keras-hub-nightly 0.20.0.dev202503160355__py3-none-any.whl → 0.20.0.dev202503180354__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,327 @@
1
+ import keras
2
+ from keras import ops
3
+
4
+ from keras_hub.src.api_export import keras_hub_export
5
+ from keras_hub.src.layers.modeling.reversible_embedding import (
6
+ ReversibleEmbedding,
7
+ )
8
+ from keras_hub.src.models.backbone import Backbone
9
+ from keras_hub.src.models.qwen.qwen_decoder import QwenTransformerDecoder
10
+ from keras_hub.src.models.qwen.qwen_layernorm import QwenLayerNorm
11
+
12
+
13
+ def _qwen_kernel_initializer(stddev=0.02):
14
+ return keras.initializers.RandomNormal(stddev=stddev)
15
+
16
+
17
+ @keras_hub_export(
18
+ [
19
+ "keras_hub.models.QwenBackbone",
20
+ "keras_hub.models.Qwen2Backbone",
21
+ ]
22
+ )
23
+ class QwenBackbone(Backbone):
24
+ """
25
+ The Qwen Transformer core architecture with hyperparameters.
26
+
27
+ This network implements a Transformer-based decoder network,
28
+ Qwen, as described in the Qwen model architecture.
29
+ It includes the embedding lookups and transformer layers.
30
+
31
+ The default constructor gives a fully customizable, randomly initialized
32
+ Qwen model with any number of layers, heads, and embedding
33
+ dimensions. To load preset architectures and weights, use the `from_preset`
34
+ constructor.
35
+
36
+ Args:
37
+ vocabulary_size (int): The size of the token vocabulary.
38
+ num_layers (int): The number of transformer layers.
39
+ num_query_heads (int): The number of query attention heads for
40
+ each transformer.
41
+ hidden_dim (int): The size of the transformer encoding and pooling
42
+ layers.
43
+ intermediate_dim (int): The output dimension of the first Dense layer in
44
+ a three-layer feedforward network for each transformer.
45
+ num_key_value_heads (int): The number of key and value attention heads
46
+ for each transformer.
47
+ rope_max_wavelength (int, optional): The maximum angular wavelength of
48
+ the sine/cosine curves, for rotary embeddings. Defaults to `10000`.
49
+ rope_scaling_factor (float, optional): The scaling factor for
50
+ calculation of rotary embedding. Defaults to `1.0`.
51
+ layer_norm_epsilon (float, optional): Epsilon for the layer
52
+ normalization layers in the transformer decoder. Defaults to `1e-6`.
53
+ dropout (float, optional): Dropout rate for attention and hidden layers.
54
+ Defaults to `0`.
55
+ dtype: string or `keras.mixed_precision.DTypePolicy`. The dtype to use
56
+ for model computations and weights. Note that some computations,
57
+ such as softmax and layer normalization, will always be done at
58
+ float32 precision regardless of dtype.
59
+ tie_word_embeddings (bool, optional): Whether to tie input and output
60
+ embeddings. Defaults to `True`.
61
+ use_sliding_window_attention (bool, optional): Whether to use sliding
62
+ window attention for efficient processing of long sequences.
63
+ Defaults to `False`.
64
+ sliding_window_size (int, optional): Size of the sliding window for
65
+ attention when enabled. Defaults to `32768`.
66
+
67
+ Examples:
68
+
69
+ ```python
70
+ input_data = {
71
+ "token_ids": np.ones(shape=(1, 12), dtype="int32"),
72
+ "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]),
73
+ }
74
+
75
+ # Pretrained Qwen decoder.
76
+ model = keras_hub.models.QwenBackbone.from_preset("qwen2.5_0.5b_en")
77
+ model(input_data)
78
+
79
+ # Randomly initialized Qwen decoder with custom config.
