.models.roformer_v2.roformer_v2_backbone import (
4
+ RoformerV2Backbone,
5
+ )
6
+
7
+
8
+ @keras_hub_export(
9
+ [
10
+ "keras_hub.tokenizers.RoformerV2Tokenizer",
11
+ "keras_hub.models.RoformerV2Tokenizer",
12
+ ]
13
+ )
14
+ class RoformerV2Tokenizer(BertTokenizer):
15
+ """A RoformerV2 tokenizer using WordPiece subword segmentation.
16
+
17
+ This tokenizer class will tokenize raw strings into integer sequences and
18
+ is based on `keras_hub.tokenizers.WordPieceTokenizer`. Unlike the
19
+ underlying tokenizer, it will check for special tokens needed by RoformerV2
20
+ models and provides a `from_preset()` method to automatically download
21
+ a matching vocabulary for a RoformerV2 preset.
22
+
23
+ If input is a batch of strings (rank > 0), the layer will output a
24
+ `tf.RaggedTensor` where the last dimension of the output is ragged.
25
+
26
+ If input is a scalar string (rank == 0), the layer will output a dense
27
+ `tf.Tensor` with static shape `[None]`.
28
+
29
+ Args:
30
+ vocabulary: A list of strings or a string filename path. If
31
+ passing a list, each element of the list should be a single word
32
+ piece token string. If passing a filename, the file should be a
33
+ plain text file containing a single word piece token per line.
34
+ lowercase: If `True`, the input text will be first lowered before
35
+ tokenization.
36
+ special_tokens_in_strings: bool. A bool to indicate if the tokenizer
37
+ should expect special tokens in input strings that should be
38
+ tokenized and mapped correctly to their ids. Defaults to False.
39
+
40
+ Examples:
41
+ ```python
42
+ # Unbatched input.
43
+ tokenizer = keras_hub.models.RoformerV2Tokenizer.from_preset(
44
+ "roformer_v2_base_zh",
45
+ )
46
+ tokenizer("The quick brown fox jumped.")
47
+
48
+ # Batched input.
49
+ tokenizer(["The quick brown fox jumped.", "The fox slept."])
50
+
51
+ # Detokenization.
52
+ tokenizer.detokenize(tokenizer("The quick brown fox jumped."))
53
+
54
+ # Custom vocabulary.
55
+ vocab = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]
56
+ vocab += ["The", "quick", "brown", "fox", "jumped", "."]
57
+ tokenizer = keras_hub.models.RoformerV2Tokenizer(vocabulary=vocab)
58
+ tokenizer("The quick brown fox jumped.")
59
+ ```
60
+ """
61
+
62
+ backbone_cls = RoformerV2Backbone
@@ -6,8 +6,8 @@ from keras import ops
6
6
 
7
7
  from keras_hub.src.layers.modeling.position_embedding import PositionEmbedding
8
8
  from keras_hub.src.models.backbone import Backbone
9
+ from keras_hub.src.utils.keras_utils import fused_attention_op_available
9
10
  from keras_hub.src.utils.keras_utils import gelu_approximate
10
- from keras_hub.src.utils.keras_utils import has_flash_attention_support
11
11
  from keras_hub.src.utils.keras_utils import standardize_data_format
12
12
 
13
13
 
@@ -771,7 +771,7 @@ class MMDiTBlock(layers.Layer):
771
771
  def _compute_attention(self, query, key, value):
772
772
  batch_size = ops.shape(query)[0]
773
773
 
774
- if has_flash_attention_support():
774
+ if fused_attention_op_available():
