keras-hub-nightly 0.20.0.dev202504010407__py3-none-any.whl → 0.20.0.dev202504030357__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/api/models/__init__.py +18 -0
- keras_hub/api/tokenizers/__init__.py +3 -0
- keras_hub/src/models/gemma/gemma_attention.py +26 -17
- keras_hub/src/models/gemma3/gemma3_attention.py +2 -2
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +2 -2
- keras_hub/src/models/llama/llama_attention.py +2 -2
- keras_hub/src/models/mistral/mistral_attention.py +2 -2
- keras_hub/src/models/phi3/phi3_attention.py +2 -2
- keras_hub/src/models/qwen/qwen_attention.py +2 -2
- keras_hub/src/models/roformer_v2/__init__.py +0 -0
- keras_hub/src/models/roformer_v2/roformer_v2_attention.py +212 -0
- keras_hub/src/models/roformer_v2/roformer_v2_backbone.py +198 -0
- keras_hub/src/models/roformer_v2/roformer_v2_encoder.py +128 -0
- keras_hub/src/models/roformer_v2/roformer_v2_masked_lm.py +173 -0
- keras_hub/src/models/roformer_v2/roformer_v2_masked_lm_preprocessor.py +125 -0
- keras_hub/src/models/roformer_v2/roformer_v2_presets.py +0 -0
- keras_hub/src/models/roformer_v2/roformer_v2_text_classifier.py +121 -0
- keras_hub/src/models/roformer_v2/roformer_v2_text_classifier_preprocessor.py +128 -0
- keras_hub/src/models/roformer_v2/roformer_v2_tokenizer.py +62 -0
- keras_hub/src/models/stable_diffusion_3/mmdit.py +2 -2
- keras_hub/src/utils/keras_utils.py +44 -1
- keras_hub/src/utils/preset_utils.py +2 -1
- keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.20.0.dev202504010407.dist-info → keras_hub_nightly-0.20.0.dev202504030357.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.20.0.dev202504010407.dist-info → keras_hub_nightly-0.20.0.dev202504030357.dist-info}/RECORD +27 -17
- {keras_hub_nightly-0.20.0.dev202504010407.dist-info → keras_hub_nightly-0.20.0.dev202504030357.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.20.0.dev202504010407.dist-info → keras_hub_nightly-0.20.0.dev202504030357.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,62 @@
|
|
1
|
+
from keras_hub.src.api_export import keras_hub_export
|
2
|
+
from keras_hub.src.models.bert.bert_tokenizer import BertTokenizer
|
3
|
+
from keras_hub.src.models.roformer_v2.roformer_v2_backbone import (
|
4
|
+
RoformerV2Backbone,
|
5
|
+
)
|
6
|
+
|
7
|
+
|
8
|
+
@keras_hub_export(
|
9
|
+
[
|
10
|
+
"keras_hub.tokenizers.RoformerV2Tokenizer",
|
11
|
+
"keras_hub.models.RoformerV2Tokenizer",
|
12
|
+
]
|
13
|
+
)
|
14
|
+
class RoformerV2Tokenizer(BertTokenizer):
|
15
|
+
"""A RoformerV2 tokenizer using WordPiece subword segmentation.
|
16
|
+
|
17
|
+
This tokenizer class will tokenize raw strings into integer sequences and
|
18
|
+
is based on `keras_hub.tokenizers.WordPieceTokenizer`. Unlike the
|
19
|
+
underlying tokenizer, it will check for special tokens needed by RoformerV2
|
20
|
+
models and provides a `from_preset()` method to automatically download
|
21
|
+
a matching vocabulary for a RoformerV2 preset.
|
22
|
+
|
23
|
+
If input is a batch of strings (rank > 0), the layer will output a
|
24
|
+
`tf.RaggedTensor` where the last dimension of the output is ragged.
|
25
|
+
|
26
|
+
If input is a scalar string (rank == 0), the layer will output a dense
|
27
|
+
`tf.Tensor` with static shape `[None]`.
|
28
|
+
|
29
|
+
Args:
|
30
|
+
vocabulary: A list of strings or a string filename path. If
|
31
|
+
passing a list, each element of the list should be a single word
|
32
|
+
piece token string. If passing a filename, the file should be a
|
33
|
+
plain text file containing a single word piece token per line.
|
34
|
+
lowercase: If `True`, the input text will be first lowered before
|
35
|
+
tokenization.
