keras-hub-nightly 0.20.0.dev202503240359__py3-none-any.whl → 0.20.0.dev202503260356__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/src/models/backbone.py +3 -3
- keras_hub/src/models/retinanet/retinanet_presets.py +13 -2
- keras_hub/src/models/siglip/siglip_presets.py +37 -37
- keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.20.0.dev202503240359.dist-info → keras_hub_nightly-0.20.0.dev202503260356.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.20.0.dev202503240359.dist-info → keras_hub_nightly-0.20.0.dev202503260356.dist-info}/RECORD +8 -8
- {keras_hub_nightly-0.20.0.dev202503240359.dist-info → keras_hub_nightly-0.20.0.dev202503260356.dist-info}/WHEEL +1 -1
- {keras_hub_nightly-0.20.0.dev202503240359.dist-info → keras_hub_nightly-0.20.0.dev202503260356.dist-info}/top_level.txt +0 -0
keras_hub/src/models/backbone.py
CHANGED
@@ -194,15 +194,15 @@ class Backbone(keras.Model):
|
|
194
194
|
"""
|
195
195
|
return ["query_dense", "value_dense", "query", "value"]
|
196
196
|
|
197
|
-
def enable_lora(self, rank):
|
197
|
+
def enable_lora(self, rank, target_names=None):
|
198
198
|
"""Enable Lora on the backbone.
|
199
199
|
|
200
200
|
Calling this method will freeze all weights on the backbone,
|
201
201
|
while enabling Lora on the query & value `EinsumDense` layers
|
202
202
|
of the attention layers.
|
203
203
|
"""
|
204
|
-
target_names
|
205
|
-
|
204
|
+
if target_names is None:
|
205
|
+
target_names = self.get_lora_target_names()
|
206
206
|
self.trainable = True
|
207
207
|
self._lora_enabled_layers = []
|
208
208
|
self._lora_rank = rank
|
@@ -11,6 +11,17 @@ backbone_presets = {
|
|
11
11
|
"params": 34121239,
|
12
12
|
"path": "retinanet",
|
13
13
|
},
|
14
|
-
"kaggle_handle": "kaggle://keras/retinanet/keras/retinanet_resnet50_fpn_coco/
|
15
|
-
}
|
14
|
+
"kaggle_handle": "kaggle://keras/retinanet/keras/retinanet_resnet50_fpn_coco/3",
|
15
|
+
},
|
16
|
+
"retinanet_resnet50_fpn_v2_coco": {
|
17
|
+
"metadata": {
|
18
|
+
"description": (
|
19
|
+
"RetinaNet model with ResNet50 backbone fine-tuned on COCO in "
|
20
|
+
"800x800 resolution with FPN features created from P5 level."
|
21
|
+
),
|
22
|
+
"params": 31558592,
|
23
|
+
"path": "retinanet",
|
24
|
+
},
|
25
|
+
"kaggle_handle": "kaggle://keras/retinanet/keras/retinanet_resnet50_fpn_v2_coco/2",
|
26
|
+
},
|
16
27
|
}
|
@@ -12,7 +12,7 @@ backbone_presets = {
|
|
12
12
|
"path": "siglip",
|
13
13
|
"model_card": "https://huggingface.co/collections/google/siglip-659d5e62f0ae1a57ae0e83ba",
|
14
14
|
},
|
15
|
-
"kaggle_handle": "kaggle://
|
15
|
+
"kaggle_handle": "kaggle://keras/siglip/keras/siglip_base_patch16_224/1",
|
16
16
|
},
|
17
17
|
"siglip_base_patch16_256": {
|
18
18
|
"metadata": {
|
@@ -24,7 +24,7 @@ backbone_presets = {
|
|
24
24
|
"path": "siglip",
|
25
25
|
"model_card": "https://huggingface.co/collections/google/siglip-659d5e62f0ae1a57ae0e83ba",
|
26
26
|
},
|
27
|
-
"kaggle_handle": "kaggle://
|
27
|
+
"kaggle_handle": "kaggle://keras/siglip/keras/siglip_base_patch16_256/1",
|
28
28
|
},
|
29
29
|
"siglip_base_patch16_384": {