775
775
  # Use `dot_product_attention` with Flash Attention support if
776
776
  # available.
777
777
  encoded = ops.dot_product_attention(
@@ -55,7 +55,7 @@ def standardize_data_format(data_format):
55
55
  return data_format
56
56
 
57
57
 
58
- def has_flash_attention_support():
58
+ def fused_attention_op_available():
59
59
  if (
60
60
  hasattr(keras.config, "is_flash_attention_enabled")
61
61
  and keras.config.backend() == "jax"
@@ -104,3 +104,46 @@ def running_on_gpu():
104
104
  import torch
105
105
 
106
106
  return torch.cuda.is_available()
107
+
108
+
109
+ def gpu_supports_fused_attention_op():
110
+ deny_list = ["T4"]
111
+ for denied_gpu in deny_list:
112
+ if any(denied_gpu in gpu.upper() for gpu in get_gpu_names()):
113
+ return False
114
+ return True
115
+
116
+
117
+ def get_gpu_names():
118
+ """Detects and returns the names of available GPUs based on the backend.
119
+
120
+ Note:
121
+ The format and content of the returned GPU names are **not normalized**
122
+ and vary significantly depending on the active backend. This function
123
+ provides the names as reported by the respective backend's API."
124
+ """
125
+ backend = keras.config.backend()
126
+ if backend == "jax":
127
+ import jax
128
+
129
+ devices = jax.devices()
130
+
131
+ return [getattr(d, "device_kind", "") for d in devices]
132
+
133
+ elif backend == "tensorflow":
134
+ import tensorflow as tf
135
+
136
+ gpus = tf.config.list_physical_devices("GPU")
137
+ return [
138
+ tf.config.experimental.get_device_details(gpu)["device_name"]
139
+ for gpu in gpus
140
+ ]
141
+ elif backend == "torch":
142
+ import torch
143
+
144
+ return [
145
+ torch.cuda.get_device_name(i)
146
+ for i in range(torch.cuda.device_count())
147
+ ]
148
+ else:
149
+ return [""]
@@ -238,7 +238,8 @@ def get_file(preset, path):
238
238
  "2) a Kaggle Models handle like "
239
239
  "`'kaggle://keras/bert/keras/bert_base_en'`\n"
240
240
  "3) a Hugging Face handle like `'hf://username/bert_base_en'`\n"
241
- "4) a path to a local preset directory like `'./bert_base_en`\n"
241
+ "4) a Modelscope handle like `'modelscope://username/bert_base_en'`\n"
242
+ "5) a path to a local preset directory like `'./bert_base_en'`\n"
242
243
  "Use `print(cls.presets.keys())` to view all built-in presets for "
243
244
  "API symbol `cls`.\n"
244
245
  f"Received: preset='{preset}'"
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.20.0.dev202504010407"
4
+ __version__ = "0.20.0.dev202504030357"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.20.0.dev202504010407
3
+ Version: 0.20.0.dev202504030357
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -2,13 +2,13 @@ keras_hub/__init__.py,sha256=QGdXyHgYt6cMUAP1ebxwc6oR86dE0dkMxNy2eOCQtFo,855
