keras-hub-nightly 0.20.0.dev202503170356__py3-none-any.whl → 0.20.0.dev202503190355__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/api/models/__init__.py +18 -0
- keras_hub/api/tokenizers/__init__.py +4 -0
- keras_hub/src/layers/preprocessing/image_converter.py +5 -2
- keras_hub/src/models/qwen/__init__.py +1 -0
- keras_hub/src/models/qwen/qwen_attention.py +358 -0
- keras_hub/src/models/qwen/qwen_backbone.py +327 -0
- keras_hub/src/models/qwen/qwen_causal_lm.py +300 -0
- keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py +18 -0
- keras_hub/src/models/qwen/qwen_decoder.py +311 -0
- keras_hub/src/models/qwen/qwen_layernorm.py +32 -0
- keras_hub/src/models/qwen/qwen_tokenizer.py +51 -0
- keras_hub/src/utils/transformers/convert_qwen.py +148 -0
- keras_hub/src/utils/transformers/preset_loader.py +3 -0
- keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.20.0.dev202503170356.dist-info → keras_hub_nightly-0.20.0.dev202503190355.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.20.0.dev202503170356.dist-info → keras_hub_nightly-0.20.0.dev202503190355.dist-info}/RECORD +18 -9
- {keras_hub_nightly-0.20.0.dev202503170356.dist-info → keras_hub_nightly-0.20.0.dev202503190355.dist-info}/WHEEL +1 -1
- {keras_hub_nightly-0.20.0.dev202503170356.dist-info → keras_hub_nightly-0.20.0.dev202503190355.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,311 @@
|
|
1
|
+
import keras
|
2
|
+
from keras import ops
|
3
|
+
|
4
|
+
from keras_hub.src.layers.modeling.transformer_layer_utils import (
|
5
|
+
compute_causal_mask,
|
6
|
+
)
|
7
|
+
from keras_hub.src.layers.modeling.transformer_layer_utils import (
|
8
|
+
merge_padding_and_attention_mask,
|
9
|
+
)
|
10
|
+
from keras_hub.src.models.qwen.qwen_attention import QwenAttention
|
11
|
+
from keras_hub.src.models.qwen.qwen_layernorm import QwenLayerNorm
|
12
|
+
from keras_hub.src.utils.keras_utils import clone_initializer
|
13
|
+
|
14
|
+
|
15
|
+
class QwenTransformerDecoder(keras.layers.Layer):
|
16
|
+
"""A Transformer decoder layer for the Qwen backbone.
|
17
|
+
|
18
|
+
This layer implements a Transformer decoder block that includes
|
19
|
+
self-attention with optional sliding window attention and a feed-forward
|
20
|
+
network.
|
21
|
+
|
22
|
+
Args:
|
23
|
+
intermediate_dim: Output dimension of the first dense layer in the
|
24
|
+
feed-forward network.
|
25
|
+
num_query_heads: Number of query attention heads.
|
26
|
+
num_key_value_heads: Number of key/value attention heads (for GQA).
|
27
|
+
rope_max_wavelength: Maximum wavelength for RoPE (Rotary Position
|
28
|
+
Embedding).
|
29
|
+
rope_scaling_factor: Scaling factor for RoPE, used for extending
|
30
|
+
context length.
|
31
|
+
activation: Activation function to use in the feed-forward network.
|
32
|
+
layer_norm_epsilon: Small float added to variance to avoid dividing
|
33
|
+
by zero in layer norm.
|
34
|
+
kernel_initializer: Initializer for the kernel weights.
|
35
|
+
dropout: Dropout rate for attention and hidden layers.
|
36
|
+
use_sliding_window_attention: Whether to use sliding window
|
37
|
+
attention.
|
38
|
+
sliding_window_size: Size of the sliding window for attention when
|
39
|
+
enabled.
|
40
|
+
**kwargs: Additional keyword arguments to pass to the Layer.
|
41
|
+
"""
|
42
|
+
|
43
|
+
def __init__(
|
44
|
+
self,
|
45
|
+
intermediate_dim,
|
46
|
+
num_query_heads,
|
47
|
+
num_key_value_heads,
|
48
|
+
rope_max_wavelength=10000,
|
49
|
+
rope_scaling_factor=1.0,
|
50
|
+
activation="silu",
|
51
|
+
layer_norm_epsilon=1e-5,
|
52
|
+
kernel_initializer="glorot_uniform",
|
53
|
+
dropout=0,
|
54
|
+
use_sliding_window_attention=False,
|
55
|
+
sliding_window_size=4096,
|
56
|
+
**kwargs,
|
57
|
+
):
|
58
|
+
super().__init__(**kwargs)
|
59
|
+
self.intermediate_dim = intermediate_dim
|
60
|
+
self.num_query_heads = num_query_heads
|
61
|
+
self.num_key_value_heads = num_key_value_heads
|
62
|
+
|
63
|
+
self.rope_max_wavelength = rope_max_wavelength
|
64
|
+
self.rope_scaling_factor = rope_scaling_factor
|
65
|
+
|
66
|
+
self.dropout = dropout
|
67
|
+
|
68
|
+
self.use_sliding_window_attention = use_sliding_window_attention
|
69
|
+
self.sliding_window_size = sliding_window_size
|
70
|
+
|
71
|
+
self.activation = keras.activations.get(activation)
|
72
|
+
self.layer_norm_epsilon = layer_norm_epsilon
|
73
|
+
self.kernel_initializer = keras.initializers.get(kernel_initializer)
|
74
|
+
|
75
|
+
self.supports_masking = True
|
76
|
+
|
77
|
+
def build(self, decoder_sequence_shape):
|
78
|
+
self._decoder_sequence_shape = decoder_sequence_shape
|
79
|
+
self.hidden_dim = decoder_sequence_shape[-1]