|
30
30
|
"metadata": {
|
@@ -36,7 +36,7 @@ backbone_presets = {
|
|
36
36
|
"path": "siglip",
|
37
37
|
"model_card": "https://huggingface.co/collections/google/siglip-659d5e62f0ae1a57ae0e83ba",
|
38
38
|
},
|
39
|
-
"kaggle_handle": "kaggle://
|
39
|
+
"kaggle_handle": "kaggle://keras/siglip/keras/siglip_base_patch16_384/1",
|
40
40
|
},
|
41
41
|
"siglip_base_patch16_512": {
|
42
42
|
"metadata": {
|
@@ -48,7 +48,7 @@ backbone_presets = {
|
|
48
48
|
"path": "siglip",
|
49
49
|
"model_card": "https://huggingface.co/collections/google/siglip-659d5e62f0ae1a57ae0e83ba",
|
50
50
|
},
|
51
|
-
"kaggle_handle": "kaggle://
|
51
|
+
"kaggle_handle": "kaggle://keras/siglip/keras/siglip_base_patch16_512/1",
|
52
52
|
},
|
53
53
|
"siglip_large_patch16_256": {
|
54
54
|
"metadata": {
|
@@ -60,7 +60,7 @@ backbone_presets = {
|
|
60
60
|
"path": "siglip",
|
61
61
|
"model_card": "https://huggingface.co/collections/google/siglip-659d5e62f0ae1a57ae0e83ba",
|
62
62
|
},
|
63
|
-
"kaggle_handle": "kaggle://
|
63
|
+
"kaggle_handle": "kaggle://keras/siglip/keras/siglip_large_patch16_256/1",
|
64
64
|
},
|
65
65
|
"siglip_large_patch16_384": {
|
66
66
|
"metadata": {
|
@@ -72,7 +72,7 @@ backbone_presets = {
|
|
72
72
|
"path": "siglip",
|
73
73
|
"model_card": "https://huggingface.co/collections/google/siglip-659d5e62f0ae1a57ae0e83ba",
|
74
74
|
},
|
75
|
-
"kaggle_handle": "kaggle://
|
75
|
+
"kaggle_handle": "kaggle://keras/siglip/keras/siglip_large_patch16_384/1",
|
76
76
|
},
|
77
77
|
"siglip_so400m_patch14_224": {
|
78
78
|
"metadata": {
|
@@ -85,7 +85,7 @@ backbone_presets = {
|
|
85
85
|
"path": "siglip",
|
86
86
|
"model_card": "https://huggingface.co/collections/google/siglip-659d5e62f0ae1a57ae0e83ba",
|
87
87
|
},
|
88
|
-
"kaggle_handle": "kaggle://
|
88
|
+
"kaggle_handle": "kaggle://keras/siglip/keras/siglip_so400m_patch14_224/1",
|
89
89
|
},
|
90
90
|
"siglip_so400m_patch14_384": {
|
91
91
|
"metadata": {
|
@@ -98,7 +98,7 @@ backbone_presets = {
|
|
98
98
|
"path": "siglip",
|
99
99
|
"model_card": "https://huggingface.co/collections/google/siglip-659d5e62f0ae1a57ae0e83ba",
|
100
100
|
},
|
101
|
-
"kaggle_handle": "kaggle://
|
101
|
+
"kaggle_handle": "kaggle://keras/siglip/keras/siglip_so400m_patch14_384/1",
|
102
102
|
},
|
103
103
|
"siglip_so400m_patch16_256_i18n": {
|
104
104
|
"metadata": {
|
@@ -111,7 +111,7 @@ backbone_presets = {
|
|
111
111
|
"path": "siglip",
|
112
112
|
"model_card": "https://huggingface.co/collections/google/siglip-659d5e62f0ae1a57ae0e83ba",
|
113
113
|
},
|
114
|
-
"kaggle_handle": "kaggle://
|
114
|
+
"kaggle_handle": "kaggle://keras/siglip/keras/siglip_so400m_patch16_256_i18n/1",
|
115
115
|
},
|
116
116
|
"siglip_base_patch16_256_multilingual": {
|
117
117
|
"metadata": {
|
@@ -123,7 +123,7 @@ backbone_presets = {
|
|
123
123
|
"path": "siglip",
|
124
124
|
"model_card": "https://huggingface.co/collections/google/siglip-659d5e62f0ae1a57ae0e83ba",
|
125
125
|
},
|
126
|
-
"kaggle_handle": "kaggle://
|
126
|
+
"kaggle_handle": "kaggle://keras/siglip/keras/siglip_base_patch16_256_multilingual/1",
