keras-hub-nightly 0.19.0.dev202502190348__py3-none-any.whl → 0.19.0.dev202502210346__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/src/models/backbone.py +10 -1
- keras_hub/src/models/gemma/gemma_attention.py +32 -1
- keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +7 -0
- keras_hub/src/models/pali_gemma/pali_gemma_presets.py +93 -3
- keras_hub/src/utils/keras_utils.py +13 -1
- keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.19.0.dev202502190348.dist-info → keras_hub_nightly-0.19.0.dev202502210346.dist-info}/METADATA +10 -2
- {keras_hub_nightly-0.19.0.dev202502190348.dist-info → keras_hub_nightly-0.19.0.dev202502210346.dist-info}/RECORD +10 -10
- {keras_hub_nightly-0.19.0.dev202502190348.dist-info → keras_hub_nightly-0.19.0.dev202502210346.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.19.0.dev202502190348.dist-info → keras_hub_nightly-0.19.0.dev202502210346.dist-info}/top_level.txt +0 -0
keras_hub/src/models/backbone.py
CHANGED
@@ -186,6 +186,14 @@ class Backbone(keras.Model):
|
|
186
186
|
saver = get_preset_saver(preset_dir)
|
187
187
|
saver.save_backbone(self)
|
188
188
|
|
189
|
+
def get_lora_target_names(self):
|
190
|
+
"""Returns list of layer names which are to be LoRA-fied.
|
191
|
+
|
192
|
+
Subclasses can override this method if the names of layers to be
|
193
|
+
LoRa-fied are different.
|
194
|
+
"""
|
195
|
+
return ["query_dense", "value_dense", "query", "value"]
|
196
|
+
|
189
197
|
def enable_lora(self, rank):
|
190
198
|
"""Enable Lora on the backbone.
|
191
199
|
|
@@ -193,7 +201,8 @@ class Backbone(keras.Model):
|
|
193
201
|
while enabling Lora on the query & value `EinsumDense` layers
|
194
202
|
of the attention layers.
|
195
203
|
"""
|
196
|
-
target_names =
|
204
|
+
target_names = self.get_lora_target_names()
|
205
|
+
|
197
206
|
self.trainable = True
|
198
207
|
self._lora_enabled_layers = []
|
199
208
|
self._lora_rank = rank
|
@@ -4,6 +4,7 @@ from keras import ops
|
|
4
4
|
|
5
5
|
from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
|
6
6
|
from keras_hub.src.utils.keras_utils import clone_initializer
|
7
|
+
from keras_hub.src.utils.keras_utils import has_flash_attention_support
|
7
8
|
|
8
9
|
|
9
10
|
class CachedGemmaAttention(keras.layers.Layer):
|
@@ -117,6 +118,36 @@ class CachedGemmaAttention(keras.layers.Layer):
|
|
117
118
|
query_normalization = 1 / np.sqrt(
|
118
119
|
self.hidden_dim // self.num_query_heads
|
119
120
|
)
|
121
|
+
use_dot_product_attention = not (
|
122
|
+
self.dropout > 0.0 or (len(q.shape) != 4)
|
123
|
+
)
|
124
|
+
if has_flash_attention_support() and use_dot_product_attention:
|
125
|
+
if self.dropout > 0.0:
|
126
|
+
raise ValueError(
|
127
|
+
"Flash attention does not support dropout. "
|
128
|
+
"Please set `dropout` to 0.0."
|
129
|
+
)
|
130
|
+
if attention_mask is not None:
|
131
|
+
while len(attention_mask.shape) < 4:
|
132
|
+
attention_mask = ops.expand_dims(
|
133
|
+
attention_mask, axis=1
|
134
|
+
) # Add dimension for num_heads
|
135
|
+
if attention_mask.shape[1] != self.num_query_heads:
|
136
|
+
attention_mask = ops.tile(
|
137
|
+
attention_mask, [1, self.num_query_heads, 1, 1]
|
138
|
+
)
|
139
|
+
|
140
|
+
attention_output = ops.dot_product_attention(
|
141
|
+
query=q,
|
142
|
+
key=k,
|
143
|
+
value=v,
|
144
|
+
bias=None,
|
145
|
+
mask=attention_mask,
|
146
|
+
scale=query_normalization,
|
147
|
+
is_causal=True,
|
148
|
+
flash_attention=True,
|
149
|
+
)
|
150
|
+
return attention_output
|
120
151
|
|
121
152
|
q *= ops.cast(query_normalization, dtype=q.dtype)
|
122
153
|
q_shape = ops.shape(q)
|
@@ -131,8 +162,8 @@ class CachedGemmaAttention(keras.layers.Layer):
|
|
131
162
|
)
|
132
163
|
b, q_len, _, _, h = ops.shape(q)
|
133
164
|
|
165
|
+
# Fallback to standard attention if flash attention is disabled
|
134
166
|
attention_logits = ops.einsum("btkgh,bskh->bkgts", q, k)
|
135
|
-
|
136
167
|
if self.logit_soft_cap is not None:
|
137
168
|
attention_logits = ops.divide(attention_logits, self.logit_soft_cap)
|
138
169
|
attention_logits = ops.multiply(
|
@@ -274,6 +274,13 @@ class PaliGemmaBackbone(Backbone):
