keras-hub-nightly 0.20.0.dev202503250356__py3-none-any.whl → 0.20.0.dev202503260356__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/src/models/backbone.py +3 -3
- keras_hub/src/models/retinanet/retinanet_presets.py +13 -2
- keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.20.0.dev202503250356.dist-info → keras_hub_nightly-0.20.0.dev202503260356.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.20.0.dev202503250356.dist-info → keras_hub_nightly-0.20.0.dev202503260356.dist-info}/RECORD +7 -7
- {keras_hub_nightly-0.20.0.dev202503250356.dist-info → keras_hub_nightly-0.20.0.dev202503260356.dist-info}/WHEEL +1 -1
- {keras_hub_nightly-0.20.0.dev202503250356.dist-info → keras_hub_nightly-0.20.0.dev202503260356.dist-info}/top_level.txt +0 -0
keras_hub/src/models/backbone.py
CHANGED
@@ -194,15 +194,15 @@ class Backbone(keras.Model):
|
|
194
194
|
"""
|
195
195
|
return ["query_dense", "value_dense", "query", "value"]
|
196
196
|
|
197
|
-
def enable_lora(self, rank):
|
197
|
+
def enable_lora(self, rank, target_names=None):
|
198
198
|
"""Enable Lora on the backbone.
|
199
199
|
|
200
200
|
Calling this method will freeze all weights on the backbone,
|
201
201
|
while enabling Lora on the query & value `EinsumDense` layers
|
202
202
|
of the attention layers.
|
203
203
|
"""
|
204
|
-
target_names
|
205
|
-
|
204
|
+
if target_names is None:
|
205
|
+
target_names = self.get_lora_target_names()
|
206
206
|
self.trainable = True
|
207
207
|
self._lora_enabled_layers = []
|
208
208
|
self._lora_rank = rank
|
@@ -11,6 +11,17 @@ backbone_presets = {
|
|
11
11
|
"params": 34121239,
|
12
12
|
"path": "retinanet",
|
13
13
|
},
|
14
|
-
"kaggle_handle": "kaggle://keras/retinanet/keras/retinanet_resnet50_fpn_coco/
|
15
|
-
}
|
14
|
+
"kaggle_handle": "kaggle://keras/retinanet/keras/retinanet_resnet50_fpn_coco/3",
|
15
|
+
},
|
16
|
+
"retinanet_resnet50_fpn_v2_coco": {
|
17
|
+
"metadata": {
|
18
|
+
"description": (
|
19
|
+
"RetinaNet model with ResNet50 backbone fine-tuned on COCO in "
|
20
|
+
"800x800 resolution with FPN features created from P5 level."
|
21
|
+
),
|
22
|
+
"params": 31558592,
|
23
|
+
"path": "retinanet",
|
24
|
+
},
|
25
|
+
"kaggle_handle": "kaggle://keras/retinanet/keras/retinanet_resnet50_fpn_v2_coco/2",
|
26
|
+
},
|
16
27
|
}
|
keras_hub/src/version_utils.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: keras-hub-nightly
|
3
|
-
Version: 0.20.0.