2
2
  keras_hub/api/__init__.py,sha256=EzR6D-XWsm_gDrX5LDwKEmrah_gu3ffpj8GKBudE0yI,485
3
3
  keras_hub/api/layers/__init__.py,sha256=cALDY20DHCVjJDKCD84zHvTZtAgz0xEvozk7a3Cl1Uk,3719
4
4
  keras_hub/api/metrics/__init__.py,sha256=So8Ec-lOcTzn_UUMmAdzDm8RKkPu2dbRUm2px8gpUEI,381
5
- keras_hub/api/models/__init__.py,sha256=Ml8AQyMz9VKuLGEjKKQzlIDNScIaoCYmlgH-Zfk4Jxo,18725
5
+ keras_hub/api/models/__init__.py,sha256=cN3c2t8tldP79aVk4Z2CnMNLqwu0uOym7yuZ_niKZzE,19393
6
6
  keras_hub/api/samplers/__init__.py,sha256=n-_SEXxr2LNUzK2FqVFN7alsrkx1P_HOVTeLZKeGCdE,730
7
- keras_hub/api/tokenizers/__init__.py,sha256=TOTM3he5JWPME_4e29_S1nrWibTHomcuuKQ4KarqUNo,2831
7
+ keras_hub/api/tokenizers/__init__.py,sha256=NCQSOg3vf3KlM2YBsxApcJUVu9MH2jV0NQrM3f4EhJ4,2927
8
8
  keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
9
9
  keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
10
  keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
11
- keras_hub/src/version_utils.py,sha256=OsUwPWPZpPCMjDiiDuMytzPQ_fmJixCqlxXypU5TQGg,222
11
+ keras_hub/src/version_utils.py,sha256=KUNpoaGt9bHctmG36tc-lZMvjmS45Cl5DVx4BKBtx_E,222
12
12
  keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
13
  keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
14
14
  keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
@@ -187,7 +187,7 @@ keras_hub/src/models/flux/flux_presets.py,sha256=z7C_FbI1_F5YETXuWpc7Yh_0w-5N0eB
187
187
  keras_hub/src/models/flux/flux_text_to_image.py,sha256=Rf5dD2EhG0bE8Gyg9sqaA8YEexS1kdraofIkxiZDjvc,4166
188
188
  keras_hub/src/models/flux/flux_text_to_image_preprocessor.py,sha256=Fs9jr97QtmRUbRRz1kITpkuhDM2GoV3n0XSFC-qQA14,2252
189
189
  keras_hub/src/models/gemma/__init__.py,sha256=rVzOJMJ39bgVlT8UdC0t8PlN2c237GKTBmfHIsbPuOQ,251
190
- keras_hub/src/models/gemma/gemma_attention.py,sha256=XShBTunOWQOOE4Aapy3HdV9uIWuMcdNdYS1k1P3ia60,9708
190
+ keras_hub/src/models/gemma/gemma_attention.py,sha256=iKSdBRkKEOnryXjz6K-thz70Dgp7LGXo5vYx8D-VMgY,10083
191
191
  keras_hub/src/models/gemma/gemma_backbone.py,sha256=GzAUSArw_pN9dtWQzTVhWDbW-XyWt4GyMcFLn9hwmh0,13391
192
192
  keras_hub/src/models/gemma/gemma_causal_lm.py,sha256=3OXaIXlrKqMIuUnBk-bUz-0SYFL-XkkQTWm8qRY2YII,16770
193
193
  keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py,sha256=bpKkEurWIfa6Kp9s4pz84-sBDSA6ZFNHP8nXG1fFQrg,2912
@@ -196,7 +196,7 @@ keras_hub/src/models/gemma/gemma_presets.py,sha256=lWPjEb_6pFC1vdX7mwxf-C2im93Yy
196
196
  keras_hub/src/models/gemma/gemma_tokenizer.py,sha256=FhcyNL4lo63MqOhTQPFr07-u3BddL0fVM4TmOm8ku-I,2622
197
197
  keras_hub/src/models/gemma/rms_normalization.py,sha256=fku-JEo2sNy-ytX7ySD1sRzdhRAPmYex_z8oFk1NiG8,833
198
198