|
|
274
274
|
# Keep the image_sequence_length as a backbone property for easy access.
|
275
275
|
self.image_sequence_length = self.vit_encoder.image_sequence_length
|
276
276
|
|
277
|
+
def get_lora_target_names(self):
|
278
|
+
target_names = super().get_lora_target_names()
|
279
|
+
|
280
|
+
# Add these for `PaliGemmaVITAttention`.
|
281
|
+
target_names += ["query_proj", "value_proj"]
|
282
|
+
return target_names
|
283
|
+
|
277
284
|
def get_config(self):
|
278
285
|
config = super().get_config()
|
279
286
|
config.update(
|
@@ -83,6 +83,96 @@ backbone_presets = {
|
|
83
83
|
},
|
84
84
|
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_ft_docci_10b_448/2",
|
85
85
|
},
|
86
|
+
"pali_gemma2_mix_3b_224": {
|
87
|
+
"metadata": {
|
88
|
+
"description": (
|
89
|
+
"3 billion parameter, image size 224, 27-layer for "
|
90
|
+
"SigLIP-So400m vision encoder and 26-layer Gemma2 2B lanuage "
|
91
|
+
"model. This model has been fine-tuned on a wide range of "
|
92
|
+
"vision-language tasks and domains."
|
93
|
+
),
|
94
|
+
"params": 3032094960,
|
95
|
+
"official_name": "PaliGemma2",
|
96
|
+
"path": "pali_gemma2",
|
97
|
+
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
98
|
+
},
|
99
|
+
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_mix_3b_224/2",
|
100
|
+
},
|
101
|
+
"pali_gemma2_mix_3b_448": {
|
102
|
+
"metadata": {
|
103
|
+
"description": (
|
104
|
+
"3 billion parameter, image size 448, 27-layer for "
|
105
|
+
"SigLIP-So400m vision encoder and 26-layer Gemma2 2B lanuage "
|
106
|
+
"model. This model has been fine-tuned on a wide range of "
|
107
|
+
"vision-language tasks and domains."
|
108
|
+
),
|
109
|
+
"params": 3032979696,
|
110
|
+
"official_name": "PaliGemma2",
|
111
|
+
"path": "pali_gemma2",
|
112
|
+
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
113
|
+
},
|
114
|
+
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_mix_3b_448/2",
|
115
|
+
},
|
116
|
+
"pali_gemma2_mix_10b_224": {
|
117
|
+
"metadata": {
|
118
|
+
"description": (
|
119
|
+
"10 billion parameter, image size 224, 27-layer for "
|
120
|
+
"SigLIP-So400m vision encoder and 42-layer Gemma2 9B lanuage "
|
121
|
+
"model. This model has been fine-tuned on a wide range of "
|
122
|
+
"vision-language tasks and domains."
|
123
|
+
),
|
124
|
+
"params": 9662409456,
|
125
|
+
"official_name": "PaliGemma2",
|
126
|
+
"path": "pali_gemma2",
|
127
|
+
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
128
|
+
},
|
129
|
+
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_mix_10b_224/2",
|
130
|
+
},
|
131
|
+
"pali_gemma2_mix_10b_448": {
|
132
|
+
"metadata": {
|
133
|
+
"description": (
|
134
|
+
"10 billion parameter, image size 448, 27-layer for "
|
135
|
+
"SigLIP-So400m vision encoder and 42-layer Gemma2 9B lanuage "
|
136
|
+
"model. This model has been fine-tuned on a wide range of "
|
137
|
+
"vision-language tasks and domains."
|
138
|
+
),
|
139
|
+
"params": 9663294192,
|
140
|
+
"official_name": "PaliGemma2",
|
141
|
+
"path": "pali_gemma2",
|
142
|
+
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
143
|
+
},
|
144
|
+
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_mix_10b_448/2",
|
145
|
+
},
|
146
|
+
"pali_gemma2_mix_28b_224": {
|
147
|
+
"metadata": {
|
148
|
+
"description": (
|
149
|
+
"28 billion parameter, image size 224, 27-layer for "
|
150
|
+
"SigLIP-So400m vision encoder and 46-layer Gemma2 27B lanuage "
|
151
|
+
"model. This model has been fine-tuned on a wide range of "
|
152
|
+
"vision-language tasks and domains."