|
36
|
+
special_tokens_in_strings: bool. A bool to indicate if the tokenizer
|
37
|
+
should expect special tokens in input strings that should be
|
38
|
+
tokenized and mapped correctly to their ids. Defaults to False.
|
39
|
+
|
40
|
+
Examples:
|
41
|
+
```python
|
42
|
+
# Unbatched input.
|
43
|
+
tokenizer = keras_hub.models.RoformerV2Tokenizer.from_preset(
|
44
|
+
"roformer_v2_base_zh",
|
45
|
+
)
|
46
|
+
tokenizer("The quick brown fox jumped.")
|
47
|
+
|
48
|
+
# Batched input.
|
49
|
+
tokenizer(["The quick brown fox jumped.", "The fox slept."])
|
50
|
+
|
51
|
+
# Detokenization.
|
52
|
+
tokenizer.detokenize(tokenizer("The quick brown fox jumped."))
|
53
|
+
|
54
|
+
# Custom vocabulary.
|
55
|
+
vocab = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]
|
56
|
+
vocab += ["The", "quick", "brown", "fox", "jumped", "."]
|
57
|
+
tokenizer = keras_hub.models.RoformerV2Tokenizer(vocabulary=vocab)
|
58
|
+
tokenizer("The quick brown fox jumped.")
|
59
|
+
```
|
60
|
+
"""
|
61
|
+
|
62
|
+
backbone_cls = RoformerV2Backbone
|
@@ -6,8 +6,8 @@ from keras import ops
|
|
6
6
|
|
7
7
|
from keras_hub.src.layers.modeling.position_embedding import PositionEmbedding
|
8
8
|
from keras_hub.src.models.backbone import Backbone
|
9
|
+
from keras_hub.src.utils.keras_utils import fused_attention_op_available
|
9
10
|
from keras_hub.src.utils.keras_utils import gelu_approximate
|
10
|
-
from keras_hub.src.utils.keras_utils import has_flash_attention_support
|
11
11
|
from keras_hub.src.utils.keras_utils import standardize_data_format
|
12
12
|
|
13
13
|
|
@@ -771,7 +771,7 @@ class MMDiTBlock(layers.Layer):
|
|
771
771
|
def _compute_attention(self, query, key, value):
|
772
772
|
batch_size = ops.shape(query)[0]
|
773
773
|
|
774
|
-
if
|
774
|
+
if fused_attention_op_available():
|
775
775
|
# Use `dot_product_attention` with Flash Attention support if
|
776
776
|
# available.
|
777
777
|
encoded = ops.dot_product_attention(
|
@@ -55,7 +55,7 @@ def standardize_data_format(data_format):
|
|
55
55
|
return data_format
|
56
56
|
|
57
57
|
|
58
|
-
def
|
58
|
+
def fused_attention_op_available():
|
59
59
|
if (
|
60
60
|
hasattr(keras.config, "is_flash_attention_enabled")
|
61
61
|
and keras.config.backend() == "jax"
|
@@ -104,3 +104,46 @@ def running_on_gpu():
|
|
104
104
|
import torch
|
105
105
|
|
106
106
|
return torch.cuda.is_available()
|
107
|
+
|
108
|
+
|
109
|
+
def gpu_supports_fused_attention_op():
|
110
|
+
deny_list = ["T4"]
|
111
|
+
for denied_gpu in deny_list:
|
112
|
+
if any(denied_gpu in gpu.upper() for gpu in get_gpu_names()):
|
113
|
+
return False
|
114
|
+
return True
|
115
|
+
|
116
|
+
|
117
|
+
def get_gpu_names():
|
118
|
+
"""Detects and returns the names of available GPUs based on the backend.
|
119
|
+
|
120
|
+
Note:
|
121
|
+
The format and content of the returned GPU names are **not normalized**
|
122
|
+
and vary significantly depending on the active backend. This function
|
123
|
+
provides the names as reported by the respective backend's API."