80
+ model = keras_hub.models.QwenBackbone(
81
+ vocabulary_size=10,
82
+ hidden_dim=512,
83
+ num_layers=2,
84
+ num_query_heads=32,
85
+ num_key_value_heads=8,
86
+ intermediate_dim=1024,
87
+ layer_norm_epsilon=1e-6,
88
+ dtype="float32"
89
+ )
90
+ model(input_data)
91
+ ```
92
+ """
93
+
94
+ def __init__(
95
+ self,
96
+ vocabulary_size,
97
+ num_layers,
98
+ num_query_heads,
99
+ num_key_value_heads,
100
+ hidden_dim,
101
+ intermediate_dim,
102
+ rope_max_wavelength=10000,
103
+ rope_scaling_factor=1.0,
104
+ layer_norm_epsilon=1e-6,
105
+ dropout=0,
106
+ dtype=None,
107
+ tie_word_embeddings=True,
108
+ use_sliding_window_attention=False,
109
+ sliding_window_size=32768,
110
+ **kwargs,
111
+ ):
112
+ # === Layers ===
113
+ self.token_embedding = ReversibleEmbedding(
114
+ input_dim=vocabulary_size,
115
+ output_dim=hidden_dim,
116
+ tie_weights=tie_word_embeddings,
117
+ embeddings_initializer=_qwen_kernel_initializer(stddev=0.01),
118
+ dtype=dtype,
119
+ name="token_embedding",
120
+ )
121
+ self.transformer_layers = []
122
+ for i in range(num_layers):
123
+ layer = QwenTransformerDecoder(
124
+ intermediate_dim=intermediate_dim,
125
+ num_query_heads=num_query_heads,
126
+ num_key_value_heads=num_key_value_heads,
127
+ rope_max_wavelength=rope_max_wavelength,
128
+ rope_scaling_factor=rope_scaling_factor,
129
+ layer_norm_epsilon=layer_norm_epsilon,
130
+ activation=ops.silu,
131
+ kernel_initializer=_qwen_kernel_initializer(stddev=0.02),
132
+ dropout=dropout,
133
+ dtype=dtype,
134
+ use_sliding_window_attention=use_sliding_window_attention,
135
+ sliding_window_size=sliding_window_size,
136
+ name=f"transformer_layer_{i}",
137
+ )
138
+ self.transformer_layers.append(layer)
139
+ self.layer_norm = QwenLayerNorm(
140
+ epsilon=layer_norm_epsilon,
141
+ dtype=dtype,
142
+ name="sequence_output_layernorm",
143
+ )
144
+
145
+ # === Functional Model ===
146
+ token_id_input = keras.Input(
147
+ shape=(None,), dtype="int32", name="token_ids"
148
+ )
149
+ padding_mask_input = keras.Input(
150
+ shape=(None,), dtype="int32", name="padding_mask"
151
+ )
152
+ x = self.token_embedding(token_id_input)
153
+ for transformer_layer in self.transformer_layers:
154
+ x = transformer_layer(x, decoder_padding_mask=padding_mask_input)
155
+ sequence_output = self.layer_norm(x)
156
+ super().__init__(
157
+ inputs={
158
+ "token_ids": token_id_input,
159
+ "padding_mask": padding_mask_input,
160
+ },
161
+ outputs=sequence_output,
162
+ dtype=dtype,
163
+ **kwargs,
164
+ )
165
+
166
+ # === Config ===
167
+ self.vocabulary_size = vocabulary_size
168
+ self.num_layers = num_layers
169
+ self.num_query_heads = num_query_heads
170
+ self.hidden_dim = hidden_dim
171
+ self.intermediate_dim = intermediate_dim
172
+ self.rope_max_wavelength = rope_max_wavelength
173
+ self.num_key_value_heads = num_key_value_heads
174
+ self.rope_scaling_factor = rope_scaling_factor
175
+ self.layer_norm_epsilon = layer_norm_epsilon
176
+ self.dropout = dropout
177
+ self.tie_word_embeddings = tie_word_embeddings
178
+ self.use_sliding_window_attention = (use_sliding_window_attention,)
179
+ self.sliding_window_size = sliding_window_size
180
+
181
+ def get_config(self):
182
+ config = super().get_config()
183
+ config.update(
184
+ {
185
+ "vocabulary_size": self.vocabulary_size,
186
+ "num_layers": self.num_layers,
187
+ "num_query_heads": self.num_query_heads,
188
+ "hidden_dim": self.hidden_dim,
189
+ "intermediate_dim": self.intermediate_dim,
190
+ "rope_max_wavelength": self.rope_max_wavelength,
191
+ "rope_scaling_factor": self.rope_scaling_factor,
192
+ "num_key_value_heads": self.num_key_value_heads,
193
+ "layer_norm_epsilon": self.layer_norm_epsilon,
194
+ "dropout": self.dropout,
195
+ "tie_word_embeddings": self.tie_word_embeddings,
196
+ "use_sliding_window_attention": (
197
+ self.use_sliding_window_attention
198
+ ),
199
+ "sliding_window_size": self.sliding_window_size,
200
+ }
201
+ )
202
+ return config
203
+
204
+ @staticmethod
205
+ def get_layout_map(
206
+ device_mesh,
207
+ model_parallel_dim_name="model",
208
+ data_parallel_dim_name="batch",
209
+ ):
210
+ """Get a `keras.distribution.LayoutMap` for model parallel distribution.