|
153
|
+
),
|
154
|
+
"params": 27650192112,
|
155
|
+
"official_name": "PaliGemma2",
|
156
|
+
"path": "pali_gemma2",
|
157
|
+
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
158
|
+
},
|
159
|
+
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_28b_mix_224/2",
|
160
|
+
},
|
161
|
+
"pali_gemma2_mix_28b_448": {
|
162
|
+
"metadata": {
|
163
|
+
"description": (
|
164
|
+
"28 billion parameter, image size 448, 27-layer for "
|
165
|
+
"SigLIP-So400m vision encoder and 46-layer Gemma2 27B lanuage "
|
166
|
+
"model. This model has been fine-tuned on a wide range of "
|
167
|
+
"vision-language tasks and domains."
|
168
|
+
),
|
169
|
+
"params": 27650192112,
|
170
|
+
"official_name": "PaliGemma2",
|
171
|
+
"path": "pali_gemma2",
|
172
|
+
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
173
|
+
},
|
174
|
+
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_28b_mix_448/2",
|
175
|
+
},
|
86
176
|
"pali_gemma2_pt_3b_224": {
|
87
177
|
"metadata": {
|
88
178
|
"description": (
|
@@ -181,7 +271,7 @@ backbone_presets = {
|
|
181
271
|
"model. This model has been pre-trained on a mixture of "
|
182
272
|
"datasets."
|
183
273
|
),
|
184
|
-
"params":
|
274
|
+
"params": 27650192112,
|
185
275
|
"official_name": "PaliGemma2",
|
186
276
|
"path": "pali_gemma2",
|
187
277
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
@@ -196,7 +286,7 @@ backbone_presets = {
|
|
196
286
|
"model. This model has been pre-trained on a mixture of "
|
197
287
|
"datasets."
|
198
288
|
),
|
199
|
-
"params":
|
289
|
+
"params": 27650192112,
|
200
290
|
"official_name": "PaliGemma2",
|
201
291
|
"path": "pali_gemma2",
|
202
292
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
@@ -211,7 +301,7 @@ backbone_presets = {
|
|
211
301
|
"model. This model has been pre-trained on a mixture of "
|
212
302
|
"datasets."
|
213
303
|
),
|
214
|
-
"params":
|
304
|
+
"params": 27650192112,
|
215
305
|
"official_name": "PaliGemma2",
|
216
306
|
"path": "pali_gemma2",
|
217
307
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
@@ -56,7 +56,19 @@ def standardize_data_format(data_format):
|
|
56
56
|
|
57
57
|
|
58
58
|
def has_flash_attention_support():
|
59
|
-
if
|
59
|
+
if (
|
60
|
+
hasattr(keras.config, "is_flash_attention_enabled")
|
61
|
+
and keras.config.backend() == "jax"
|
62
|
+
):
|
63
|
+
try:
|
64
|
+
from jax.nn import dot_product_attention as dot_product_attention
|
65
|
+
except ImportError:
|
66
|
+
logging.warning(
|
67
|
+
"Flash attention is not supported in your current JAX version. "
|
68
|
+
"Please update it by following the official guide: "
|
69
|
+
"https://jax.readthedocs.io/en/latest/installation.html"
|
70
|
+
)
|
71
|
+
return False
|
60
72
|
return True
|
61
73
|
else:
|
62
74
|
return False
|
keras_hub/src/version_utils.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: keras-hub-nightly
|
3
|
-
Version: 0.19.0.
|
3
|
+
Version: 0.19.0.dev202502210346
|
4
4
|
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
5
|
Home-page: https://github.com/keras-team/keras-hub
|
6
6
|
Author: Keras team
|
@@ -27,10 +27,11 @@ Requires-Dist: packaging
|
|
27
27
|
Requires-Dist: regex
|
28
28
|
Requires-Dist: rich
|
29
29
|
Requires-Dist: kagglehub
|
30
|
-
Requires-Dist: tensorflow-text
|
31
30
|
Provides-Extra: extras
|
32
31
|
Requires-Dist: rouge-score; extra == "extras"
|
33
32
|
Requires-Dist: sentencepiece; extra == "extras"
|
33
|
+
Provides-Extra: nlp
|
34
|
+
Requires-Dist: tensorflow-text; extra == "nlp"
|
34
35
|
Dynamic: author
|
35
36
|
Dynamic: author-email
|
36
37
|
Dynamic: classifier
|
@@ -147,6 +148,13 @@ To install the latest KerasHub release with Keras 3, simply run:
|
|
147
148
|
pip install --upgrade keras-hub
|
148
149
|
```
|
149
150
|
|
151
|
+
Our text tokenizers are based on TensorFlow Text. Hence, if you are using any
|
152
|
+
model which has language as a modality, you will have to run:
|
153
|
+
|
154
|
+
```
|
155
|
+
pip install --upgrade keras-hub[nlp]
|
156
|
+
```
|
157
|
+
|
150
158
|
To install the latest nightly changes for both KerasHub and Keras, you can use
|
151
159
|
our nightly package.