  keras_hub/src/models/gemma3/__init__.py,sha256=oPFadkdK5DRLD6sYx83iTetY5daWuSzmJilLjokHcbU,257
199
- keras_hub/src/models/gemma3/gemma3_attention.py,sha256=bEAgo88D4HjhGLyLhvjDc_-cYgvYb73TJIp4IkzvLl4,11131
199
+ keras_hub/src/models/gemma3/gemma3_attention.py,sha256=Zvu9i1b2QZlFhs3LVV3POOQnRQiiL8iylnxNWG9_8_A,11133
200
200
  keras_hub/src/models/gemma3/gemma3_backbone.py,sha256=aogg-VF3lFOQj84vFqI16Y_rWzTFyDxB6w6wOxO9fJs,14019
201
201
  keras_hub/src/models/gemma3/gemma3_causal_lm.py,sha256=6sQ88eU_31PLl-PW-9risgNWOxRFp1GSnbS-vUUBPfQ,11666
202
202
  keras_hub/src/models/gemma3/gemma3_causal_lm_preprocessor.py,sha256=YDbai1LyjMDZLuMLPzsZyiEviojCi26s6k6q9IvOC0s,25419
@@ -215,14 +215,14 @@ keras_hub/src/models/gpt2/gpt2_preprocessor.py,sha256=eYMIXw8Oebsr14GhqBh1CEhbLb
215
215
  keras_hub/src/models/gpt2/gpt2_presets.py,sha256=1mflR1dVuEwFfNe3Fkra6vt7DrjmkAckjyP-LclNLFc,1897
216
216
  keras_hub/src/models/gpt2/gpt2_tokenizer.py,sha256=-wA7ZTiRZDVdEKAskyQiXB5GLYuj9TkuADtyyYpoBuA,2615
217
217
  keras_hub/src/models/gpt_neo_x/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
218
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py,sha256=IwfmmAlndr8W1VfXXMK9lkncBxo-AHYqzLo_3hS-k_s,9285
218
+ keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py,sha256=eJd7OUFT2rmpBElmQ4bVXT9BlqEzsFm6HGZKSuJzjvA,9287
219
219
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py,sha256=yov92B8j9lXz-9ZOpLa_PLT7WgcRKWG8fwB824Z_1hw,6508
220
220
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py,sha256=HriMXNVjGlFTjCIgfLRR3AvsOPbjGToDM_XY-bdger0,7690
221
221
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py,sha256=YiVz9qBHjQlwKgtUVrgBTFitHcX5pbmhhfHwaulyRxY,1957
222
222
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py,sha256=hmB81V0SuI6bEsxEuFkYgq58wbcrv1YLvmXGin5T3E0,9732
223
223
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py,sha256=aKso-8yGrynn3tZ5xm2egcXIBQo3__sWZDBtjmS3ZgU,1991
224
224
  keras_hub/src/models/llama/__init__.py,sha256=svVZjGi71R3lVbq0AdbqlXj909mr3Rp9EPXdiO0w0G0,251
225
- keras_hub/src/models/llama/llama_attention.py,sha256=i2OHkBAuC7iKDZmZF9eRUilxTKjbmLYXXyO2vbSLT8A,7929
225
+ keras_hub/src/models/llama/llama_attention.py,sha256=Q5N37sAESAjdFg9GNlanvNbD-dHS3mNNtt3vMXAFKMs,7931
226
226
  keras_hub/src/models/llama/llama_backbone.py,sha256=tjNEIKIL9ncoEL5KNFE5i0oTUkysjmJmh3mHmCz4RCw,11861
227
227
  keras_hub/src/models/llama/llama_causal_lm.py,sha256=9bP4-XDCMgsZuH1ILIMzmwq2Fyy6vkk1Vsht-lMGCNo,13258
228
228
  keras_hub/src/models/llama/llama_causal_lm_preprocessor.py,sha256=VTboOMiRBoxHrwP343upLUTsv3AG65r2H8h_PNPVphE,3047
@@ -237,7 +237,7 @@ keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py,sha256=twbXel9hsQgG
237
237
  keras_hub/src/models/llama3/llama3_presets.py,sha256=PWEW_hLMCD9SIYm3QLhRVIcwjrPuqv-KDebXACXRNbM,1579