211
+
212
+ The returned `LayoutMap` contains the sharding spec for the Qwen
213
+ backbone weights, so that you can use it to distribute weights across
214
+ the accelerators.
215
+
216
+ Example:
217
+ ```
218
+ # Feel free to change the mesh shape to balance data and model
219
+ # parallelism
220
+ mesh = keras.distribution.DeviceMesh(
221
+ shape=(1, 8),
222
+ axis_names=('batch', 'model'),
223
+ devices=keras.distribution.list_devices(),
224
+ )
225
+ layout_map = QwenBackbone.get_layout_map(
226
+ mesh,
227
+ model_parallel_dim_name="model",
228
+ )
229
+
230
+ distribution = keras.distribution.ModelParallel(
231
+ layout_map=layout_map,
232
+ batch_dim_name='batch',
233
+ )
234
+
235
+ with distribution.scope():
236
+ qwen_model = keras_hub.models.QwenBackbone.from_preset()
237
+ ```
238
+
239
+ To see how the layout map was applied, load the model then run
240
+ (for one decoder block):
241
+ ```
242
+ embedding_layer = qwen_model.backbone.get_layer("token_embedding")
243
+ decoder_block_1 = qwen_model.backbone.get_layer('transformer_layer_0')
244
+ for variable in embedding_layer.weights + decoder_block_1.weights:
245
+ print(
246
+ f'{variable.path:<58} {str(variable.shape):<16} '
247
+ f'{str(variable.value.sharding.spec)}'
248
+ )
249
+ ```
250
+
251
+ Args:
252
+ device_mesh: The `keras.distribution.DeviceMesh` instance for
253
+ distribution.
254
+ model_parallel_dim_name: The axis name of the device mesh, where
255
+ the weights should be partition on.
256
+ data_parallel_dim_name: The axis name of the device mesh, where
257
+ the data should be partition on.
258
+ Return:
259
+ `keras.distribution.LayoutMap` that contains the sharding spec
260
+ for all the model weights.