|
80
|
+
|
81
|
+
# Self attention layer.
|
82
|
+
self._self_attention_layer = QwenAttention(
|
83
|
+
num_query_heads=self.num_query_heads,
|
84
|
+
num_key_value_heads=self.num_key_value_heads,
|
85
|
+
rope_max_wavelength=self.rope_max_wavelength,
|
86
|
+
rope_scaling_factor=self.rope_scaling_factor,
|
87
|
+
kernel_initializer=clone_initializer(self.kernel_initializer),
|
88
|
+
dropout=self.dropout,
|
89
|
+
use_sliding_window_attention=self.use_sliding_window_attention,
|
90
|
+
sliding_window_size=self.sliding_window_size,
|
91
|
+
dtype=self.dtype_policy,
|
92
|
+
name="self_attention",
|
93
|
+
)
|
94
|
+
self._self_attention_layer.build(decoder_sequence_shape)
|
95
|
+
|
96
|
+
self._self_attention_layernorm = QwenLayerNorm(
|
97
|
+
epsilon=self.layer_norm_epsilon,
|
98
|
+
dtype=self.dtype_policy,
|
99
|
+
name="self_attention_layernorm",
|
100
|
+
)
|
101
|
+
|
102
|
+
self._self_attention_layernorm.build(decoder_sequence_shape)
|
103
|
+
self._self_attention_dropout = keras.layers.Dropout(
|
104
|
+
rate=self.dropout,
|
105
|
+
dtype=self.dtype_policy,
|
106
|
+
name="self_attention_dropout",
|
107
|
+
)
|
108
|
+
|
109
|
+
# Feedforward layers.
|
110
|
+
self._feedforward_intermediate_dense = keras.layers.Dense(
|
111
|
+
self.intermediate_dim,
|
112
|
+
kernel_initializer=clone_initializer(self.kernel_initializer),
|
113
|
+
use_bias=False,
|
114
|
+
dtype=self.dtype_policy,
|
115
|
+
name="feedforward_intermediate_dense",
|
116
|
+
)
|
117
|
+
self._feedforward_intermediate_dense.build(decoder_sequence_shape)
|
118
|
+
|
119
|
+
self._feedforward_gate_dense = keras.layers.Dense(
|
120
|
+
self.intermediate_dim,
|
121
|
+
kernel_initializer=clone_initializer(self.kernel_initializer),
|
122
|
+
use_bias=False,
|
123
|
+
dtype=self.dtype_policy,
|
124
|
+
name="feedforward_gate_dense",
|
125
|
+
)
|
126
|
+
self._feedforward_gate_dense.build(decoder_sequence_shape)
|
127
|
+
|
128
|
+
self._feedforward_output_dense = keras.layers.Dense(
|
129
|
+
self.hidden_dim,
|
130
|
+
kernel_initializer=clone_initializer(self.kernel_initializer),
|
131
|
+
use_bias=False,
|
132
|
+
dtype=self.dtype_policy,
|
133
|
+
name="feedforward_output_dense",
|
134
|
+
)
|
135
|
+
|
136
|
+
self._feedforward_output_dense.build(
|
137
|
+
self._feedforward_gate_dense.compute_output_shape(
|
138
|
+
decoder_sequence_shape
|
139
|
+
)
|
140
|
+
)
|
141
|
+
|
142
|
+
self._feedforward_layernorm = QwenLayerNorm(
|
143
|
+
epsilon=self.layer_norm_epsilon,
|
144
|
+
dtype=self.dtype_policy,
|
145
|
+
name="feedforward_layernorm",
|
146
|
+
)
|
147
|
+
self._feedforward_layernorm.build(decoder_sequence_shape)
|
148
|
+
|
149
|
+
self.built = True
|
150
|
+
|
151
|
+
def call(
|
152
|
+
self,
|
153
|
+
decoder_sequence,
|
154
|
+
decoder_padding_mask=None,
|
155
|
+
decoder_attention_mask=None,
|
156
|
+
self_attention_cache=None,
|
157
|
+
self_attention_cache_update_index=None,
|
158
|
+
training=None,
|
159
|
+
):
|
160
|
+
"""Forward pass for the decoder layer.