|
124
|
+
"""
|
125
|
+
backend = keras.config.backend()
|
126
|
+
if backend == "jax":
|
127
|
+
import jax
|
128
|
+
|
129
|
+
devices = jax.devices()
|
130
|
+
|
131
|
+
return [getattr(d, "device_kind", "") for d in devices]
|
132
|
+
|
133
|
+
elif backend == "tensorflow":
|
134
|
+
import tensorflow as tf
|
135
|
+
|
136
|
+
gpus = tf.config.list_physical_devices("GPU")
|
137
|
+
return [
|
138
|
+
tf.config.experimental.get_device_details(gpu)["device_name"]
|
139
|
+
for gpu in gpus
|
140
|
+
]
|
141
|
+
elif backend == "torch":
|
142
|
+
import torch
|
143
|
+
|
144
|
+
return [
|
145
|
+
torch.cuda.get_device_name(i)
|
146
|
+
for i in range(torch.cuda.device_count())
|
147
|
+
]
|
148
|
+
else:
|
149
|
+
return [""]
|
@@ -238,7 +238,8 @@ def get_file(preset, path):
|
|
238
238
|
"2) a Kaggle Models handle like "
|
239
239
|
"`'kaggle://keras/bert/keras/bert_base_en'`\n"
|
240
240
|
"3) a Hugging Face handle like `'hf://username/bert_base_en'`\n"
|
241
|
-
"4) a
|
241
|
+
"4) a Modelscope handle like `'modelscope://username/bert_base_en'`\n"
|
242
|
+
"5) a path to a local preset directory like `'./bert_base_en'`\n"
|
242
243
|
"Use `print(cls.presets.keys())` to view all built-in presets for "
|
243
244
|
"API symbol `cls`.\n"
|
244
245
|
f"Received: preset='{preset}'"
|
keras_hub/src/version_utils.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: keras-hub-nightly
|
3
|
-
Version: 0.20.0.
|
3
|
+
Version: 0.20.0.dev202504030357
|
4
4
|
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
5
|
Home-page: https://github.com/keras-team/keras-hub
|
6
6
|
Author: Keras team
|
@@ -2,13 +2,13 @@ keras_hub/__init__.py,sha256=QGdXyHgYt6cMUAP1ebxwc6oR86dE0dkMxNy2eOCQtFo,855
|
|
2
2
|
keras_hub/api/__init__.py,sha256=EzR6D-XWsm_gDrX5LDwKEmrah_gu3ffpj8GKBudE0yI,485
|
3
3
|
keras_hub/api/layers/__init__.py,sha256=cALDY20DHCVjJDKCD84zHvTZtAgz0xEvozk7a3Cl1Uk,3719
|
4
4
|
keras_hub/api/metrics/__init__.py,sha256=So8Ec-lOcTzn_UUMmAdzDm8RKkPu2dbRUm2px8gpUEI,381
|
5
|
-
keras_hub/api/models/__init__.py,sha256=
|
5
|
+
keras_hub/api/models/__init__.py,sha256=cN3c2t8tldP79aVk4Z2CnMNLqwu0uOym7yuZ_niKZzE,19393
|
6
6
|
keras_hub/api/samplers/__init__.py,sha256=n-_SEXxr2LNUzK2FqVFN7alsrkx1P_HOVTeLZKeGCdE,730
|
7
|
-
keras_hub/api/tokenizers/__init__.py,sha256=
|
7
|
+
keras_hub/api/tokenizers/__init__.py,sha256=NCQSOg3vf3KlM2YBsxApcJUVu9MH2jV0NQrM3f4EhJ4,2927
|
8
8
|
keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
|
9
9
|
keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
10
10
|
keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
|
11
|
-
keras_hub/src/version_utils.py,sha256=
|
11
|
+
keras_hub/src/version_utils.py,sha256=KUNpoaGt9bHctmG36tc-lZMvjmS45Cl5DVx4BKBtx_E,222
|
12
12
|
keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
13
13
|
keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
14
14
|
keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
|