261
+ """
262
+ # The weight path and shape of the Llama backbone is like below
263
+ # token_embedding/embeddings (128256, 2048)
264
+ # repeat block for decoder
265
+ # transformer_layer_0/self_attention/query/kernel (2048, 32, 64)
266
+ # transformer_layer_0/self_attention/key/kernel (2048, 8, 64)
267
+ # transformer_layer_0/self_attention/value/kernel (2048, 8, 64)
268
+ # transformer_layer_0/self_attention/attention_output/kernel
269
+ # (32, 64, 2048)
270
+ # transformer_layer_0/self_attention_layernorm/scale (2048,)
271
+ # transformer_layer_0/feedforward_intermediate_dense/kernel
272
+ # (2048, 8192)
273
+ # transformer_layer_0/feedforward_gate_dense/kernel (2048, 8192)
274
+ # transformer_layer_0/feedforward_output_dense/kerne (8192, 2048)
275
+ # transformer_layer_0/feedforward_layernorm/scale (2048,)
276
+
277
+ if not isinstance(device_mesh, keras.distribution.DeviceMesh):
278
+ raise ValueError(
279
+ "Invalid device_mesh type. Expected "
280
+ f"`keras.distribution.Device`, got {type(device_mesh)}"
281
+ )
282
+ if model_parallel_dim_name not in device_mesh.axis_names:
283
+ raise ValueError(
284
+ f"{model_parallel_dim_name} is not found in the "
285
+ f"device_mesh.axis_names. {device_mesh.axis_name=}"
286
+ )
287
+ if data_parallel_dim_name not in device_mesh.axis_names:
288
+ raise ValueError(
289
+ f"{data_parallel_dim_name} is not found in the "
290
+ f"device_mesh.axis_names. {device_mesh.axis_name=}"
291
+ )
292
+ # Note that it is possible to further config the mesh to be 3D, eg
293
+ # (data, seq, model). We leave it as 2D for now for simplicity.
294
+ data_dim = data_parallel_dim_name
295
+ model_dim = model_parallel_dim_name
296
+ # The sharding config is based on the Gemma team training config.
297
+ # See https://arxiv.org/abs/2403.08295
298
+ layout_map = keras.distribution.LayoutMap(device_mesh)
299
+ layout_map["token_embedding/embeddings"] = (model_dim, data_dim)
300
+ layout_map[
301
+ "transformer_layer.*self_attention.*(query|key|value).kernel"
302
+ ] = (
303
+ model_dim,
304
+ data_dim,
305
+ None,
306
+ )
307
+ layout_map["transformer_layer.*attention_output.kernel"] = (
308
+ model_dim,
309
+ None,
310
+ data_dim,
311
+ )
312
+ layout_map[
313
+ "transformer_layer.*feedforward_intermediate_dense.kernel"
314
+ ] = (
315
+ data_dim,
316
+ model_dim,
317
+ )
318
+ layout_map["transformer_layer.*feedforward_gate_dense.kernel"] = (
319
+ data_dim,
320
+ model_dim,
321
+ )
322
+ layout_map["transformer_layer.*feedforward_output_dense.kernel"] = (
323
+ model_dim,
324
+ data_dim,
325
+ )
326
+
327
+ return layout_map
@@ -0,0 +1,300 @@
1
+ import keras
2
+ from keras import ops
3
+
4
+ from keras_hub.src.api_export import keras_hub_export
5
+ from keras_hub.src.models.causal_lm import CausalLM
6
+ from keras_hub.src.models.qwen.qwen_backbone import QwenBackbone
7
+ from keras_hub.src.models.qwen.qwen_causal_lm_preprocessor import (
8
+ QwenCausalLMPreprocessor,
9
+ )
10
+ from keras_hub.src.utils.tensor_utils import any_equal
11
+
12
+
13
+ @keras_hub_export(
14
+ [
15
+ "keras_hub.models.QwenCausalLM",
16
+ "keras_hub.models.Qwen2CausalLM",
17
+ ]
18
+ )
19
+ class QwenCausalLM(CausalLM):
20
+ backbone_cls = QwenBackbone
21
+ preprocessor_cls = QwenCausalLMPreprocessor
22
+
23
+ def __init__(self, backbone, preprocessor=None, **kwargs):
24
+ # === Layers ===
25
+ self.backbone = backbone
26
+ self.preprocessor = preprocessor
27
+
28
+ # === Functional Model ===
29
+ # This must be "backbone.input" i.e. the full input structure,
30
+ # rather than "backbone.inputs" which is the flattened list of inputs.
31
+ inputs = backbone.input
32
+ hidden_states = backbone(inputs)
33
+ outputs = backbone.token_embedding(hidden_states, reverse=True)
34
+ super().__init__(
35
+ inputs=inputs,
36
+ outputs=outputs,
37
+ **kwargs,
38
+ )
39
+
40
+ def call_with_cache(
41
+ self,
42
+ token_ids,
43
+ cache,
44
+ cache_update_index,
45
+ ):
46
+ """Forward pass of `QwenCausalLM` with cache.
