keras-hub-nightly 0.19.0.dev202502230348__py3-none-any.whl → 0.19.0.dev202502250350__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/src/models/gemma/gemma_attention.py +2 -8
- keras_hub/src/models/mobilenet/__init__.py +5 -0
- keras_hub/src/models/mobilenet/mobilenet_presets.py +2 -2
- keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.19.0.dev202502230348.dist-info → keras_hub_nightly-0.19.0.dev202502250350.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.19.0.dev202502230348.dist-info → keras_hub_nightly-0.19.0.dev202502250350.dist-info}/RECORD +8 -8
- {keras_hub_nightly-0.19.0.dev202502230348.dist-info → keras_hub_nightly-0.19.0.dev202502250350.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.19.0.dev202502230348.dist-info → keras_hub_nightly-0.19.0.dev202502250350.dist-info}/top_level.txt +0 -0
@@ -128,14 +128,8 @@ class CachedGemmaAttention(keras.layers.Layer):
|
|
128
128
|
"Please set `dropout` to 0.0."
|
129
129
|
)
|
130
130
|
if attention_mask is not None:
|
131
|
-
|
132
|
-
|
133
|
-
attention_mask, axis=1
|
134
|
-
) # Add dimension for num_heads
|
135
|
-
if attention_mask.shape[1] != self.num_query_heads:
|
136
|
-
attention_mask = ops.tile(
|
137
|
-
attention_mask, [1, self.num_query_heads, 1, 1]
|
138
|
-
)
|
131
|
+
attention_mask = ops.expand_dims(attention_mask, axis=1)
|
132
|
+
attention_mask = ops.cast(attention_mask, dtype="bool")
|
139
133
|
|
140
134
|
attention_output = ops.dot_product_attention(
|
141
135
|
query=q,
|
@@ -0,0 +1,5 @@
|
|
1
|
+
from keras_hub.src.models.mobilenet.mobilenet_backbone import MobileNetBackbone
|
2
|
+
from keras_hub.src.models.mobilenet.mobilenet_presets import backbone_presets
|
3
|
+
from keras_hub.src.utils.preset_utils import register_presets
|
4
|
+
|
5
|
+
register_presets(backbone_presets, MobileNetBackbone)
|
@@ -1,10 +1,10 @@
|
|
1
1
|
"""MobileNet preset configurations."""
|
2
2
|
|
3
3
|
backbone_presets = {
|
4
|
-
"
|
4
|
+
"mobilenet_v3_small_050_imagenet": {
|
5
5
|
"metadata": {
|
6
6
|
"description": (
|
7
|
-
"Small
|
7
|
+
"Small MobileNet V3 model pre-trained on the ImageNet 1k "
|
8
8
|
"dataset at a 224x224 resolution."
|
9
9
|
),
|
10
10
|
"params": 278784,
|
keras_hub/src/version_utils.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: keras-hub-nightly
|
3
|
-
Version: 0.19.0.
|
3
|
+
Version: 0.19.0.dev202502250350
|
4
4
|
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
5
|
Home-page: https://github.com/keras-team/keras-hub
|
6
6
|
Author: Keras team
|
@@ -8,7 +8,7 @@ keras_hub/api/tokenizers/__init__.py,sha256=mtJgQy1spfQnPAkeLoeinsT_W9iCWHlJXwzc
|
|
8
8
|
keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
|
9
9
|
keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
10
10
|
keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
|
11
|
-
keras_hub/src/version_utils.py,sha256=
|
11
|
+
keras_hub/src/version_utils.py,sha256=7049YctFzBlb70HJ2pSyLoUXeg5gpAj18FJn_dg7dEM,222
|
12
12
|
keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
13
13
|
keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
14
14
|
keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
|
@@ -183,7 +183,7 @@ keras_hub/src/models/flux/flux_presets.py,sha256=z7C_FbI1_F5YETXuWpc7Yh_0w-5N0eB
|
|
183
183
|
keras_hub/src/models/flux/flux_text_to_image.py,sha256=Rf5dD2EhG0bE8Gyg9sqaA8YEexS1kdraofIkxiZDjvc,4166