@@ -187,7 +187,7 @@ keras_hub/src/models/flux/flux_presets.py,sha256=z7C_FbI1_F5YETXuWpc7Yh_0w-5N0eB
|
|
187
187
|
keras_hub/src/models/flux/flux_text_to_image.py,sha256=Rf5dD2EhG0bE8Gyg9sqaA8YEexS1kdraofIkxiZDjvc,4166
|
188
188
|
keras_hub/src/models/flux/flux_text_to_image_preprocessor.py,sha256=Fs9jr97QtmRUbRRz1kITpkuhDM2GoV3n0XSFC-qQA14,2252
|
189
189
|
keras_hub/src/models/gemma/__init__.py,sha256=rVzOJMJ39bgVlT8UdC0t8PlN2c237GKTBmfHIsbPuOQ,251
|
190
|
-
keras_hub/src/models/gemma/gemma_attention.py,sha256=
|
190
|
+
keras_hub/src/models/gemma/gemma_attention.py,sha256=iKSdBRkKEOnryXjz6K-thz70Dgp7LGXo5vYx8D-VMgY,10083
|
191
191
|
keras_hub/src/models/gemma/gemma_backbone.py,sha256=GzAUSArw_pN9dtWQzTVhWDbW-XyWt4GyMcFLn9hwmh0,13391
|
192
192
|
keras_hub/src/models/gemma/gemma_causal_lm.py,sha256=3OXaIXlrKqMIuUnBk-bUz-0SYFL-XkkQTWm8qRY2YII,16770
|
193
193
|
keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py,sha256=bpKkEurWIfa6Kp9s4pz84-sBDSA6ZFNHP8nXG1fFQrg,2912
|
@@ -196,7 +196,7 @@ keras_hub/src/models/gemma/gemma_presets.py,sha256=lWPjEb_6pFC1vdX7mwxf-C2im93Yy
|
|
196
196
|
keras_hub/src/models/gemma/gemma_tokenizer.py,sha256=FhcyNL4lo63MqOhTQPFr07-u3BddL0fVM4TmOm8ku-I,2622
|
197
197
|
keras_hub/src/models/gemma/rms_normalization.py,sha256=fku-JEo2sNy-ytX7ySD1sRzdhRAPmYex_z8oFk1NiG8,833
|
198
198
|
keras_hub/src/models/gemma3/__init__.py,sha256=oPFadkdK5DRLD6sYx83iTetY5daWuSzmJilLjokHcbU,257
|
199
|
-
keras_hub/src/models/gemma3/gemma3_attention.py,sha256=
|
199
|
+
keras_hub/src/models/gemma3/gemma3_attention.py,sha256=Zvu9i1b2QZlFhs3LVV3POOQnRQiiL8iylnxNWG9_8_A,11133
|
200
200
|
keras_hub/src/models/gemma3/gemma3_backbone.py,sha256=aogg-VF3lFOQj84vFqI16Y_rWzTFyDxB6w6wOxO9fJs,14019
|
201
201
|
keras_hub/src/models/gemma3/gemma3_causal_lm.py,sha256=6sQ88eU_31PLl-PW-9risgNWOxRFp1GSnbS-vUUBPfQ,11666
|
202
202
|
keras_hub/src/models/gemma3/gemma3_causal_lm_preprocessor.py,sha256=YDbai1LyjMDZLuMLPzsZyiEviojCi26s6k6q9IvOC0s,25419
|
@@ -215,14 +215,14 @@ keras_hub/src/models/gpt2/gpt2_preprocessor.py,sha256=eYMIXw8Oebsr14GhqBh1CEhbLb
|
|
215
215
|
keras_hub/src/models/gpt2/gpt2_presets.py,sha256=1mflR1dVuEwFfNe3Fkra6vt7DrjmkAckjyP-LclNLFc,1897
|
216
216
|
keras_hub/src/models/gpt2/gpt2_tokenizer.py,sha256=-wA7ZTiRZDVdEKAskyQiXB5GLYuj9TkuADtyyYpoBuA,2615
|
217
217
|
keras_hub/src/models/gpt_neo_x/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
218
|
-
keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py,sha256=
|
218
|
+
keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py,sha256=eJd7OUFT2rmpBElmQ4bVXT9BlqEzsFm6HGZKSuJzjvA,9287
|
219
219
|
keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py,sha256=yov92B8j9lXz-9ZOpLa_PLT7WgcRKWG8fwB824Z_1hw,6508
|
220
220
|
keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py,sha256=HriMXNVjGlFTjCIgfLRR3AvsOPbjGToDM_XY-bdger0,7690
|
221
221
|
keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py,sha256=YiVz9qBHjQlwKgtUVrgBTFitHcX5pbmhhfHwaulyRxY,1957
|
222
222
|
keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py,sha256=hmB81V0SuI6bEsxEuFkYgq58wbcrv1YLvmXGin5T3E0,9732
|
223
223
|
keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py,sha256=aKso-8yGrynn3tZ5xm2egcXIBQo3__sWZDBtjmS3ZgU,1991
|
224
224
|
keras_hub/src/models/llama/__init__.py,sha256=svVZjGi71R3lVbq0AdbqlXj909mr3Rp9EPXdiO0w0G0,251
|
225
|
-
keras_hub/src/models/llama/llama_attention.py,sha256=
|
225
|
+
keras_hub/src/models/llama/llama_attention.py,sha256=Q5N37sAESAjdFg9GNlanvNbD-dHS3mNNtt3vMXAFKMs,7931
|
226
226
|
keras_hub/src/models/llama/llama_backbone.py,sha256=tjNEIKIL9ncoEL5KNFE5i0oTUkysjmJmh3mHmCz4RCw,11861
|
227
227
|
keras_hub/src/models/llama/llama_causal_lm.py,sha256=9bP4-XDCMgsZuH1ILIMzmwq2Fyy6vkk1Vsht-lMGCNo,13258
|
228
228
|
keras_hub/src/models/llama/llama_causal_lm_preprocessor.py,sha256=VTboOMiRBoxHrwP343upLUTsv3AG65r2H8h_PNPVphE,3047
|
@@ -237,7 +237,7 @@ keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py,sha256=twbXel9hsQgG
|
|
237
237
|
keras_hub/src/models/llama3/llama3_presets.py,sha256=PWEW_hLMCD9SIYm3QLhRVIcwjrPuqv-KDebXACXRNbM,1579
|
238
238
|
keras_hub/src/models/llama3/llama3_tokenizer.py,sha256=J-KxRc08vGs4olFw_4mtJs0W_dTeUyj_XxMycazBmxI,1934
|
239
239
|
keras_hub/src/models/mistral/__init__.py,sha256=vjBlzcrIsFSwJKnfwfTNMKstIEKGFTE3kVcdAdfwlnE,263
|
240
|
-
keras_hub/src/models/mistral/mistral_attention.py,sha256=
|
240
|
+
keras_hub/src/models/mistral/mistral_attention.py,sha256=nGDlD4NcIwIGlfbt3ArxdT5QAvamY7yiNEGDlTgWirU,8609
|
241
241
|
keras_hub/src/models/mistral/mistral_backbone.py,sha256=oatoqSX0z-xjKfXeSveL4P0Dcr84kd0o0pK_kuTbJtY,7257
|
242
242
|
keras_hub/src/models/mistral/mistral_causal_lm.py,sha256=ujCKfsbuYzr8VusqPYcnTH6rTb0MRfzsinEraVhQksc,13234
|
243
243
|
keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py,sha256=_4qq-uKktfIg_i081ZWjZGEIYZpedBwtBGpchQQ-qEk,3079
|
@@ -275,7 +275,7 @@ keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=zF04iShXky_c3IfUbmL
|
|
275
275
|
keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=ljTiADHo0Ok88q-jVzwJIle2C8xcxnudLTsBLzIySaM,2415
|
276
276
|
keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=mwzhdo6wjemOjic4p6vECMlScxyI_meXMWBZ76YlblE,18308
|
277
277
|
keras_hub/src/models/phi3/__init__.py,sha256=zIbf1MU-ks91mEkjTRJAsk51N3BBnXDF2JM1vO-13PQ,245
|
278
|
-
keras_hub/src/models/phi3/phi3_attention.py,sha256=
|
278
|
+
keras_hub/src/models/phi3/phi3_attention.py,sha256=pojx23rG2NPqy0MRo_OspnxipJCZvexZ2V25xucimHY,9980
|
279
279
|
keras_hub/src/models/phi3/phi3_backbone.py,sha256=fY-OY2ZrqxDHglYjTM0OCacBdEQHwj-XNmU0MnXL7iU,8885
|
280
280
|
keras_hub/src/models/phi3/phi3_causal_lm.py,sha256=kMMq7fQ8hlb_mLO_nU1lGVqILayulVvzzZgl2EvY9_k,8389
|
281
281
|
keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py,sha256=gNx1k-n7d0XDwpNbcZiO9yLkwdXYCvwGyA3b0QCnPAE,3043
|
@@ -285,7 +285,7 @@ keras_hub/src/models/phi3/phi3_presets.py,sha256=sb2ce7Gq1OikFEf2KIYG69rFKHYKj8q
|
|
285
285
|