|
161
|
+
|
162
|
+
Args:
|
163
|
+
decoder_sequence: Input tensor of shape [batch_size, seq_length,
|
164
|
+
hidden_size].
|
165
|
+
decoder_padding_mask: Mask tensor for padding tokens.
|
166
|
+
decoder_attention_mask: Additional attention mask.
|
167
|
+
self_attention_cache: Optional cached key and value tensors for
|
168
|
+
self-attention.
|
169
|
+
self_attention_cache_update_index: Index at which to update the
|
170
|
+
cache.
|
171
|
+
training: Boolean indicating whether in training mode.
|
172
|
+
|
173
|
+
Returns:
|
174
|
+
decoder_output: Output tensor after applying transformer decoder
|
175
|
+
block.
|
176
|
+
self_attention_cache: Updated cache tensors (if cache is provided).
|
177
|
+
"""
|
178
|
+
self_attention_mask = self._compute_self_attention_mask(
|
179
|
+
decoder_sequence=decoder_sequence,
|
180
|
+
decoder_padding_mask=decoder_padding_mask,
|
181
|
+
decoder_attention_mask=decoder_attention_mask,
|
182
|
+
self_attention_cache=self_attention_cache,
|
183
|
+
self_attention_cache_update_index=self_attention_cache_update_index,
|
184
|
+
)
|
185
|
+
residual = decoder_sequence
|
186
|
+
|
187
|
+
x = self._self_attention_layernorm(decoder_sequence)
|
188
|
+
|
189
|
+
# Self attention block.
|
190
|
+
x = self._self_attention_layer(
|
191
|
+
hidden_states=x,
|
192
|
+
attention_mask=self_attention_mask,
|
193
|
+
cache=self_attention_cache,
|
194
|
+
cache_update_index=self_attention_cache_update_index,
|
195
|
+
)
|
196
|
+
|
197
|
+
if self_attention_cache is not None:
|
198
|
+
x, self_attention_cache = x
|
199
|
+
|
200
|
+
x = self._self_attention_dropout(x, training=training)
|
201
|
+
|
202
|
+
x = x + residual
|
203
|
+
residual = x
|
204
|
+
|
205
|
+
x = self._feedforward_layernorm(x)
|
206
|
+
gate_output = self._feedforward_gate_dense(x)
|
207
|
+
|
208
|
+
# Note that we run the activation function in full 32-bit
|
209
|
+
# precision since this is what `torch.nn.functional.silu`
|
210
|
+
# does. Internally, `torch.nn.functional.silu` converts the
|
211
|
+
# inputs to float32, computes SiLU, and converts the outputs
|
212
|
+
# back to compute dtype.
|
213
|
+
# CPU Kernel: https://github.com/pytorch/pytorch/blob/35c493f2cf9b623bfdc7e6b34dc1cb39690a7919/aten/src/ATen/native/cpu/Activation.cpp#L1221-L1235 # noqa: E501
|
214
|
+
# CUDA Kernel: https://github.com/pytorch/pytorch/blob/35c493f2cf9b623bfdc7e6b34dc1cb39690a7919/aten/src/ATen/native/cuda/ActivationSiluKernel.cu # noqa: E501
|
215
|
+
gate_output = ops.cast(gate_output, "float32")
|
216
|
+
gate_output = self.activation(gate_output)
|
217
|
+
gate_output = ops.cast(gate_output, self.compute_dtype)
|
218
|
+
|
219
|
+
x = self._feedforward_intermediate_dense(x)
|
220
|
+
|
221
|
+
x = self._feedforward_output_dense(ops.multiply(x, gate_output))
|
222
|
+
|
223
|
+
decoder_output = x + residual
|
224
|
+
|
225
|
+
if self_attention_cache is not None:
|
226
|
+
return decoder_output, self_attention_cache
|
227
|
+
return decoder_output
|
228
|
+
|
229
|
+
def _compute_self_attention_mask(
|
230
|
+
self,
|
231
|
+
decoder_sequence,
|
232
|
+
decoder_padding_mask,
|
233
|
+
decoder_attention_mask,
|
234
|
+
self_attention_cache,
|
235
|
+
self_attention_cache_update_index,
|
236
|
+
):
|
237
|
+
"""Computes the self-attention mask combining causal, padding and
|
238
|
+
attention masks.
|
239
|
+
|
240
|
+
Args:
|
241
|
+
decoder_sequence: Input tensor.
|
242
|
+
decoder_padding_mask: Mask tensor for padding tokens.
|
243
|
+
decoder_attention_mask: Additional attention mask.
|
244
|
+
self_attention_cache: Optional cached key and value tensors.
|
245
|
+
self_attention_cache_update_index: Index at which to update the
|
246
|
+
cache.
|
247
|
+
|
248
|
+
Returns:
|
249
|
+
Combined attention mask tensor.