238
238
  keras_hub/src/models/llama3/llama3_tokenizer.py,sha256=J-KxRc08vGs4olFw_4mtJs0W_dTeUyj_XxMycazBmxI,1934
239
239
  keras_hub/src/models/mistral/__init__.py,sha256=vjBlzcrIsFSwJKnfwfTNMKstIEKGFTE3kVcdAdfwlnE,263
240
- keras_hub/src/models/mistral/mistral_attention.py,sha256=00_bwlkBkxZoCuqhy4aMV6o-8kc4Ek06_m-ZeyPlsE8,8607
240
+ keras_hub/src/models/mistral/mistral_attention.py,sha256=nGDlD4NcIwIGlfbt3ArxdT5QAvamY7yiNEGDlTgWirU,8609
241
241
  keras_hub/src/models/mistral/mistral_backbone.py,sha256=oatoqSX0z-xjKfXeSveL4P0Dcr84kd0o0pK_kuTbJtY,7257
242
242
  keras_hub/src/models/mistral/mistral_causal_lm.py,sha256=ujCKfsbuYzr8VusqPYcnTH6rTb0MRfzsinEraVhQksc,13234
243
243
  keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py,sha256=_4qq-uKktfIg_i081ZWjZGEIYZpedBwtBGpchQQ-qEk,3079
@@ -275,7 +275,7 @@ keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=zF04iShXky_c3IfUbmL
275
275
  keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=ljTiADHo0Ok88q-jVzwJIle2C8xcxnudLTsBLzIySaM,2415
276
276
  keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=mwzhdo6wjemOjic4p6vECMlScxyI_meXMWBZ76YlblE,18308
277
277
  keras_hub/src/models/phi3/__init__.py,sha256=zIbf1MU-ks91mEkjTRJAsk51N3BBnXDF2JM1vO-13PQ,245
278
- keras_hub/src/models/phi3/phi3_attention.py,sha256=7eeEP3za6arfqzyLtrJV6desV2_9b6bR5LkupeURrHs,9978
278
+ keras_hub/src/models/phi3/phi3_attention.py,sha256=pojx23rG2NPqy0MRo_OspnxipJCZvexZ2V25xucimHY,9980
279
279
  keras_hub/src/models/phi3/phi3_backbone.py,sha256=fY-OY2ZrqxDHglYjTM0OCacBdEQHwj-XNmU0MnXL7iU,8885
280
280
  keras_hub/src/models/phi3/phi3_causal_lm.py,sha256=kMMq7fQ8hlb_mLO_nU1lGVqILayulVvzzZgl2EvY9_k,8389
281
281
  keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py,sha256=gNx1k-n7d0XDwpNbcZiO9yLkwdXYCvwGyA3b0QCnPAE,3043
@@ -285,7 +285,7 @@ keras_hub/src/models/phi3/phi3_presets.py,sha256=sb2ce7Gq1OikFEf2KIYG69rFKHYKj8q
285
285
  keras_hub/src/models/phi3/phi3_rotary_embedding.py,sha256=wqiRn8nETNcLc5Vsm_d_8s11Ro6ibWZbWvODdLqIOo4,5013
286
286
  keras_hub/src/models/phi3/phi3_tokenizer.py,sha256=bOPH14wTVVHJHq8mgzXLjsgvKMNhfO8eayevAPpjYVA,1992
287
287
  keras_hub/src/models/qwen/__init__.py,sha256=hskG3tZUY_AYZPp0WVzbCtw37AIYENyp3DOnqHmdRBw,65
288
- keras_hub/src/models/qwen/qwen_attention.py,sha256=vBPGdNMRnfuETxxdwDzwpObOvt3zB2qqc9kbWRRKuQg,12951
288
+ keras_hub/src/models/qwen/qwen_attention.py,sha256=FL_09-eCFugktDNzFPm6beZLD04pNg9TFKgfXdhWUwk,12953
289
289
  keras_hub/src/models/qwen/qwen_backbone.py,sha256=xBu2zEzFFAjKgaHOqPnxLU-j4oL3N2G2KT-uwL2zEM0,13018
290
290
  keras_hub/src/models/qwen/qwen_causal_lm.py,sha256=_f-UHaKHp0ncxknpkpEJiW3jlng3E4CmddjQfz2QzJo,12249
291
291
  keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py,sha256=Va-4TLJD3ycEnkS41rF3dVj4_6K0j-gxLTrREFRcyr0,609
@@ -315,6 +315,16 @@ keras_hub/src/models/roberta/roberta_presets.py,sha256=lu8_E888-YGlhMo1kE4LnsR0R
315
315
  keras_hub/src/models/roberta/roberta_text_classifier.py,sha256=x36hU84P-ROReZniUA8sMODzj2olrHvG0F5RTiz6Two,6681
316
316
  keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py,sha256=gAJa8JdPUmT1N7nxBqtaIbnfXV-xlNjTtkEevQhfjNU,5993
317
317
  keras_hub/src/models/roberta/roberta_tokenizer.py,sha256=VKPrgXVT9aMKP7et2DIWKlTN8g4tIzjya0MHqNz9BwQ,2712
318
+ keras_hub/src/models/roformer_v2/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
319
+ keras_hub/src/models/roformer_v2/roformer_v2_attention.py,sha256=RvDxuh0eZ6QEhyU_SzVcCbadSFWtNtsbHfYfWtBU7r0,7166
320
+ keras_hub/src/models/roformer_v2/roformer_v2_backbone.py,sha256=g1xCi9Zet0dHkiOtpjwsO1odc__HzLDn9cTHNykpYEE,7188
321
+ keras_hub/src/models/roformer_v2/roformer_v2_encoder.py,sha256=o_M3dDtebBtXRAxwhiRmdWA59tu1_MNKLINf4GQYfeA,4218
322
+ keras_hub/src/models/roformer_v2/roformer_v2_masked_lm.py,sha256=4uQ6DKFDdBOu0bHaL45bqtpL-CMZw59inXirD9zWFlI,5950
323
+ keras_hub/src/models/roformer_v2/roformer_v2_masked_lm_preprocessor.py,sha256=1APlYMi_Be_aaEk4Ij6c16JH5OpDrGnvwtv8LY3fjrw,5403
324
+ keras_hub/src/models/roformer_v2/roformer_v2_presets.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
325
+ keras_hub/src/models/roformer_v2/roformer_v2_text_classifier.py,sha256=QSRSSWt1T16BFlSynyJduUTd86AEV4NvqdJgIiw1wys,4380
326
+ keras_hub/src/models/roformer_v2/roformer_v2_text_classifier_preprocessor.py,sha256=Md0ioE6OlEyhn6QDTrLVik8EVtiF2YvR5Bu5vAyGEHg,5270
327
+ keras_hub/src/models/roformer_v2/roformer_v2_tokenizer.py,sha256=Pc4z7e5rSZH6qh_suORb-O89ZaFcCjde_4gs-odYook,2406
318
328
  keras_hub/src/models/sam/__init__.py,sha256=fp71Q288xeE81tIOZkkudec4Acs8v4aO5WdyzCD9x-c,239
319
329
  keras_hub/src/models/sam/sam_backbone.py,sha256=VtT-tjTaVW6v2u_JLe3vyKUoHASPDs5aetc3s0MDo6U,4302
320
330
  keras_hub/src/models/sam/sam_image_converter.py,sha256=5POp3aYFu6CK3R0NNfeUBbjhguBkincSMNvlcIJXarE,324
@@ -343,7 +353,7 @@ keras_hub/src/models/siglip/siglip_tokenizer.py,sha256=j_67JbIHJDRk-CbiemG2dgAO6
343
353
  keras_hub/src/models/siglip/siglip_vision_encoder.py,sha256=CaNaFq5thBC3TUXXOf2qknk5vWsauM20ZoaDPYRnXcs,5927
344
354
  keras_hub/src/models/stable_diffusion_3/__init__.py,sha256=ZKYQuaRObyhKq8GVAHmoRvlXp6FpU8ChvutVCHyXKuc,343
345
355
  keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py,sha256=vtVhieAv277mAiZj7Kvvqg_Ba7klfQxZVk4PPxNNQ0s,3062
346
- keras_hub/src/models/stable_diffusion_3/mmdit.py,sha256=ls0DCsyAP2VMdaKSZ4xm_LaWkvxokCMFWgQCKVWJRLQ,40857
356
+ keras_hub/src/models/stable_diffusion_3/mmdit.py,sha256=jkO7uP3fNrbuFLiOJV-7_S8hz-DqkasZNkoJIdsg58Q,40859