keras_hub/src/models/phi3/phi3_rotary_embedding.py,sha256=wqiRn8nETNcLc5Vsm_d_8s11Ro6ibWZbWvODdLqIOo4,5013
|
286
286
|
keras_hub/src/models/phi3/phi3_tokenizer.py,sha256=bOPH14wTVVHJHq8mgzXLjsgvKMNhfO8eayevAPpjYVA,1992
|
287
287
|
keras_hub/src/models/qwen/__init__.py,sha256=hskG3tZUY_AYZPp0WVzbCtw37AIYENyp3DOnqHmdRBw,65
|
288
|
-
keras_hub/src/models/qwen/qwen_attention.py,sha256=
|
288
|
+
keras_hub/src/models/qwen/qwen_attention.py,sha256=FL_09-eCFugktDNzFPm6beZLD04pNg9TFKgfXdhWUwk,12953
|
289
289
|
keras_hub/src/models/qwen/qwen_backbone.py,sha256=xBu2zEzFFAjKgaHOqPnxLU-j4oL3N2G2KT-uwL2zEM0,13018
|
290
290
|
keras_hub/src/models/qwen/qwen_causal_lm.py,sha256=_f-UHaKHp0ncxknpkpEJiW3jlng3E4CmddjQfz2QzJo,12249
|
291
291
|
keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py,sha256=Va-4TLJD3ycEnkS41rF3dVj4_6K0j-gxLTrREFRcyr0,609
|
@@ -315,6 +315,16 @@ keras_hub/src/models/roberta/roberta_presets.py,sha256=lu8_E888-YGlhMo1kE4LnsR0R
|
|
315
315
|
keras_hub/src/models/roberta/roberta_text_classifier.py,sha256=x36hU84P-ROReZniUA8sMODzj2olrHvG0F5RTiz6Two,6681
|
316
316
|
keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py,sha256=gAJa8JdPUmT1N7nxBqtaIbnfXV-xlNjTtkEevQhfjNU,5993
|
317
317
|
keras_hub/src/models/roberta/roberta_tokenizer.py,sha256=VKPrgXVT9aMKP7et2DIWKlTN8g4tIzjya0MHqNz9BwQ,2712
|
318
|
+
keras_hub/src/models/roformer_v2/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
319
|
+
keras_hub/src/models/roformer_v2/roformer_v2_attention.py,sha256=RvDxuh0eZ6QEhyU_SzVcCbadSFWtNtsbHfYfWtBU7r0,7166
|
320
|
+
keras_hub/src/models/roformer_v2/roformer_v2_backbone.py,sha256=g1xCi9Zet0dHkiOtpjwsO1odc__HzLDn9cTHNykpYEE,7188
|
321
|
+
keras_hub/src/models/roformer_v2/roformer_v2_encoder.py,sha256=o_M3dDtebBtXRAxwhiRmdWA59tu1_MNKLINf4GQYfeA,4218
|
322
|
+
keras_hub/src/models/roformer_v2/roformer_v2_masked_lm.py,sha256=4uQ6DKFDdBOu0bHaL45bqtpL-CMZw59inXirD9zWFlI,5950
|
323
|
+
keras_hub/src/models/roformer_v2/roformer_v2_masked_lm_preprocessor.py,sha256=1APlYMi_Be_aaEk4Ij6c16JH5OpDrGnvwtv8LY3fjrw,5403
|
324
|
+
keras_hub/src/models/roformer_v2/roformer_v2_presets.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
325
|
+
keras_hub/src/models/roformer_v2/roformer_v2_text_classifier.py,sha256=QSRSSWt1T16BFlSynyJduUTd86AEV4NvqdJgIiw1wys,4380
|
326
|
+
keras_hub/src/models/roformer_v2/roformer_v2_text_classifier_preprocessor.py,sha256=Md0ioE6OlEyhn6QDTrLVik8EVtiF2YvR5Bu5vAyGEHg,5270
|
327
|
+
keras_hub/src/models/roformer_v2/roformer_v2_tokenizer.py,sha256=Pc4z7e5rSZH6qh_suORb-O89ZaFcCjde_4gs-odYook,2406
|
318
328
|
keras_hub/src/models/sam/__init__.py,sha256=fp71Q288xeE81tIOZkkudec4Acs8v4aO5WdyzCD9x-c,239
|
319
329
|
keras_hub/src/models/sam/sam_backbone.py,sha256=VtT-tjTaVW6v2u_JLe3vyKUoHASPDs5aetc3s0MDo6U,4302
|
320
330
|
keras_hub/src/models/sam/sam_image_converter.py,sha256=5POp3aYFu6CK3R0NNfeUBbjhguBkincSMNvlcIJXarE,324
|
@@ -343,7 +353,7 @@ keras_hub/src/models/siglip/siglip_tokenizer.py,sha256=j_67JbIHJDRk-CbiemG2dgAO6
|
|
343
353
|