|
250
|
+
"""
|
251
|
+
decoder_mask = merge_padding_and_attention_mask(
|
252
|
+
decoder_sequence, decoder_padding_mask, decoder_attention_mask
|
253
|
+
)
|
254
|
+
batch_size = ops.shape(decoder_sequence)[0]
|
255
|
+
input_length = output_length = ops.shape(decoder_sequence)[1]
|
256
|
+
# We need to handle a rectangular causal mask when doing cached
|
257
|
+
# decoding. For generative inference, `decoder_sequence` will
|
258
|
+
# generally be length 1, and `cache` will be the full generation length.
|
259
|
+
if self_attention_cache is not None:
|
260
|
+
input_length = ops.shape(self_attention_cache)[2]
|
261
|
+
|
262
|
+
cache_update_index = (
|
263
|
+
0
|
264
|
+
if self_attention_cache_update_index is None
|
265
|
+
else self_attention_cache_update_index
|
266
|
+
)
|
267
|
+
|
268
|
+
causal_mask = compute_causal_mask(
|
269
|
+
batch_size, input_length, output_length, cache_update_index
|
270
|
+
)
|
271
|
+
|
272
|
+
return (
|
273
|
+
ops.minimum(decoder_mask, causal_mask)
|
274
|
+
if decoder_mask is not None
|
275
|
+
else causal_mask
|
276
|
+
)
|
277
|
+
|
278
|
+
def compute_output_shape(self, decoder_sequence_shape):
|
279
|
+
"""Computes the output shape of the layer.
|
280
|
+
|
281
|
+
Args:
|
282
|
+
decoder_sequence_shape: Shape of the decoder sequence input.
|
283
|
+
|
284
|
+
Returns:
|
285
|
+
Output shape, which is the same as the input shape.
|
286
|
+
"""
|
287
|
+
return decoder_sequence_shape
|
288
|
+
|
289
|
+
def get_config(self):
|
290
|
+
"""Returns the config of the layer.
|
291
|
+
|
292
|
+
Returns:
|
293
|
+
Dictionary containing the parameters used to initialize this layer.
|
294
|
+
"""
|
295
|
+
config = super().get_config()
|
296
|
+
config.update(
|
297
|
+
{
|
298
|
+
"intermediate_dim": self.intermediate_dim,
|
299
|
+
"num_query_heads": self.num_query_heads,
|
300
|
+
"rope_max_wavelength": self.rope_max_wavelength,
|
301
|
+
"rope_scaling_factor": self.rope_scaling_factor,
|
302
|
+
"num_key_value_heads": self.num_key_value_heads,
|
303
|
+
"activation": keras.activations.serialize(self.activation),
|
304
|
+
"layer_norm_epsilon": self.layer_norm_epsilon,
|
305
|
+
"kernel_initializer": keras.initializers.serialize(
|
306
|
+
self.kernel_initializer
|
307
|
+
),
|
308
|
+
"dropout": self.dropout,
|
309
|
+
}
|
310
|
+
)
|
311
|
+
return config
|
@@ -0,0 +1,32 @@
|
|
1
|
+
import keras
|
2
|
+
from keras import ops
|
3
|
+
|
4
|
+
|
5
|
+
class QwenLayerNorm(keras.layers.Layer):
|
6
|
+
"""A normalization layer for Qwen that implements RMS normalization."""
|
7
|
+
|
8
|
+
def __init__(self, epsilon=1e-6, **kwargs):
|
9
|
+
super().__init__(**kwargs)
|
10
|
+
self.epsilon = epsilon
|
11
|
+
|
12
|
+
def build(self, input_shape):
|
13
|
+
dim = input_shape[-1]
|
14
|
+
self.scale = self.add_weight(
|
15
|
+
name="scale",
|
16
|
+
trainable=True,
|
17
|
+
shape=(dim,),
|
18
|
+
initializer="ones",
|
19
|
+
dtype=self.variable_dtype,
|
20
|
+
)
|
21
|
+
self.built = True
|
22
|
+
|
23
|
+
def call(self, x):
|
24
|
+
x = ops.cast(x, "float32")
|
25
|
+
var = ops.mean(ops.power(x, 2), axis=-1, keepdims=True)
|
26
|
+
x = x * ops.rsqrt(var + self.epsilon)
|
27
|
+
return ops.cast(x * self.scale, self.compute_dtype)
|
28
|
+
|
29
|
+
def get_config(self):
|
30
|
+
config = super().get_config()
|
31
|
+
config.update({"epsilon": self.epsilon})
|
32
|
+
return config
|
@@ -0,0 +1,51 @@
|
|
1
|
+
from keras_hub.src.api_export import keras_hub_export
|
2
|
+
from keras_hub.src.models.qwen.qwen_backbone import QwenBackbone
|
3
|
+
from keras_hub.src.tokenizers.byte_pair_tokenizer import BytePairTokenizer
|
4
|
+
|
5
|
+
|
6
|
+
@keras_hub_export(
|
7
|
+
[
|
8
|
+
"keras_hub.tokenizers.QwenTokenizer",
|
9
|
+
"keras_hub.tokenizers.Qwen2Tokenizer",
|
10
|
+
"keras_hub.models.QwenTokenizer",
|
11
|
+
"keras_hub.models.Qwen2Tokenizer",
|
12
|
+
]
|
13
|
+
)
|
14
|
+
class QwenTokenizer(BytePairTokenizer):
|
15
|
+
"""Tokenizer for Qwen models.