|
127
127
|
},
|
128
128
|
# SigLIP2.
|
129
129
|
"siglip2_base_patch16_224": {
|
@@ -137,7 +137,7 @@ backbone_presets = {
|
|
137
137
|
"path": "siglip",
|
138
138
|
"model_card": "https://huggingface.co/collections/google/siglip2-67b5dcef38c175486e240107",
|
139
139
|
},
|
140
|
-
"kaggle_handle": "kaggle://
|
140
|
+
"kaggle_handle": "kaggle://keras/siglip/keras/siglip2_base_patch16_224/1",
|
141
141
|
},
|
142
142
|
"siglip2_base_patch16_256": {
|
143
143
|
"metadata": {
|
@@ -150,7 +150,7 @@ backbone_presets = {
|
|
150
150
|
"path": "siglip",
|
151
151
|
"model_card": "https://huggingface.co/collections/google/siglip2-67b5dcef38c175486e240107",
|
152
152
|
},
|
153
|
-
"kaggle_handle": "kaggle://
|
153
|
+
"kaggle_handle": "kaggle://keras/siglip/keras/siglip2_base_patch16_256/1",
|
154
154
|
},
|
155
155
|
"siglip2_base_patch32_256": {
|
156
156
|
"metadata": {
|
@@ -163,7 +163,7 @@ backbone_presets = {
|
|
163
163
|
"path": "siglip",
|
164
164
|
"model_card": "https://huggingface.co/collections/google/siglip2-67b5dcef38c175486e240107",
|
165
165
|
},
|
166
|
-
"kaggle_handle": "kaggle://
|
166
|
+
"kaggle_handle": "kaggle://keras/siglip/keras/siglip2_base_patch32_256/1",
|
167
167
|
},
|
168
168
|
"siglip2_base_patch16_384": {
|
169
169
|
"metadata": {
|
@@ -176,21 +176,21 @@ backbone_presets = {
|
|
176
176
|
"path": "siglip",
|
177
177
|
"model_card": "https://huggingface.co/collections/google/siglip2-67b5dcef38c175486e240107",
|
178
178
|
},
|
179
|
-
"kaggle_handle": "kaggle://
|
180
|
-
},
|
181
|
-
"siglip2_base_patch16_512": {
|
182
|
-
"metadata": {
|
183
|
-
"description": (
|
184
|
-
"375 million parameter, patch size 16, image size 512, "
|
185
|
-
"pre-trained on WebLi."
|
186
|
-
),
|
187
|
-
"params": 375824962,
|
188
|
-
"official_name": "SigLIP2",
|
189
|
-
"path": "siglip",
|
190
|
-
"model_card": "https://huggingface.co/collections/google/siglip2-67b5dcef38c175486e240107",