347
357
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py,sha256=w8lsMampk34M9xQi96mEnXmkaKQqFQtoFTW8zP7ilEA,24078
348
358
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py,sha256=oQcVCWOwrdUTrr_JNekoMqdSlKYMGz5tG6v8uD25lTc,5479
349
359
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py,sha256=t4uw920Jn1k80air3WRGimKf71aMVu6q73oWFH348vk,6384
@@ -420,9 +430,9 @@ keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py,sha256=hRv_XxoPIPDpHfO0Z
420
430
  keras_hub/src/tokenizers/word_piece_tokenizer.py,sha256=vP6AZgbzsRiuPCt3W_n94nsF7XiERnagWcH_rqJHtVU,19943
421
431
  keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=cylrs02ZrYQ1TuZr9oyS3NrVbDwGctA3VXbIh1pFJMQ,6743
422
432
  keras_hub/src/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
423
- keras_hub/src/utils/keras_utils.py,sha256=IB_eIrln3N5sVyCapwv1jzLEmuBv8vBRwSVd3toSgyI,3097
433
+ keras_hub/src/utils/keras_utils.py,sha256=mtj5Kr9EROso10SafmQ-C9uCLbIId4cXAuJSNDRqHb8,4290
424
434
  keras_hub/src/utils/pipeline_model.py,sha256=jgzB6NQPSl0KOu08N-TazfOnXnUJbZjH2EXXhx25Ftg,9084
425
- keras_hub/src/utils/preset_utils.py,sha256=5xEm6Uz1vfQkBqyENt97qaxWoq-P7mlPC0LIpXqDM70,31928
435
+ keras_hub/src/utils/preset_utils.py,sha256=BqTqtLouPQrTKelup2og_yziRBcu9dXFbbAST0I-XlE,32012
426
436
  keras_hub/src/utils/python_utils.py,sha256=N8nWeO3san4YnGkffRXG3Ix7VEIMTKSN21FX5TuL7G8,202
427
437
  keras_hub/src/utils/tensor_utils.py,sha256=lczQWgPVJU09cLtNbo8MErVFNV9ne4gNlrzbNVQazg4,15042
428
438
  keras_hub/src/utils/imagenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -449,7 +459,7 @@ keras_hub/src/utils/transformers/convert_qwen.py,sha256=I2bfwo8AQd_JfwFpiAuCQ3k_
449
459
  keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
450
460
  keras_hub/src/utils/transformers/preset_loader.py,sha256=0Hi7R8HnATcwFVLsJwMMIMWTCXHNfep4IPiRpQXqM-w,3933
451
461
  keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
452
- keras_hub_nightly-0.20.0.dev202504010407.dist-info/METADATA,sha256=77ncA8nPcUGWqFtGIA4EPqrK6BdhNskTR3vDrTVWaLU,7715
453
- keras_hub_nightly-0.20.0.dev202504010407.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
454
- keras_hub_nightly-0.20.0.dev202504010407.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
455
- keras_hub_nightly-0.20.0.dev202504010407.dist-info/RECORD,,
462
+ keras_hub_nightly-0.20.0.dev202504030357.dist-info/METADATA,sha256=sd9s0yxPsKnlKuvSjOvdNoe10H3_1y6bskN04hjrYMU,7715
463
+ keras_hub_nightly-0.20.0.dev202504030357.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
464
+ keras_hub_nightly-0.20.0.dev202504030357.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
465
+ keras_hub_nightly-0.20.0.dev202504030357.dist-info/RECORD,,