|
16
|
+
|
17
|
+
This tokenizer implements byte-pair encoding (BPE) for Qwen models,
|
18
|
+
handling special tokens like BOS (beginning of sequence) and EOS (end of
|
19
|
+
sequence).
|
20
|
+
|
21
|
+
Args:
|
22
|
+
vocabulary: Dictionary mapping tokens to token IDs, or path to
|
23
|
+
vocabulary file.
|
24
|
+
merges: List of BPE merges, or path to merges file.
|
25
|
+
bos_token: Beginning of sequence token. Defaults to None.
|
26
|
+
eos_token: End of sequence token. Defaults to "<|endoftext|>".
|
27
|
+
misc_special_tokens: Set of additional special tokens. Defaults to
|
28
|
+
empty set.
|
29
|
+
"""
|
30
|
+
|
31
|
+
backbone_cls = QwenBackbone
|
32
|
+
|
33
|
+
def __init__(
|
34
|
+
self,
|
35
|
+
vocabulary=None,
|
36
|
+
merges=None,
|
37
|
+
**kwargs,
|
38
|
+
):
|
39
|
+
# Add EOS token
|
40
|
+
eos_token = "<|endoftext|>"
|
41
|
+
self._add_special_token(eos_token, "end_token")
|
42
|
+
|
43
|
+
self.start_token_id = None
|
44
|
+
self.start_token = None
|
45
|
+
self.pad_token_id = 0
|
46
|
+
|
47
|
+
super().__init__(
|
48
|
+
vocabulary=vocabulary,
|
49
|
+
merges=merges,
|
50
|
+
**kwargs,
|
51
|
+
)
|
@@ -0,0 +1,148 @@
|
|
1
|
+
import numpy as np
|
2
|
+
|
3
|
+
from keras_hub.src.models.qwen.qwen_backbone import QwenBackbone
|
4
|
+
from keras_hub.src.utils.preset_utils import load_json
|
5
|
+
|
6
|
+
backbone_cls = QwenBackbone
|
7
|
+
|
8
|
+
|
9
|
+
def convert_backbone_config(transformers_config):
|
10
|
+
return {
|
11
|
+
"vocabulary_size": transformers_config["vocab_size"],
|
12
|
+
"hidden_dim": transformers_config["hidden_size"],
|
13
|
+
"num_layers": transformers_config["num_hidden_layers"],
|
14
|
+
"num_query_heads": transformers_config["num_attention_heads"],
|
15
|
+
"num_key_value_heads": transformers_config["num_key_value_heads"],
|
16
|
+
"intermediate_dim": transformers_config["intermediate_size"],
|
17
|
+
"layer_norm_epsilon": transformers_config["rms_norm_eps"],
|
18
|
+
"rope_max_wavelength": transformers_config["rope_theta"],
|
19
|
+
"use_sliding_window": transformers_config["use_sliding_window"],
|
20
|
+
"sliding_window_size": transformers_config["sliding_window"],
|
21
|
+
}
|
22
|
+
|
23
|
+
|
24
|
+
def convert_weights(backbone, loader, transformers_config):
|
25
|
+
loader.port_weight(
|
26
|
+
keras_variable=backbone.get_layer("token_embedding").embeddings,
|
27
|
+
hf_weight_key="model.embed_tokens.weight",
|
28
|
+
)
|
29
|
+
if not backbone.tie_word_embeddings:
|
30
|
+
loader.port_weight(
|
31
|
+
keras_variable=backbone.get_layer(
|
32
|
+
"token_embedding"
|
33
|
+
).reverse_embeddings,
|
34
|
+
hf_weight_key="lm_head.weight",
|
35
|
+
# rearrange_pattern="b a -> a b",
|
36
|
+
hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
|
37
|
+
)
|
38
|
+
|
39
|
+
def transpose_and_reshape(x, shape):
|
40
|
+
return np.reshape(np.transpose(x), shape)
|
41
|
+
|
42
|
+
for i in range(backbone.num_layers):
|
43
|
+
decoder_layer = backbone.get_layer(f"transformer_layer_{i}")
|
44
|
+
|
45
|
+
# Input layernorm
|
46
|
+
loader.port_weight(
|
47
|
+
keras_variable=decoder_layer._self_attention_layernorm.scale,
|
48
|
+
hf_weight_key=f"model.layers.{i}.input_layernorm.weight",
|
49
|
+
)
|
50
|
+
|
51
|
+
# Attention layers
|
52
|
+
|
53
|
+
## Query
|
54
|
+
loader.port_weight(
|
55
|
+