|
191
|
-
},
|
192
|
-
"kaggle_handle": "kaggle://kerashub/siglip/keras/siglip2_base_patch16_512/1",
|
179
|
+
"kaggle_handle": "kaggle://keras/siglip/keras/siglip2_base_patch16_384/1",
|
193
180
|
},
|
181
|
+
# "siglip2_base_patch16_512": {
|
182
|
+
# "metadata": {
|
183
|
+
# "description": (
|
184
|
+
# "375 million parameter, patch size 16, image size 512, "
|
185
|
+
# "pre-trained on WebLi."
|
186
|
+
# ),
|
187
|
+
# "params": 375824962,
|
188
|
+
# "official_name": "SigLIP2",
|
189
|
+
# "path": "siglip",
|
190
|
+
# "model_card": "https://huggingface.co/collections/google/siglip2-67b5dcef38c175486e240107",
|
191
|
+
# },
|
192
|
+
# "kaggle_handle": "kaggle://keras/siglip/keras/siglip2_base_patch16_512/1",
|
193
|
+
# },
|
194
194
|
"siglip2_large_patch16_256": {
|
195
195
|
"metadata": {
|
196
196
|
"description": (
|
@@ -202,7 +202,7 @@ backbone_presets = {
|
|
202
202
|
"path": "siglip",
|
203
203
|
"model_card": "https://huggingface.co/collections/google/siglip2-67b5dcef38c175486e240107",
|
204
204
|
},
|
205
|
-
"kaggle_handle": "kaggle://
|
205
|
+
"kaggle_handle": "kaggle://keras/siglip/keras/siglip2_large_patch16_256/1",
|
206
206
|
},
|
207
207
|
"siglip2_large_patch16_384": {
|
208
208
|
"metadata": {
|
@@ -215,7 +215,7 @@ backbone_presets = {
|
|
215
215
|
"path": "siglip",
|
216
216
|
"model_card": "https://huggingface.co/collections/google/siglip2-67b5dcef38c175486e240107",
|
217
217
|
},
|
218
|
-
"kaggle_handle": "kaggle://
|
218
|
+
"kaggle_handle": "kaggle://keras/siglip/keras/siglip2_large_patch16_384/1",
|
219
219
|
},
|
220
220
|
"siglip2_large_patch16_512": {
|
221
221
|
"metadata": {
|
@@ -228,7 +228,7 @@ backbone_presets = {
|
|
228
228
|
"path": "siglip",
|
229
229
|
"model_card": "https://huggingface.co/collections/google/siglip2-67b5dcef38c175486e240107",
|
230
230
|
},
|
231
|
-
"kaggle_handle": "kaggle://
|
231
|
+
"kaggle_handle": "kaggle://keras/siglip/keras/siglip2_large_patch16_512/1",
|
232
232
|
},
|
233
233
|
"siglip2_giant_opt_patch16_256": {
|
234
234
|
"metadata": {
|
@@ -241,7 +241,7 @@ backbone_presets = {
|
|
241
241
|
"path": "siglip",
|
242
242
|
"model_card": "https://huggingface.co/collections/google/siglip2-67b5dcef38c175486e240107",
|
243
243
|
},
|
244
|
-
"kaggle_handle": "kaggle://
|
244
|
+
"kaggle_handle": "kaggle://keras/siglip/keras/siglip2_giant_opt_patch16_256/2",
|
245
245
|
},
|
246
246
|
"siglip2_giant_opt_patch16_384": {
|
247
247
|
"metadata": {
|
@@ -254,7 +254,7 @@ backbone_presets = {
|
|
254
254
|
"path": "siglip",
|
255
255
|
"model_card": "https://huggingface.co/collections/google/siglip2-67b5dcef38c175486e240107",
|
256
256
|
},
|
257
|
-
"kaggle_handle": "kaggle://
|
257
|
+
"kaggle_handle": "kaggle://keras/siglip/keras/siglip2_giant_opt_patch16_384/1",
|
258
258
|
},
|
259
259
|
"siglip2_so400m_patch14_224": {
|
260
260
|
"metadata": {
|
@@ -267,7 +267,7 @@ backbone_presets = {
|
|
267
267
|
"path": "siglip",
|
268
268
|
"model_card": "https://huggingface.co/collections/google/siglip2-67b5dcef38c175486e240107",
|
269
269
|
},
|
270
|
-
"kaggle_handle": "kaggle://
|
270
|
+
"kaggle_handle": "kaggle://keras/siglip/keras/siglip2_so400m_patch14_224/1",