47
+
48
+ `call_with_cache` adds an additional forward pass for the model for
49
+ autoregressive inference. Unlike calling the model directly, this method
50
+ allows caching previous key/value Tensors in multi-head attention layer,
51
+ and avoids recomputing the outputs of seen tokens.
52
+
53
+ Args:
54
+ token_ids: a dense int Tensor with shape `(batch_size, max_length)`.
55
+ cache: a dense float Tensor, the cache of key and value.
56
+ cache_update_index: int, or int Tensor. The index of current inputs
57
+ in the whole sequence.
58
+
59
+ Returns:
60
+ A (logits, hidden_states, cache) tuple. Where `logits` is the
61
+ language model logits for the input token_ids, `hidden_states` is
62
+ the final hidden representation of the input tokens, and `cache` is
63
+ the decoding cache.
64
+ """
65
+ x = self.backbone.token_embedding(token_ids)
66
+ # Each decoder layer has a cache; we update them separately.
67
+ updated_cache = []
68
+ for i in range(self.backbone.num_layers):
69
+ current_cache = cache[:, i, ...]
70
+ x, next_cache = self.backbone.transformer_layers[i](
71
+ x,
72
+ self_attention_cache=current_cache,
73
+ self_attention_cache_update_index=cache_update_index,
74
+ )
75
+ updated_cache.append(next_cache)
76
+ cache = ops.stack(updated_cache, axis=1)
77
+ hidden_states = x = self.backbone.layer_norm(x)
78
+ logits = self.backbone.token_embedding(x, reverse=True)
79
+ return logits, hidden_states, cache
80
+
81
+ def _build_cache(self, token_ids):
82
+ """Build an empty cache for use with `call_with_cache()`."""
83
+ batch_size = ops.shape(token_ids)[0]
84
+ max_length = ops.shape(token_ids)[1]
85
+ num_layers = self.backbone.num_layers
86
+ num_key_value_heads = self.backbone.num_key_value_heads
87
+ head_dim = self.backbone.hidden_dim // self.backbone.num_query_heads
88
+ shape = [
89
+ batch_size,
90
+ num_layers,
91
+ 2,
92
+ max_length,
93
+ num_key_value_heads,
94
+ head_dim,
95
+ ]
96
+ cache = ops.zeros(shape, dtype=self.compute_dtype)
97
+ # Seed the cache.
98
+ _, hidden_states, cache = self.call_with_cache(token_ids, cache, 0)
99
+ return hidden_states, cache
100
+
101
+ def generate_step(
102
+ self,
103
+ inputs,
104
+ stop_token_ids=None,
105
+ ):
106
+ """A compilable generation function for a single batch of inputs.
107
+
108
+ This function represents the inner, XLA-compilable, generation function
109
+ for a single batch of inputs. Inputs should have the same structure as
110
+ model inputs, a dictionary with keys `"token_ids"` and `"padding_mask"`.
111
+
112
+ Args:
113
+ inputs: A dictionary with two keys `"token_ids"` and
114
+ `"padding_mask"` and batched tensor values.
115
+ stop_token_ids: Tuple of id's of the end token to stop on. If all
116
+ sequences have produced a new stop token, generation
117
+ will stop.
118
+ """
119
+ token_ids, padding_mask = inputs["token_ids"], inputs["padding_mask"]
120
+ # Create and seed cache with a single forward pass.
121
+ hidden_states, cache = self._build_cache(token_ids)
122
+ # Compute the lengths of all user inputted tokens ids.
123
+ row_lengths = ops.sum(ops.cast(padding_mask, "int32"), axis=-1)
124
+ # Start at the first index that has no user inputted id.
125
+ index = ops.min(row_lengths)
126
+
127
+ def next(prompt, cache, index):
128
+ # The cache index is the index of our previous token.