|
152
160
|
|
@@ -8,7 +8,7 @@ keras_hub/api/tokenizers/__init__.py,sha256=mtJgQy1spfQnPAkeLoeinsT_W9iCWHlJXwzc
|
|
8
8
|
keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
|
9
9
|
keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
10
10
|
keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
|
11
|
-
keras_hub/src/version_utils.py,sha256=
|
11
|
+
keras_hub/src/version_utils.py,sha256=ttkrKvEmHIzmFoB_r1Q4g722HgNujcQsmyjdwbeHz9E,222
|
12
12
|
keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
13
13
|
keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
14
14
|
keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
|
@@ -44,7 +44,7 @@ keras_hub/src/metrics/rouge_base.py,sha256=Pt2DUznhTTeR-fX1nQ_wSbPtmuTgxQTvrGpu8
|
|
44
44
|
keras_hub/src/metrics/rouge_l.py,sha256=JlZhMBV6wS_6zMd57pkTc6yxHkEJT9fVQMlPZKekQzQ,2729
|
45
45
|
keras_hub/src/metrics/rouge_n.py,sha256=JoFtmgjF4Ic263ny6bfD6vMHKreH9le3HnOOxemupRc,3620
|
46
46
|
keras_hub/src/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
47
|
-
keras_hub/src/models/backbone.py,sha256=
|
47
|
+
keras_hub/src/models/backbone.py,sha256=ofIqRvSUrdP6rXAP0QTbStwiEfv-JxS7wTzcHxjj6iQ,11254
|
48
48
|
keras_hub/src/models/causal_lm.py,sha256=ReaF-i3SHsCkHh4c28jM72QjMQ8x7yiCwG39FRb-7KE,16786
|
49
49
|
keras_hub/src/models/causal_lm_preprocessor.py,sha256=YY7VJZicdmnjDSWi9g4_pEpd5bdJK166GlWcapvokF0,6663
|
50
50
|
keras_hub/src/models/feature_pyramid_backbone.py,sha256=clEW-TTQSVJ_5qFNdDF0iABkin1p_xlBUFjJrC7T0IA,2247
|
@@ -183,7 +183,7 @@ keras_hub/src/models/flux/flux_presets.py,sha256=z7C_FbI1_F5YETXuWpc7Yh_0w-5N0eB
|
|
183
183
|
keras_hub/src/models/flux/flux_text_to_image.py,sha256=Rf5dD2EhG0bE8Gyg9sqaA8YEexS1kdraofIkxiZDjvc,4166
|
184
184
|
keras_hub/src/models/flux/flux_text_to_image_preprocessor.py,sha256=Fs9jr97QtmRUbRRz1kITpkuhDM2GoV3n0XSFC-qQA14,2252
|
185
185
|
keras_hub/src/models/gemma/__init__.py,sha256=rVzOJMJ39bgVlT8UdC0t8PlN2c237GKTBmfHIsbPuOQ,251
|
186
|
-
keras_hub/src/models/gemma/gemma_attention.py,sha256=
|
186
|
+
keras_hub/src/models/gemma/gemma_attention.py,sha256=uvBDwIfv-pEo4IF2LY7vdt2R9W-OQIqOA0hLWVQUluI,9659
|
187
187
|
keras_hub/src/models/gemma/gemma_backbone.py,sha256=GzAUSArw_pN9dtWQzTVhWDbW-XyWt4GyMcFLn9hwmh0,13391
|
188
188
|
keras_hub/src/models/gemma/gemma_causal_lm.py,sha256=3OXaIXlrKqMIuUnBk-bUz-0SYFL-XkkQTWm8qRY2YII,16770
|
189
189
|
keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py,sha256=bpKkEurWIfa6Kp9s4pz84-sBDSA6ZFNHP8nXG1fFQrg,2912
|
@@ -250,12 +250,12 @@ keras_hub/src/models/opt/opt_causal_lm_preprocessor.py,sha256=xHfslVMOZlAIj2V2jI
|
|
250
250
|
keras_hub/src/models/opt/opt_presets.py,sha256=LrjgI5gbq4Cvfl_pmeCnKn4hS_V_0GYTeJaDc9tbeZM,1745
|
251
251
|
keras_hub/src/models/opt/opt_tokenizer.py,sha256=oDHeed4xf07tm14hj_C78BkzMuuRwRP2cRHmqYnObrs,2557
|
252
252
|
keras_hub/src/models/pali_gemma/__init__.py,sha256=uODWTlttOOchcTLpiYHCEWMXnDxIz8ZVIeYFQN2bd8o,288
|
253
|
-
keras_hub/src/models/pali_gemma/pali_gemma_backbone.py,sha256=