|
271
271
|
},
|
272
272
|
"siglip2_so400m_patch14_384": {
|
273
273
|
"metadata": {
|
@@ -280,7 +280,7 @@ backbone_presets = {
|
|
280
280
|
"path": "siglip",
|
281
281
|
"model_card": "https://huggingface.co/collections/google/siglip2-67b5dcef38c175486e240107",
|
282
282
|
},
|
283
|
-
"kaggle_handle": "kaggle://
|
283
|
+
"kaggle_handle": "kaggle://keras/siglip/keras/siglip2_so400m_patch14_384/1",
|
284
284
|
},
|
285
285
|
"siglip2_so400m_patch16_256": {
|
286
286
|
"metadata": {
|
@@ -293,7 +293,7 @@ backbone_presets = {
|
|
293
293
|
"path": "siglip",
|
294
294
|
"model_card": "https://huggingface.co/collections/google/siglip2-67b5dcef38c175486e240107",
|
295
295
|
},
|
296
|
-
"kaggle_handle": "kaggle://
|
296
|
+
"kaggle_handle": "kaggle://keras/siglip/keras/siglip2_so400m_patch16_256/1",
|
297
297
|
},
|
298
298
|
"siglip2_so400m_patch16_384": {
|
299
299
|
"metadata": {
|
@@ -306,7 +306,7 @@ backbone_presets = {
|
|
306
306
|
"path": "siglip",
|
307
307
|
"model_card": "https://huggingface.co/collections/google/siglip2-67b5dcef38c175486e240107",
|
308
308
|
},
|
309
|
-
"kaggle_handle": "kaggle://
|
309
|
+
"kaggle_handle": "kaggle://keras/siglip/keras/siglip2_so400m_patch16_384/1",
|
310
310
|
},
|
311
311
|
"siglip2_so400m_patch16_512": {
|
312
312
|
"metadata": {
|
@@ -319,6 +319,6 @@ backbone_presets = {
|
|
319
319
|
"path": "siglip",
|
320
320
|
"model_card": "https://huggingface.co/collections/google/siglip2-67b5dcef38c175486e240107",
|
321
321
|
},
|
322
|
-
"kaggle_handle": "kaggle://
|
322
|
+
"kaggle_handle": "kaggle://keras/siglip/keras/siglip2_so400m_patch16_512/1",
|
323
323
|
},
|
324
324
|
}
|
keras_hub/src/version_utils.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: keras-hub-nightly
|
3
|
-
Version: 0.20.0.
|
3
|
+
Version: 0.20.0.dev202503260356
|
4
4
|
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
5
|
Home-page: https://github.com/keras-team/keras-hub
|
6
6
|
Author: Keras team
|
@@ -8,7 +8,7 @@ keras_hub/api/tokenizers/__init__.py,sha256=LsVLrAxTVe9YT9ixsGYnbtWuyfPW5-FW3Wt3
|
|
8
8
|
keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
|
9
9
|
keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
10
10
|
keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
|
11
|
-
keras_hub/src/version_utils.py,sha256=
|
11
|
+
keras_hub/src/version_utils.py,sha256=Q50ad6NK0gRrj3fG38o2cuMpdEAcfUgXxmjaoSLgaOY,222
|
12
12
|
keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
13
13
|
keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
14
14
|
keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
|
@@ -44,7 +44,7 @@ keras_hub/src/metrics/rouge_base.py,sha256=Pt2DUznhTTeR-fX1nQ_wSbPtmuTgxQTvrGpu8
|
|
44
44
|
keras_hub/src/metrics/rouge_l.py,sha256=JlZhMBV6wS_6zMd57pkTc6yxHkEJT9fVQMlPZKekQzQ,2729
|
45
45
|
keras_hub/src/metrics/rouge_n.py,sha256=JoFtmgjF4Ic263ny6bfD6vMHKreH9le3HnOOxemupRc,3620
|
46
46
|
keras_hub/src/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
47
|
-
keras_hub/src/models/backbone.py,sha256=
|
47
|
+
keras_hub/src/models/backbone.py,sha256=TwfJOO7lk50BNO36gg8m_DvgPiBxAhHK0XSbab2qpSA,11309
|
48
48
|
keras_hub/src/models/causal_lm.py,sha256=ReaF-i3SHsCkHh4c28jM72QjMQ8x7yiCwG39FRb-7KE,16786