keras_variable=decoder_layer._self_attention_layer._query_dense.kernel,
|
56
|
+
hf_weight_key=f"model.layers.{i}.self_attn.q_proj.weight",
|
57
|
+
hook_fn=transpose_and_reshape,
|
58
|
+
)
|
59
|
+
loader.port_weight(
|
60
|
+
keras_variable=decoder_layer._self_attention_layer._query_dense.bias,
|
61
|
+
hf_weight_key=f"model.layers.{i}.self_attn.q_proj.bias",
|
62
|
+
hook_fn=transpose_and_reshape,
|
63
|
+
)
|
64
|
+
## Key
|
65
|
+
loader.port_weight(
|
66
|
+
keras_variable=decoder_layer._self_attention_layer._key_dense.kernel,
|
67
|
+
hf_weight_key=f"model.layers.{i}.self_attn.k_proj.weight",
|
68
|
+
hook_fn=transpose_and_reshape,
|
69
|
+
)
|
70
|
+
loader.port_weight(
|
71
|
+
keras_variable=decoder_layer._self_attention_layer._key_dense.bias,
|
72
|
+
hf_weight_key=f"model.layers.{i}.self_attn.k_proj.bias",
|
73
|
+
hook_fn=transpose_and_reshape,
|
74
|
+
)
|
75
|
+
## Value
|
76
|
+
loader.port_weight(
|
77
|
+
keras_variable=decoder_layer._self_attention_layer._value_dense.kernel,
|
78
|
+
hf_weight_key=f"model.layers.{i}.self_attn.v_proj.weight",
|
79
|
+
hook_fn=transpose_and_reshape,
|
80
|
+
)
|
81
|
+
loader.port_weight(
|
82
|
+
keras_variable=decoder_layer._self_attention_layer._value_dense.bias,
|
83
|
+
hf_weight_key=f"model.layers.{i}.self_attn.v_proj.bias",
|
84
|
+
hook_fn=transpose_and_reshape,
|
85
|
+
)
|
86
|
+
## Output
|
87
|
+
loader.port_weight(
|
88
|
+
keras_variable=decoder_layer._self_attention_layer._output_dense.kernel,
|
89
|
+
hf_weight_key=f"model.layers.{i}.self_attn.o_proj.weight",
|
90
|
+
# rearrange_patterns="c (a b) -> a b c",
|
91
|
+
# rearrange_dims={"a": backbone.num_query_heads},
|
92
|
+
hook_fn=transpose_and_reshape,
|
93
|
+
)
|
94
|
+
|
95
|
+
# MLP layers
|
96
|
+
loader.port_weight(
|
97
|
+
keras_variable=decoder_layer._feedforward_intermediate_dense.kernel,
|
98
|
+
hf_weight_key=f"model.layers.{i}.mlp.up_proj.weight",
|
99
|
+
# rearrange_patterns="b a -> a b",
|
100
|
+
hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
|
101
|
+
)
|
102
|
+
loader.port_weight(
|
103
|
+
keras_variable=decoder_layer._feedforward_output_dense.kernel,
|
104
|
+
hf_weight_key=f"model.layers.{i}.mlp.down_proj.weight",
|
105
|
+
# rearrange_patterns="b a -> a b",
|
106
|
+
hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
|
107
|
+
)
|
108
|
+
loader.port_weight(
|
109
|
+
keras_variable=decoder_layer._feedforward_gate_dense.kernel,
|
110
|
+
hf_weight_key=f"model.layers.{i}.mlp.gate_proj.weight",
|
111
|
+
# rearrange_patterns="b a -> a b",
|
112
|
+
hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
|
113
|
+
)
|
114
|
+
|
115
|
+
# Feedforward layernorm
|
116
|
+
loader.port_weight(
|
117
|
+
keras_variable=decoder_layer._feedforward_layernorm.scale,
|
118
|
+
hf_weight_key=f"model.layers.{i}.post_attention_layernorm.weight",
|
119
|
+
)
|
120
|
+
|
121
|
+
# Final normalization layer
|
122
|
+
loader.port_weight(
|
123
|
+
keras_variable=backbone.get_layer("sequence_output_layernorm").scale,
|
124
|
+
hf_weight_key="model.norm.weight",
|
125
|
+
)
|
126
|
+
|
127
|
+
return backbone
|
128
|
+
|
129
|
+
|
130
|
+
def convert_tokenizer(cls, preset, **kwargs):
|
131
|
+
tokenizer_config = load_json(preset, "tokenizer.json")
|
132
|
+
vocab = tokenizer_config["model"]["vocab"]
|
133
|
+
merges = tokenizer_config["model"]["merges"]