129
+ cache_update_index = index - 1
130
+ batch_size = ops.shape(prompt)[0]
131
+ prompt = ops.slice(prompt, [0, cache_update_index], [batch_size, 1])
132
+ logits, hidden_states, cache = self.call_with_cache(
133
+ prompt,
134
+ cache,
135
+ cache_update_index,
136
+ )
137
+ return (
138
+ ops.squeeze(logits, axis=1),
139
+ ops.squeeze(hidden_states, axis=1),
140
+ cache,
141
+ )
142
+
143
+ token_ids = self.sampler(
144
+ next=next,
145
+ prompt=token_ids,
146
+ cache=cache,
147
+ index=index,
148
+ mask=padding_mask,
149
+ stop_token_ids=stop_token_ids,
150
+ hidden_states=hidden_states,
151
+ model=self,
152
+ )
153
+
154
+ # Compute an output padding mask with the token ids we updated.
155
+ if stop_token_ids is not None:
156
+ # Build a mask of stop token locations not in the original
157
+ # prompt (not in locations where `padding_mask` is True).
158
+ end_locations = any_equal(
159
+ token_ids, stop_token_ids, ops.logical_not(padding_mask)
160
+ )
161
+ end_locations = ops.cast(end_locations, "int32")
162
+ # Use cumsum to get ones in all locations after end_locations.
163
+ cumsum = ops.cast(ops.cumsum(end_locations, axis=-1), "int32")
164
+ overflow = cumsum - end_locations
165
+ # Our padding mask is the inverse of these overflow locations.
166
+ padding_mask = ops.logical_not(ops.cast(overflow, "bool"))
167
+ else:
168
+ # Without early stopping, all locations will have been updated.
169
+ padding_mask = ops.ones_like(token_ids, dtype="bool")
170
+ return {
171
+ "token_ids": token_ids,
172
+ "padding_mask": padding_mask,
173
+ }
174
+
175
+ def score(
176
+ self,
177
+ token_ids,
178
+ padding_mask=None,
179
+ scoring_mode="logits",
180
+ layer_intercept_fn=None,
181
+ target_ids=None,
182
+ ):
183
+ """Score a generation represented by the provided token ids.
184
+
185
+ Args:
186
+ token_ids: A <int>[batch_size, num_tokens] tensor containing tokens
187
+ to score. Typically, this tensor captures the output from a call
188
+ to `QwenCausalLM.generate()`, i.e., tokens for both the input
189
+ text and the model-generated text.
190
+ padding_mask: A <bool>[batch_size, num_tokens] tensor indicating the
191
+ tokens that should be preserved during generation. This is an
192
+ artifact required by the `QwenBackbone` and isn't influential
193
+ on the computation of this function. If omitted, this function
194
+ uses `keras.ops.ones()` to create a tensor of the appropriate
195
+ shape.
196
+ scoring_mode: The type of scores to return, either "logits" or
197
+ "loss", both will be per input token.
198
+ layer_intercept_fn: An optional function for augmenting activations
199
+ with additional computation, for example, as part of
200
+ interpretability research. This function will be passed the
201
+ activations as its first parameter and a numeric index
202
+ associated with that backbone layer. _This index _is not_ an
203
+ index into `self.backbone.layers`_. The index -1 accompanies the
204
+ embeddings returned by calling `self.backbone.token_embedding()`
205
+ on `token_ids` in the forward direction. All subsequent indexes
206
+ will be 0-based indices for the activations returned by each of
207
+ the Transformers layers in the backbone. This function must
208
+ return a <float>[batch_size, num_tokens, hidden_dims] tensor
209
+ that can be passed as an input to the next layer in the model.
210
+ target_ids: An <bool>[batch_size, num_tokens] tensor containing the
211
+ predicted tokens against which the loss should be computed. If a
212
+ span of tokens is provided (sequential truthy values along
213
+ axis=1 in the tensor), the loss will be computed as the
214
+ aggregate across those tokens.
215
+
216
+ Raises:
217
+ ValueError: If an unsupported scoring_mode is provided, or if the
218
+ target_ids are not provided when using ScoringMode.LOSS.
219
+
220
+ Returns:
221
+ The per-token scores as a tensor of size
222
+ <float>[batch_size, num_tokens, vocab_size] in "logits" mode, or
223
+ <float>[batch_size, num_tokens] in "loss" mode.