|
3
|
+
Version: 0.20.0.dev202503260356
|
4
4
|
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
5
|
Home-page: https://github.com/keras-team/keras-hub
|
6
6
|
Author: Keras team
|
@@ -8,7 +8,7 @@ keras_hub/api/tokenizers/__init__.py,sha256=LsVLrAxTVe9YT9ixsGYnbtWuyfPW5-FW3Wt3
|
|
8
8
|
keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
|
9
9
|
keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
10
10
|
keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
|
11
|
-
keras_hub/src/version_utils.py,sha256=
|
11
|
+
keras_hub/src/version_utils.py,sha256=Q50ad6NK0gRrj3fG38o2cuMpdEAcfUgXxmjaoSLgaOY,222
|
12
12
|
keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
13
13
|
keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
14
14
|
keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
|
@@ -44,7 +44,7 @@ keras_hub/src/metrics/rouge_base.py,sha256=Pt2DUznhTTeR-fX1nQ_wSbPtmuTgxQTvrGpu8
|
|
44
44
|
keras_hub/src/metrics/rouge_l.py,sha256=JlZhMBV6wS_6zMd57pkTc6yxHkEJT9fVQMlPZKekQzQ,2729
|
45
45
|
keras_hub/src/metrics/rouge_n.py,sha256=JoFtmgjF4Ic263ny6bfD6vMHKreH9le3HnOOxemupRc,3620
|
46
46
|
keras_hub/src/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
47
|
-
keras_hub/src/models/backbone.py,sha256=
|
47
|
+
keras_hub/src/models/backbone.py,sha256=TwfJOO7lk50BNO36gg8m_DvgPiBxAhHK0XSbab2qpSA,11309
|
48
48
|
keras_hub/src/models/causal_lm.py,sha256=ReaF-i3SHsCkHh4c28jM72QjMQ8x7yiCwG39FRb-7KE,16786
|
49
49
|
keras_hub/src/models/causal_lm_preprocessor.py,sha256=YY7VJZicdmnjDSWi9g4_pEpd5bdJK166GlWcapvokF0,6663
|
50
50
|
keras_hub/src/models/feature_pyramid_backbone.py,sha256=clEW-TTQSVJ_5qFNdDF0iABkin1p_xlBUFjJrC7T0IA,2247
|
@@ -293,7 +293,7 @@ keras_hub/src/models/retinanet/retinanet_image_converter.py,sha256=Yr1ACzrPXzX1e
|
|
293
293
|
keras_hub/src/models/retinanet/retinanet_label_encoder.py,sha256=Vowhs4uOZAevmVg1a19efIPfvjxkckXwsJDTX3VPDxs,10967
|
294
294
|
keras_hub/src/models/retinanet/retinanet_object_detector.py,sha256=WJ3YLnnC4mcCLLoE7uUFA0cOSVuFgnx9Cr47If50Aig,15595
|
295
295
|
keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py,sha256=RnJkdqv4zYVcGx50sHoA7j9G1AKwEN-RNtyMQg-MMbo,568
|
296
|
-
keras_hub/src/models/retinanet/retinanet_presets.py,sha256=
|
296
|
+
keras_hub/src/models/retinanet/retinanet_presets.py,sha256=qzs568Me0bSoXwgoG8wQrGbY_WuS2t1qgGU2wL8R5Hs,950
|
297
297
|
keras_hub/src/models/roberta/__init__.py,sha256=3ouSnKdLlMwoDDLVKD9cNtxam6f8XWgCyc0pwWJ0Zjo,263
|
298
298
|
keras_hub/src/models/roberta/roberta_backbone.py,sha256=q16dylXbgWshT-elCA08lS_b_IZNphsBrrXiv3eJksM,6339
|
299
299
|
keras_hub/src/models/roberta/roberta_masked_lm.py,sha256=j2dFANRFHd1MNFP_REchljGWOcpOjCpdSya-WGdRzPA,4176
|
@@ -436,7 +436,7 @@ keras_hub/src/utils/transformers/convert_qwen.py,sha256=I2bfwo8AQd_JfwFpiAuCQ3k_
|
|
436
436
|
keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
|
437
437
|
keras_hub/src/utils/transformers/preset_loader.py,sha256=0Hi7R8HnATcwFVLsJwMMIMWTCXHNfep4IPiRpQXqM-w,3933
|
438
438
|
keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
|
439
|
-
keras_hub_nightly-0.20.0.
|
440
|
-
keras_hub_nightly-0.20.0.
|
441
|
-
keras_hub_nightly-0.20.0.
|
442
|
-
keras_hub_nightly-0.20.0.
|
439
|
+
keras_hub_nightly-0.20.0.dev202503260356.dist-info/METADATA,sha256=_YWZgga0m1FhYonaeGYcUG-DABNzrzw5enkdoYWfw6w,7715
|
440
|
+
keras_hub_nightly-0.20.0.dev202503260356.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
|
441
|
+
keras_hub_nightly-0.20.0.dev202503260356.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
442
|
+
keras_hub_nightly-0.20.0.dev202503260356.dist-info/RECORD,,
|