keras-hub-nightly 0.19.0.dev202502120346__py3-none-any.whl → 0.19.0.dev202502140347__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -12,6 +12,6 @@ basnet_presets = {
12
12
  "params": 108886792,
13
13
  "path": "basnet",
14
14
  },
15
- "kaggle_handle": "kaggle://keras/basnet/keras/base1",
15
+ "kaggle_handle": "kaggle://keras/basnet/keras/basnet_duts",
16
16
  },
17
17
  }
@@ -23,7 +23,8 @@ class SegFormerImageSegmenterPreprocessor(ImageSegmenterPreprocessor):
23
23
  def call(self, x, y=None, sample_weight=None):
24
24
  if self.image_converter:
25
25
  x = self.image_converter(x)
26
- y = self.image_converter(y)
26
+ if y is not None:
27
+ y = self.image_converter(y)
27
28
 
28
29
  x = x / 255
29
30
  x = (x - IMAGENET_DEFAULT_MEAN) / IMAGENET_DEFAULT_STD
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.19.0.dev202502120346"
4
+ __version__ = "0.19.0.dev202502140347"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: keras-hub-nightly
3
- Version: 0.19.0.dev202502120346
3
+ Version: 0.19.0.dev202502140347
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -8,7 +8,7 @@ keras_hub/api/tokenizers/__init__.py,sha256=mtJgQy1spfQnPAkeLoeinsT_W9iCWHlJXwzc
8
8
  keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
9
9
  keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
10
  keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
11
- keras_hub/src/version_utils.py,sha256=yhL5XcChTd6FzdKjuy-eaj7X5PpUoK1a37t1uzgcXUc,222
11
+ keras_hub/src/version_utils.py,sha256=jFCsvCkeF6lf4G4GoExWgr_643c5Ea1al3CHCmCfmKA,222
12
12
  keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
13
  keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
14
14
  keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
@@ -84,7 +84,7 @@ keras_hub/src/models/basnet/basnet.py,sha256=JA58Q9lmygdSOm5MUaPAlaL6B8XnmqCcRaG
84
84
  keras_hub/src/models/basnet/basnet_backbone.py,sha256=P-jogkYIu9j7_28fl2RFQRMl87BXz1wcY_LtIrxBy1E,13505
85
85
  keras_hub/src/models/basnet/basnet_image_converter.py,sha256=DwzAwtZeggYw_qyRQ-Abnnm885Wobv3wClxRzOTscI0,342
86
86
  keras_hub/src/models/basnet/basnet_preprocessor.py,sha256=uM504utaXODSqR5zpKnopRuaV_l84zCg06RkNoNSKIs,510
87
- keras_hub/src/models/basnet/basnet_presets.py,sha256=GQx-ijM1bqYRoz6_vXczKuCSZsfgmvyRoSvtTQBKres,561
87
+ keras_hub/src/models/basnet/basnet_presets.py,sha256=dtNA9ZheSfo4EOBL59DCAvfQxfhG8oezGVGUTeE4Hyg,567
88
88
  keras_hub/src/models/bert/__init__.py,sha256=K_UmCqDgOFFvXgzjXRn5oG0WWi53rAsQMOmUrsiBe1k,245
89
89
  keras_hub/src/models/bert/bert_backbone.py,sha256=o8GXUpoKPXLpfFzx5u9wI_3rZJeabPfYJEYSI09Clos,8069
90
90
  keras_hub/src/models/bert/bert_masked_lm.py,sha256=8gb1g8h5VFVLmKNEPfLe26z7SOlFnzf9R9okK3rp8AU,4045
@@ -305,7 +305,7 @@ keras_hub/src/models/segformer/__init__.py,sha256=ERgxA8tyeG2l4G6ywHisn6Oo0Iu7_9
305
305
  keras_hub/src/models/segformer/segformer_backbone.py,sha256=T61WQ50T6IwSeiK1NfUKJu3eqbj_m5gz9cpUPtqMfcc,5666
306
306
  keras_hub/src/models/segformer/segformer_image_converter.py,sha256=zePZ1cYZl-2TaEF82lj3y7kXjDao5Hgw8c7qfKI2Jd8,360
307
307
  keras_hub/src/models/segformer/segformer_image_segmenter.py,sha256=JzX8oJASWdkw8wbm8cohjPnumIvBvj7GGEpbK7ex-6w,5926
308
- keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py,sha256=p61nzDIC13MSm8tMl4tda00gMbUn9GXp27Rar5E4dJY,1091
308
+ keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py,sha256=4xj6_E-JlYpXv064VtEewxaQuD8aXw5egoUKlr_fLPg,1125
309
309
  keras_hub/src/models/segformer/segformer_presets.py,sha256=ET39ospixkTaCsjoMLdJrr3wlGvTAQu5prleVC5lMZI,4793
310
310
  keras_hub/src/models/stable_diffusion_3/__init__.py,sha256=ZKYQuaRObyhKq8GVAHmoRvlXp6FpU8ChvutVCHyXKuc,343
311
311
  keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py,sha256=vtVhieAv277mAiZj7Kvvqg_Ba7klfQxZVk4PPxNNQ0s,3062
@@ -413,7 +413,7 @@ keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYum
413
413
  keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
414
414
  keras_hub/src/utils/transformers/preset_loader.py,sha256=DgGJXbTSB9Na8FIR-YWWVqQPOFxHwWrGm41EwcS_EFs,3797
415
415
  keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
416
- keras_hub_nightly-0.19.0.dev202502120346.dist-info/METADATA,sha256=m1YWHHCAQQAy_0LWfvbAYOTpmcb5IL368y3J0EKoYMw,7498
417
- keras_hub_nightly-0.19.0.dev202502120346.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
418
- keras_hub_nightly-0.19.0.dev202502120346.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
419
- keras_hub_nightly-0.19.0.dev202502120346.dist-info/RECORD,,
416
+ keras_hub_nightly-0.19.0.dev202502140347.dist-info/METADATA,sha256=36ZHGwiTBM1Td_s1TznehwXcDgaq9ic04TuyMlEures,7498
417
+ keras_hub_nightly-0.19.0.dev202502140347.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
418
+ keras_hub_nightly-0.19.0.dev202502140347.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
419
+ keras_hub_nightly-0.19.0.dev202502140347.dist-info/RECORD,,