|
134
|
+
|
135
|
+
# Load all special tokens with the exception of "reserved" ones.
|
136
|
+
special_tokens = set()
|
137
|
+
for token in tokenizer_config["added_tokens"]:
|
138
|
+
if not token["content"].startswith("<|reserved_special_token_"):
|
139
|
+
vocab[token["content"]] = token["id"]
|
140
|
+
special_tokens.add(token["content"])
|
141
|
+
|
142
|
+
kwargs.update(
|
143
|
+
{
|
144
|
+
"unsplittable_tokens": list(special_tokens),
|
145
|
+
}
|
146
|
+
)
|
147
|
+
|
148
|
+
return cls(vocabulary=vocab, merges=merges, **kwargs)
|
@@ -12,6 +12,7 @@ from keras_hub.src.utils.transformers import convert_gpt2
|
|
12
12
|
from keras_hub.src.utils.transformers import convert_llama3
|
13
13
|
from keras_hub.src.utils.transformers import convert_mistral
|
14
14
|
from keras_hub.src.utils.transformers import convert_pali_gemma
|
15
|
+
from keras_hub.src.utils.transformers import convert_qwen
|
15
16
|
from keras_hub.src.utils.transformers import convert_vit
|
16
17
|
from keras_hub.src.utils.transformers.safetensor_utils import SafetensorLoader
|
17
18
|
|
@@ -41,6 +42,8 @@ class TransformersPresetLoader(PresetLoader):
|
|
41
42
|
self.converter = convert_pali_gemma
|
42
43
|
elif model_type == "vit":
|
43
44
|
self.converter = convert_vit
|
45
|
+
elif model_type == "qwen2":
|
46
|
+
self.converter = convert_qwen
|
44
47
|
else:
|
45
48
|
raise ValueError(
|
46
49
|
"KerasHub has no converter for huggingface/transformers models "
|
keras_hub/src/version_utils.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: keras-hub-nightly
|
3
|
-
Version: 0.20.0.
|
3
|
+
Version: 0.20.0.dev202503190355
|
4
4
|
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
5
|
Home-page: https://github.com/keras-team/keras-hub
|
6
6
|
Author: Keras team
|
@@ -2,13 +2,13 @@ keras_hub/__init__.py,sha256=QGdXyHgYt6cMUAP1ebxwc6oR86dE0dkMxNy2eOCQtFo,855
|
|
2
2
|
keras_hub/api/__init__.py,sha256=EzR6D-XWsm_gDrX5LDwKEmrah_gu3ffpj8GKBudE0yI,485
|
3
3
|
keras_hub/api/layers/__init__.py,sha256=-yHyqsjWBhmFv9RSS2cMyPcieU1RkNzcNsq9IDXSVFE,3626
|
4
4
|
keras_hub/api/metrics/__init__.py,sha256=So8Ec-lOcTzn_UUMmAdzDm8RKkPu2dbRUm2px8gpUEI,381
|
5
|
-
keras_hub/api/models/__init__.py,sha256=
|
5
|
+
keras_hub/api/models/__init__.py,sha256=U9LffuV0XchcdCWxl-I8qaOvYJ0bwdfq-6O_CTbb9Qc,18310
|
6
6
|
keras_hub/api/samplers/__init__.py,sha256=n-_SEXxr2LNUzK2FqVFN7alsrkx1P_HOVTeLZKeGCdE,730
|
7
|
-
keras_hub/api/tokenizers/__init__.py,sha256=
|
7
|
+
keras_hub/api/tokenizers/__init__.py,sha256=LsVLrAxTVe9YT9ixsGYnbtWuyfPW5-FW3Wt3xV08_LE,2758
|
8
8
|
keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
|
9
9
|
keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
10
10
|
keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
|
11
|
-
keras_hub/src/version_utils.py,sha256=
|
11
|
+
keras_hub/src/version_utils.py,sha256=vorQCdzPDX_UAFC0eJ0HUMid7M8fhwt0rtfLb2fkFs0,222
|
12
12
|
keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
13
13
|
keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
14
14
|
keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
|
@@ -29,7 +29,7 @@ keras_hub/src/layers/modeling/transformer_encoder.py,sha256=Qe19_aR6w4PTFbzvBmSP
|
|
29
29
|
keras_hub/src/layers/modeling/transformer_layer_utils.py,sha256=FuznrW33iG50B-VDN8R1RjuA5JG72yNMJ1TBgWLxR0E,3487
|
30
30
|
keras_hub/src/layers/preprocessing/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
31
31
|
keras_hub/src/layers/preprocessing/audio_converter.py,sha256=YGh_kQw65a1Z6S5zzSNVP-ChyLYHq3-eOYpOS53xIN8,4156
|
32
|
-
keras_hub/src/layers/preprocessing/image_converter.py,sha256=
|
32
|
+