keras_hub/src/models/siglip/siglip_vision_encoder.py,sha256=CaNaFq5thBC3TUXXOf2qknk5vWsauM20ZoaDPYRnXcs,5927
|
344
354
|
keras_hub/src/models/stable_diffusion_3/__init__.py,sha256=ZKYQuaRObyhKq8GVAHmoRvlXp6FpU8ChvutVCHyXKuc,343
|
345
355
|
keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py,sha256=vtVhieAv277mAiZj7Kvvqg_Ba7klfQxZVk4PPxNNQ0s,3062
|
346
|
-
keras_hub/src/models/stable_diffusion_3/mmdit.py,sha256=
|
356
|
+
keras_hub/src/models/stable_diffusion_3/mmdit.py,sha256=jkO7uP3fNrbuFLiOJV-7_S8hz-DqkasZNkoJIdsg58Q,40859
|
347
357
|
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py,sha256=w8lsMampk34M9xQi96mEnXmkaKQqFQtoFTW8zP7ilEA,24078
|
348
358
|
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py,sha256=oQcVCWOwrdUTrr_JNekoMqdSlKYMGz5tG6v8uD25lTc,5479
|
349
359
|
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py,sha256=t4uw920Jn1k80air3WRGimKf71aMVu6q73oWFH348vk,6384
|
@@ -420,9 +430,9 @@ keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py,sha256=hRv_XxoPIPDpHfO0Z
|
|
420
430
|
keras_hub/src/tokenizers/word_piece_tokenizer.py,sha256=vP6AZgbzsRiuPCt3W_n94nsF7XiERnagWcH_rqJHtVU,19943
|
421
431
|
keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=cylrs02ZrYQ1TuZr9oyS3NrVbDwGctA3VXbIh1pFJMQ,6743
|
422
432
|
keras_hub/src/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
423
|
-
keras_hub/src/utils/keras_utils.py,sha256=
|
433
|
+
keras_hub/src/utils/keras_utils.py,sha256=mtj5Kr9EROso10SafmQ-C9uCLbIId4cXAuJSNDRqHb8,4290
|
424
434
|
keras_hub/src/utils/pipeline_model.py,sha256=jgzB6NQPSl0KOu08N-TazfOnXnUJbZjH2EXXhx25Ftg,9084
|
425
|
-
keras_hub/src/utils/preset_utils.py,sha256=
|
435
|
+
keras_hub/src/utils/preset_utils.py,sha256=BqTqtLouPQrTKelup2og_yziRBcu9dXFbbAST0I-XlE,32012
|
426
436
|
keras_hub/src/utils/python_utils.py,sha256=N8nWeO3san4YnGkffRXG3Ix7VEIMTKSN21FX5TuL7G8,202
|
427
437
|
keras_hub/src/utils/tensor_utils.py,sha256=lczQWgPVJU09cLtNbo8MErVFNV9ne4gNlrzbNVQazg4,15042
|
428
438
|
keras_hub/src/utils/imagenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -449,7 +459,7 @@ keras_hub/src/utils/transformers/convert_qwen.py,sha256=I2bfwo8AQd_JfwFpiAuCQ3k_
|
|
449
459
|
keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
|
450
460
|
keras_hub/src/utils/transformers/preset_loader.py,sha256=0Hi7R8HnATcwFVLsJwMMIMWTCXHNfep4IPiRpQXqM-w,3933
|
451
461
|
keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
|
452
|
-
keras_hub_nightly-0.20.0.
|
453
|
-
keras_hub_nightly-0.20.0.
|
454
|
-
keras_hub_nightly-0.20.0.
|
455
|
-
keras_hub_nightly-0.20.0.
|
462
|
+
keras_hub_nightly-0.20.0.dev202504030357.dist-info/METADATA,sha256=sd9s0yxPsKnlKuvSjOvdNoe10H3_1y6bskN04hjrYMU,7715
|
463
|
+
keras_hub_nightly-0.20.0.dev202504030357.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
|
464
|
+
keras_hub_nightly-0.20.0.dev202504030357.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
465
|
+
keras_hub_nightly-0.20.0.dev202504030357.dist-info/RECORD,,
|
File without changes
|