|
49
49
|
keras_hub/src/models/causal_lm_preprocessor.py,sha256=YY7VJZicdmnjDSWi9g4_pEpd5bdJK166GlWcapvokF0,6663
|
50
50
|
keras_hub/src/models/feature_pyramid_backbone.py,sha256=clEW-TTQSVJ_5qFNdDF0iABkin1p_xlBUFjJrC7T0IA,2247
|
@@ -293,7 +293,7 @@ keras_hub/src/models/retinanet/retinanet_image_converter.py,sha256=Yr1ACzrPXzX1e
|
|
293
293
|
keras_hub/src/models/retinanet/retinanet_label_encoder.py,sha256=Vowhs4uOZAevmVg1a19efIPfvjxkckXwsJDTX3VPDxs,10967
|
294
294
|
keras_hub/src/models/retinanet/retinanet_object_detector.py,sha256=WJ3YLnnC4mcCLLoE7uUFA0cOSVuFgnx9Cr47If50Aig,15595
|
295
295
|
keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py,sha256=RnJkdqv4zYVcGx50sHoA7j9G1AKwEN-RNtyMQg-MMbo,568
|
296
|
-
keras_hub/src/models/retinanet/retinanet_presets.py,sha256=
|
296
|
+
keras_hub/src/models/retinanet/retinanet_presets.py,sha256=qzs568Me0bSoXwgoG8wQrGbY_WuS2t1qgGU2wL8R5Hs,950
|
297
297
|
keras_hub/src/models/roberta/__init__.py,sha256=3ouSnKdLlMwoDDLVKD9cNtxam6f8XWgCyc0pwWJ0Zjo,263
|
298
298
|
keras_hub/src/models/roberta/roberta_backbone.py,sha256=q16dylXbgWshT-elCA08lS_b_IZNphsBrrXiv3eJksM,6339
|
299
299
|
keras_hub/src/models/roberta/roberta_masked_lm.py,sha256=j2dFANRFHd1MNFP_REchljGWOcpOjCpdSya-WGdRzPA,4176
|
@@ -324,7 +324,7 @@ keras_hub/src/models/siglip/siglip_image_converter.py,sha256=yjYc0XOyL37WLlr-X6V
|
|
324
324
|
keras_hub/src/models/siglip/siglip_layers.py,sha256=c20n6v3cFsI-Im9GBVTknhj_IpX79I4a-fajBKRMzQA,19893
|
325
325
|
keras_hub/src/models/siglip/siglip_loss.py,sha256=n6zmOeL0o7Nwb5iaoEZfrxiAsQoqZ9yLIlaCJsAfTg4,1442
|
326
326
|
keras_hub/src/models/siglip/siglip_preprocessor.py,sha256=r1Ej7hVwr5BudFYTHkjW5yc3lk4OYZD1s3t32lKkuec,5660
|
327
|
-
keras_hub/src/models/siglip/siglip_presets.py,sha256=
|
327
|
+
keras_hub/src/models/siglip/siglip_presets.py,sha256=gOzSVhLskAthfzq8jWOtQWv14euaqS2ywcZlNfivDOI,13164
|
328
328
|
keras_hub/src/models/siglip/siglip_text_encoder.py,sha256=xOVvzyQHLX9ne30y4ussar99gNMXPXHYKlkbCX_On2Y,5380
|
329
329
|
keras_hub/src/models/siglip/siglip_tokenizer.py,sha256=j_67JbIHJDRk-CbiemG2dgAO6lp3_0_JdnfroZ90G18,2579
|
330
330
|
keras_hub/src/models/siglip/siglip_vision_encoder.py,sha256=CaNaFq5thBC3TUXXOf2qknk5vWsauM20ZoaDPYRnXcs,5927
|
@@ -436,7 +436,7 @@ keras_hub/src/utils/transformers/convert_qwen.py,sha256=I2bfwo8AQd_JfwFpiAuCQ3k_
|
|
436
436
|
keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
|
437
437
|
keras_hub/src/utils/transformers/preset_loader.py,sha256=0Hi7R8HnATcwFVLsJwMMIMWTCXHNfep4IPiRpQXqM-w,3933
|
438
438
|
keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
|
439
|
-
keras_hub_nightly-0.20.0.
|
440
|
-
keras_hub_nightly-0.20.0.
|
441
|
-
keras_hub_nightly-0.20.0.
|
442
|
-
keras_hub_nightly-0.20.0.
|
439
|
+
keras_hub_nightly-0.20.0.dev202503260356.dist-info/METADATA,sha256=_YWZgga0m1FhYonaeGYcUG-DABNzrzw5enkdoYWfw6w,7715
|
440
|
+
keras_hub_nightly-0.20.0.dev202503260356.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
|
441
|
+
keras_hub_nightly-0.20.0.dev202503260356.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
442
|
+
keras_hub_nightly-0.20.0.dev202503260356.dist-info/RECORD,,
|