|
184
184
|
keras_hub/src/models/flux/flux_text_to_image_preprocessor.py,sha256=Fs9jr97QtmRUbRRz1kITpkuhDM2GoV3n0XSFC-qQA14,2252
|
185
185
|
keras_hub/src/models/gemma/__init__.py,sha256=rVzOJMJ39bgVlT8UdC0t8PlN2c237GKTBmfHIsbPuOQ,251
|
186
|
-
keras_hub/src/models/gemma/gemma_attention.py,sha256=
|
186
|
+
keras_hub/src/models/gemma/gemma_attention.py,sha256=wlpLfr74MOtJ18JFku6jpV2c_iRav5Q1bZiFm9e1nPU,9291
|
187
187
|
keras_hub/src/models/gemma/gemma_backbone.py,sha256=GzAUSArw_pN9dtWQzTVhWDbW-XyWt4GyMcFLn9hwmh0,13391
|
188
188
|
keras_hub/src/models/gemma/gemma_causal_lm.py,sha256=3OXaIXlrKqMIuUnBk-bUz-0SYFL-XkkQTWm8qRY2YII,16770
|
189
189
|
keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py,sha256=bpKkEurWIfa6Kp9s4pz84-sBDSA6ZFNHP8nXG1fFQrg,2912
|
@@ -236,12 +236,12 @@ keras_hub/src/models/mit/mit_image_classifier_preprocessor.py,sha256=oNYs-pUK8Vn
|
|
236
236
|
keras_hub/src/models/mit/mit_image_converter.py,sha256=Mw7nV-OzyBveGuZUNFsPPKyq9jXJVW2_cVH024CNkXM,311
|
237
237
|
keras_hub/src/models/mit/mit_layers.py,sha256=HUJO5uhJ6jgwANpwbQdPlEVwLRVb3BZQ-Ftjg3B9XvY,9734
|
238
238
|
keras_hub/src/models/mit/mit_presets.py,sha256=ooLrh2OoGZKxnCGnhB6BynYJtVCXH7nDDFhgQRWt36U,4528
|
239
|
-
keras_hub/src/models/mobilenet/__init__.py,sha256=
|
239
|
+
keras_hub/src/models/mobilenet/__init__.py,sha256=hxkNGGj_iAMu62iooUDEPA818sNOIgjG7pXMLEMOsAE,275
|
240
240
|
keras_hub/src/models/mobilenet/mobilenet_backbone.py,sha256=kUEDzML7MzXjUVKDY0BFn-sjGFJbu8IB8DBvG8t2nLA,28880
|
241
241
|
keras_hub/src/models/mobilenet/mobilenet_image_classifier.py,sha256=jgyEn_WO5zLqC9UIuRV564rIY_8bMsmuUBaJA9ag5N0,2310
|
242
242
|
keras_hub/src/models/mobilenet/mobilenet_image_classifier_preprocessor.py,sha256=yqM4wQ3ae7wXTBO0aMuvJx6XqllA7Psqzjvpm2NABXM,573
|
243
243
|
keras_hub/src/models/mobilenet/mobilenet_image_converter.py,sha256=a3Ka0UYYK5wHSOjf2oMHSgofRazTAeUfttklVefq14w,360
|
244
|
-
keras_hub/src/models/mobilenet/mobilenet_presets.py,sha256=
|
244
|
+
keras_hub/src/models/mobilenet/mobilenet_presets.py,sha256=PVakQu7HFRqtQdDHUzuvx_tyTWPc7BwKmWTPiHzP9C8,474
|
245
245
|
keras_hub/src/models/mobilenet/util.py,sha256=S7j4UacmVIJ3fU8cymyAoK49eHcpWIKTOyUQiEjcbzQ,721
|
246
246
|
keras_hub/src/models/opt/__init__.py,sha256=6Ybj8etxNaPsVcuZvaeHnKB3As92Px--dbiFAqOCIT0,239
|
247
247
|
keras_hub/src/models/opt/opt_backbone.py,sha256=mK5z_E5mSiIX5s0w4hr4IVQpT7K46W2ajZBmuMjxwaY,5873
|
@@ -413,7 +413,7 @@ keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYum
|
|
413
413
|
keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
|
414
414
|
keras_hub/src/utils/transformers/preset_loader.py,sha256=DgGJXbTSB9Na8FIR-YWWVqQPOFxHwWrGm41EwcS_EFs,3797
|
415
415
|
keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
|
416
|
-
keras_hub_nightly-0.19.0.
|
417
|
-
keras_hub_nightly-0.19.0.
|
418
|
-
keras_hub_nightly-0.19.0.
|
419
|
-
keras_hub_nightly-0.19.0.
|
416
|
+
keras_hub_nightly-0.19.0.dev202502250350.dist-info/METADATA,sha256=Qd0QRQ1_wbMIdgMm4eThLxt-ujqKoUi7CkNkWC5KOJk,7721
|
417
|
+
keras_hub_nightly-0.19.0.dev202502250350.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
418
|
+
keras_hub_nightly-0.19.0.dev202502250350.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
419
|
+
keras_hub_nightly-0.19.0.dev202502250350.dist-info/RECORD,,
|
File without changes
|