|
253
|
+
keras_hub/src/models/pali_gemma/pali_gemma_backbone.py,sha256=_Sa22j4jk_7400h33S22w0S8Dh8Lzzl6A5WeEp55zSk,13637
|
254
254
|
keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py,sha256=AViEs6YltUqWnIVo7J02JkXcanBgLSdwZwF56TVr8gc,11345
|
255
255
|
keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py,sha256=F57y0fZ0wYYxfGIjfrJc1W9uQpViYFx5bvFjj5CqUbI,4814
|
256
256
|
keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py,sha256=24ABQ1vGlppV-KfWh0YqJjzM_Lu2GIwvyJ4X2XXie_A,5616
|
257
257
|
keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=5yM_jUtrFsWIieiwfFBoP7mtPmQAwywkeLKbd7fhmzk,371
|
258
|
-
keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=
|
258
|
+
keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=zF04iShXky_c3IfUbmLlBN2FYb6iCWH1DWTgDdTCqrI,13006
|
259
259
|
keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=ljTiADHo0Ok88q-jVzwJIle2C8xcxnudLTsBLzIySaM,2415
|
260
260
|
keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=R-W7SCnlLjkgiJ9vrn3ctbBES_yCxJSrCld5dV7nzaY,18235
|
261
261
|
keras_hub/src/models/phi3/__init__.py,sha256=zIbf1MU-ks91mEkjTRJAsk51N3BBnXDF2JM1vO-13PQ,245
|
@@ -386,7 +386,7 @@ keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py,sha256=hRv_XxoPIPDpHfO0Z
|
|
386
386
|
keras_hub/src/tokenizers/word_piece_tokenizer.py,sha256=vP6AZgbzsRiuPCt3W_n94nsF7XiERnagWcH_rqJHtVU,19943
|
387
387
|
keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=cylrs02ZrYQ1TuZr9oyS3NrVbDwGctA3VXbIh1pFJMQ,6743
|
388
388
|
keras_hub/src/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
389
|
-
keras_hub/src/utils/keras_utils.py,sha256=
|
389
|
+
keras_hub/src/utils/keras_utils.py,sha256=TNgp3ukTiCA0jrGUq2ZV_Xqtzc7CfiFQKyOH5t47z48,2313
|
390
390
|
keras_hub/src/utils/pipeline_model.py,sha256=jgzB6NQPSl0KOu08N-TazfOnXnUJbZjH2EXXhx25Ftg,9084
|
391
391
|
keras_hub/src/utils/preset_utils.py,sha256=ZbSEUSacKlr_mgHyB3ChUohgOQN7nMCkE6E2lGxt2HA,31927
|
392
392
|
keras_hub/src/utils/python_utils.py,sha256=N8nWeO3san4YnGkffRXG3Ix7VEIMTKSN21FX5TuL7G8,202
|
@@ -413,7 +413,7 @@ keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYum
|
|
413
413
|
keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
|
414
414
|
keras_hub/src/utils/transformers/preset_loader.py,sha256=DgGJXbTSB9Na8FIR-YWWVqQPOFxHwWrGm41EwcS_EFs,3797
|
415
415
|
keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
|
416
|
-
keras_hub_nightly-0.19.0.
|
417
|
-
keras_hub_nightly-0.19.0.
|
418
|
-
keras_hub_nightly-0.19.0.
|
419
|
-
keras_hub_nightly-0.19.0.
|
416
|
+
keras_hub_nightly-0.19.0.dev202502210346.dist-info/METADATA,sha256=SFwTUAZFRtgw028VYnTTxCexaXIPDHlfm7BdUqZPW4Q,7721
|
417
|
+
keras_hub_nightly-0.19.0.dev202502210346.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
418
|
+
keras_hub_nightly-0.19.0.dev202502210346.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
419
|
+
keras_hub_nightly-0.19.0.dev202502210346.dist-info/RECORD,,
|
File without changes
|