224
+
225
+ Example:
226
+
227
+ Compute gradients between embeddings and loss scores with TensorFlow:
228
+ ```python
229
+ qwen_lm = keras_hub.models.QwenCausalLM.from_preset("qwen2.5_0.5b_en")
230
+ generations = qwen_lm.generate(
231
+ ["This is a", "Where are you"],
232
+ max_length=30
233
+ )
234
+ preprocessed = qwen_lm.preprocessor.generate_preprocess(generations)
235
+ generation_ids = preprocessed["token_ids"]
236
+ padding_mask = preprocessed["padding_mask"]
237
+ target_ids = keras.ops.roll(generation_ids, shift=-1, axis=1)
238
+
239
+ embeddings = None
240
+ with tf.GradientTape(watch_accessed_variables=True) as tape:
241
+ def layer_intercept_fn(x, i):
242
+ if i == -1:
243
+ nonlocal embeddings, tape
244
+ embeddings = x
245
+ tape.watch(embeddings)
246
+ return x
247
+
248
+ losses = qwen_lm.score(
249
+ token_ids=generation_ids,
250
+ padding_mask=padding_mask,
251
+ scoring_mode="loss",
252
+ layer_intercept_fn=layer_intercept_fn,
253
+ target_ids=target_ids,
254
+ )
255
+
256
+ grads = tape.gradient(losses, embeddings)
257
+ ```
258
+ """
259
+ if scoring_mode not in ("logits", "loss"):
260
+ raise ValueError(
261
+ "Unsupported scoring_mode. Must be one of 'logits' or 'loss'."
262
+ )
263
+
264
+ if scoring_mode == "loss" and target_ids is None:
265
+ raise ValueError(
266
+ "Cannot compute loss without targets. Please provide target "
267
+ "token ids via the target_ids parameter."
268
+ )
269
+
270
+ batch_shape = ops.shape(token_ids)[:2]
271
+ assert len(batch_shape) == 2
272
+
273
+ if padding_mask is None:
274
+ padding_mask = ops.ones(shape=batch_shape)
275
+
276
+ if layer_intercept_fn is None:
277
+
278
+ def default_layer_intercept_fn(x, unused_i):
279
+ return x
280
+
281
+ layer_intercept_fn = default_layer_intercept_fn
282
+
283
+ token_embeddings = self.backbone.token_embedding(token_ids)
284
+ x = layer_intercept_fn(token_embeddings, -1)
285
+
286
+ for i, transformer_layer in enumerate(self.backbone.transformer_layers):
287
+ x = transformer_layer(x, decoder_padding_mask=padding_mask)
288
+ x = layer_intercept_fn(x, i)
289
+
290
+ x = self.backbone.layer_norm(x)
291
+ logits = self.backbone.token_embedding(x, reverse=True)
292
+
293
+ if scoring_mode == "logits":
294
+ return logits
295
+
296
+ per_token_loss_fn = keras.losses.SparseCategoricalCrossentropy(
297
+ from_logits=True, reduction="none"
298
+ )
299
+ per_token_loss = per_token_loss_fn(target_ids, logits)
300
+ return per_token_loss
@@ -0,0 +1,18 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.models.causal_lm_preprocessor import CausalLMPreprocessor
3
+ from keras_hub.src.models.qwen.qwen_backbone import QwenBackbone
4
+ from keras_hub.src.models.qwen.qwen_tokenizer import QwenTokenizer
5
+
6
+
7
+ @keras_hub_export(
8
+ [
9
+ "keras_hub.models.QwenCausalLMPreprocessor",
10
+ "keras_hub.models.Qwen2CausalLMPreprocessor",
11
+ ]
12
+ )
13
+ class QwenCausalLMPreprocessor(CausalLMPreprocessor):
14
+ backbone_cls = QwenBackbone
15
+ tokenizer_cls = QwenTokenizer
16
+
17
+ def __init__(self, *args, **kwargs):
18
+ super().__init__(*args, **kwargs)