keras_hub/src/layers/preprocessing/image_converter.py,sha256=E5EYbURAVNntnx0eQ886QOkOPAOc2TKrvZhe39SL5sU,15552
|
33
33
|
keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py,sha256=itxWq3FHYlR0I7jKarQlSKbSmRLl9ut_UTSP3ZDwP0A,8162
|
34
34
|
keras_hub/src/layers/preprocessing/multi_segment_packer.py,sha256=ZNqnUFnc9Af122Q7T6YyUoXgIdU9AgIJfsvR1UrCjFU,12068
|
35
35
|
keras_hub/src/layers/preprocessing/preprocessing_layer.py,sha256=WyX41b9Ev_YJ5uVQVOAqD0PQasMOPDoyDjl_PkzkAkE,687
|
@@ -271,6 +271,14 @@ keras_hub/src/models/phi3/phi3_layernorm.py,sha256=Oqu81tGd97Lzx3kG1QEtZ0S6gbfn3
|
|
271
271
|
keras_hub/src/models/phi3/phi3_presets.py,sha256=sb2ce7Gq1OikFEf2KIYG69rFKHYKj8qhlN-Ea8d6J7k,1366
|
272
272
|
keras_hub/src/models/phi3/phi3_rotary_embedding.py,sha256=wqiRn8nETNcLc5Vsm_d_8s11Ro6ibWZbWvODdLqIOo4,5013
|
273
273
|
keras_hub/src/models/phi3/phi3_tokenizer.py,sha256=bOPH14wTVVHJHq8mgzXLjsgvKMNhfO8eayevAPpjYVA,1992
|
274
|
+
keras_hub/src/models/qwen/__init__.py,sha256=hskG3tZUY_AYZPp0WVzbCtw37AIYENyp3DOnqHmdRBw,65
|
275
|
+
keras_hub/src/models/qwen/qwen_attention.py,sha256=vBPGdNMRnfuETxxdwDzwpObOvt3zB2qqc9kbWRRKuQg,12951
|
276
|
+
keras_hub/src/models/qwen/qwen_backbone.py,sha256=xBu2zEzFFAjKgaHOqPnxLU-j4oL3N2G2KT-uwL2zEM0,13018
|
277
|
+
keras_hub/src/models/qwen/qwen_causal_lm.py,sha256=_f-UHaKHp0ncxknpkpEJiW3jlng3E4CmddjQfz2QzJo,12249
|
278
|
+
keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py,sha256=Va-4TLJD3ycEnkS41rF3dVj4_6K0j-gxLTrREFRcyr0,609
|
279
|
+
keras_hub/src/models/qwen/qwen_decoder.py,sha256=utmAvZlU7_nP-6pjGPDinK4JaMzsQSwOARG0ote-jAg,11771
|
280
|
+
keras_hub/src/models/qwen/qwen_layernorm.py,sha256=DS35r3qd6g5ocL7Nhf_vNzLLMo1aI9VCSmL64dgNOYI,924
|
281
|
+
keras_hub/src/models/qwen/qwen_tokenizer.py,sha256=LCv3IyiDDHqVnM9N3lf5-BE3iwicIh0nKS1hjoPw9lE,1532
|
274
282
|
keras_hub/src/models/resnet/__init__.py,sha256=C5UqlQ6apm8WSp1bnrxB6Bi3BGaknxRQs-r3b2wpaGA,257
|
275
283
|
keras_hub/src/models/resnet/resnet_backbone.py,sha256=Q7nlqcTXZzjqd0e-DsjHC4ok58yOX7qxseotym3uZpM,31276
|
276
284
|
keras_hub/src/models/resnet/resnet_image_classifier.py,sha256=nf35EKDzvBkfhHsK-s6Ks0nbhvKO7HEOYZm94YckyWE,510
|
@@ -424,10 +432,11 @@ keras_hub/src/utils/transformers/convert_gpt2.py,sha256=HCeHN_-GiQJRxLCM9OCJJ1wa
|
|
424
432
|
keras_hub/src/utils/transformers/convert_llama3.py,sha256=zlg0yFscjytyOFymDwqnbuXkmYvb88qqYzAROKcpaPU,5250
|
425
433
|
keras_hub/src/utils/transformers/convert_mistral.py,sha256=kVhN9h1ZFVhwkNW8p3wnS7eANJUXIsNy1RxWXy20Gqw,4760
|
426
434
|
keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYumf66hIid07k5NLqoeWAJgPnaLs,10649
|
435
|
+
keras_hub/src/utils/transformers/convert_qwen.py,sha256=I2bfwo8AQd_JfwFpiAuCQ3k_FC66J5lY7tYt99yMc9E,5811
|
427
436
|
keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
|
428
|
-
keras_hub/src/utils/transformers/preset_loader.py,sha256=
|
437
|
+
keras_hub/src/utils/transformers/preset_loader.py,sha256=0Hi7R8HnATcwFVLsJwMMIMWTCXHNfep4IPiRpQXqM-w,3933
|
429
438
|
keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
|
430
|
-
keras_hub_nightly-0.20.0.
|
431
|
-
keras_hub_nightly-0.20.0.
|
432
|
-
keras_hub_nightly-0.20.0.
|
433
|
-
keras_hub_nightly-0.20.0.
|
439
|
+
keras_hub_nightly-0.20.0.dev202503190355.dist-info/METADATA,sha256=_NRZnBJaATY35BF5Rt40OZXO4m_FsBy40E6un6g8edI,7715
|
440
|
+
keras_hub_nightly-0.20.0.dev202503190355.dist-info/WHEEL,sha256=beeZ86-EfXScwlR_HKu4SllMC9wUEj_8Z_4FJ3egI2w,91
|
441
|
+
keras_hub_nightly-0.20.0.dev202503190355.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
442
|
+
keras_hub_nightly-0.20.0.dev202503190355.dist-info/RECORD,,
|