keras-hub-nightly 0.19.0.dev202502110348__py3-none-any.whl → 0.19.0.dev202502130346__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/src/models/basnet/basnet_presets.py +1 -1
- keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +2 -1
- keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.19.0.dev202502110348.dist-info → keras_hub_nightly-0.19.0.dev202502130346.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.19.0.dev202502110348.dist-info → keras_hub_nightly-0.19.0.dev202502130346.dist-info}/RECORD +7 -7
- {keras_hub_nightly-0.19.0.dev202502110348.dist-info → keras_hub_nightly-0.19.0.dev202502130346.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.19.0.dev202502110348.dist-info → keras_hub_nightly-0.19.0.dev202502130346.dist-info}/top_level.txt +0 -0
@@ -23,7 +23,8 @@ class SegFormerImageSegmenterPreprocessor(ImageSegmenterPreprocessor):
|
|
23
23
|
def call(self, x, y=None, sample_weight=None):
|
24
24
|
if self.image_converter:
|
25
25
|
x = self.image_converter(x)
|
26
|
-
y
|
26
|
+
if y is not None:
|
27
|
+
y = self.image_converter(y)
|
27
28
|
|
28
29
|
x = x / 255
|
29
30
|
x = (x - IMAGENET_DEFAULT_MEAN) / IMAGENET_DEFAULT_STD
|
keras_hub/src/version_utils.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: keras-hub-nightly
|
3
|
-
Version: 0.19.0.
|
3
|
+
Version: 0.19.0.dev202502130346
|
4
4
|
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
5
|
Home-page: https://github.com/keras-team/keras-hub
|
6
6
|
Author: Keras team
|
@@ -8,7 +8,7 @@ keras_hub/api/tokenizers/__init__.py,sha256=mtJgQy1spfQnPAkeLoeinsT_W9iCWHlJXwzc
|
|
8
8
|
keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
|
9
9
|
keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
10
10
|
keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
|
11
|
-
keras_hub/src/version_utils.py,sha256=
|
11
|
+
keras_hub/src/version_utils.py,sha256=WkE4ZdO4L_7lbKBvON-TV8NB4tSoB8GTaJkYKkMZJog,222
|
12
12
|
keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
13
13
|
keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
14
14
|
keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
|
@@ -84,7 +84,7 @@ keras_hub/src/models/basnet/basnet.py,sha256=JA58Q9lmygdSOm5MUaPAlaL6B8XnmqCcRaG
|
|
84
84
|
keras_hub/src/models/basnet/basnet_backbone.py,sha256=P-jogkYIu9j7_28fl2RFQRMl87BXz1wcY_LtIrxBy1E,13505
|
85
85
|
keras_hub/src/models/basnet/basnet_image_converter.py,sha256=DwzAwtZeggYw_qyRQ-Abnnm885Wobv3wClxRzOTscI0,342
|
86
86
|
keras_hub/src/models/basnet/basnet_preprocessor.py,sha256=uM504utaXODSqR5zpKnopRuaV_l84zCg06RkNoNSKIs,510
|
87
|
-
keras_hub/src/models/basnet/basnet_presets.py,sha256=
|
87
|
+
keras_hub/src/models/basnet/basnet_presets.py,sha256=dtNA9ZheSfo4EOBL59DCAvfQxfhG8oezGVGUTeE4Hyg,567
|
88
88
|
keras_hub/src/models/bert/__init__.py,sha256=K_UmCqDgOFFvXgzjXRn5oG0WWi53rAsQMOmUrsiBe1k,245
|
89
89
|
keras_hub/src/models/bert/bert_backbone.py,sha256=o8GXUpoKPXLpfFzx5u9wI_3rZJeabPfYJEYSI09Clos,8069
|
90
90
|
keras_hub/src/models/bert/bert_masked_lm.py,sha256=8gb1g8h5VFVLmKNEPfLe26z7SOlFnzf9R9okK3rp8AU,4045
|
@@ -305,7 +305,7 @@ keras_hub/src/models/segformer/__init__.py,sha256=ERgxA8tyeG2l4G6ywHisn6Oo0Iu7_9
|
|
305
305
|
keras_hub/src/models/segformer/segformer_backbone.py,sha256=T61WQ50T6IwSeiK1NfUKJu3eqbj_m5gz9cpUPtqMfcc,5666
|
306
306
|
keras_hub/src/models/segformer/segformer_image_converter.py,sha256=zePZ1cYZl-2TaEF82lj3y7kXjDao5Hgw8c7qfKI2Jd8,360
|
307
307
|
keras_hub/src/models/segformer/segformer_image_segmenter.py,sha256=JzX8oJASWdkw8wbm8cohjPnumIvBvj7GGEpbK7ex-6w,5926
|
308
|
-
keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py,sha256=
|
308
|
+
keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py,sha256=4xj6_E-JlYpXv064VtEewxaQuD8aXw5egoUKlr_fLPg,1125
|
309
309
|
keras_hub/src/models/segformer/segformer_presets.py,sha256=ET39ospixkTaCsjoMLdJrr3wlGvTAQu5prleVC5lMZI,4793
|
310
310
|
keras_hub/src/models/stable_diffusion_3/__init__.py,sha256=ZKYQuaRObyhKq8GVAHmoRvlXp6FpU8ChvutVCHyXKuc,343
|
311
311
|
keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py,sha256=vtVhieAv277mAiZj7Kvvqg_Ba7klfQxZVk4PPxNNQ0s,3062
|
@@ -413,7 +413,7 @@ keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYum
|
|
413
413
|
keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
|
414
414
|
keras_hub/src/utils/transformers/preset_loader.py,sha256=DgGJXbTSB9Na8FIR-YWWVqQPOFxHwWrGm41EwcS_EFs,3797
|
415
415
|
keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
|
416
|
-
keras_hub_nightly-0.19.0.
|
417
|
-
keras_hub_nightly-0.19.0.
|
418
|
-
keras_hub_nightly-0.19.0.
|
419
|
-
keras_hub_nightly-0.19.0.
|
416
|
+
keras_hub_nightly-0.19.0.dev202502130346.dist-info/METADATA,sha256=tnQpfKkkuV90JTgSvc8DSvzu516CDbwrHqndRkrBmIM,7498
|
417
|
+
keras_hub_nightly-0.19.0.dev202502130346.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
418
|
+
keras_hub_nightly-0.19.0.dev202502130346.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
419
|
+
keras_hub_nightly-0.19.0.dev202502130346.dist-info/RECORD,,
|
File without changes
|