keras-hub-nightly 0.19.0.dev202502060348__py3-none-any.whl → 0.19.0.dev202502080344__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/api/__init__.py +0 -1
- keras_hub/api/layers/__init__.py +3 -1
- keras_hub/api/models/__init__.py +10 -4
- keras_hub/src/{models/retinanet → layers/modeling}/anchor_generator.py +11 -18
- keras_hub/src/{models/retinanet → layers/modeling}/box_matcher.py +17 -4
- keras_hub/src/{models/retinanet → layers/modeling}/non_max_supression.py +84 -32
- keras_hub/src/layers/preprocessing/image_converter.py +25 -3
- keras_hub/src/models/{image_object_detector.py → object_detector.py} +12 -7
- keras_hub/src/models/{image_object_detector_preprocessor.py → object_detector_preprocessor.py} +29 -13
- keras_hub/src/models/retinanet/retinanet_image_converter.py +8 -40
- keras_hub/src/models/retinanet/retinanet_label_encoder.py +18 -16
- keras_hub/src/models/retinanet/retinanet_object_detector.py +28 -28
- keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py +3 -3
- keras_hub/src/utils/tensor_utils.py +13 -0
- keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.19.0.dev202502060348.dist-info → keras_hub_nightly-0.19.0.dev202502080344.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.19.0.dev202502060348.dist-info → keras_hub_nightly-0.19.0.dev202502080344.dist-info}/RECORD +19 -28
- keras_hub/api/bounding_box/__init__.py +0 -23
- keras_hub/src/bounding_box/__init__.py +0 -2
- keras_hub/src/bounding_box/converters.py +0 -606
- keras_hub/src/bounding_box/formats.py +0 -149
- keras_hub/src/bounding_box/iou.py +0 -251
- keras_hub/src/bounding_box/to_dense.py +0 -81
- keras_hub/src/bounding_box/to_ragged.py +0 -86
- keras_hub/src/bounding_box/utils.py +0 -181
- keras_hub/src/bounding_box/validate_format.py +0 -85
- {keras_hub_nightly-0.19.0.dev202502060348.dist-info → keras_hub_nightly-0.19.0.dev202502080344.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.19.0.dev202502060348.dist-info → keras_hub_nightly-0.19.0.dev202502080344.dist-info}/top_level.txt +0 -0
@@ -3,11 +3,7 @@ import math
|
|
3
3
|
import keras
|
4
4
|
from keras import ops
|
5
5
|
|
6
|
-
|
7
|
-
from keras_hub.src.bounding_box.converters import convert_format
|
8
|
-
from keras_hub.src.bounding_box.converters import encode_box_to_deltas
|
9
|
-
from keras_hub.src.bounding_box.iou import compute_iou
|
10
|
-
from keras_hub.src.models.retinanet.box_matcher import BoxMatcher
|
6
|
+
from keras_hub.src.layers.modeling.box_matcher import BoxMatcher
|
11
7
|
from keras_hub.src.utils import tensor_utils
|
12
8
|
|
13
9
|
|
@@ -30,7 +26,8 @@ class RetinaNetLabelEncoder(keras.layers.Layer):
|
|
30
26
|
anchor_generator: A `keras_hub.layers.AnchorGenerator`.
|
31
27
|
bounding_box_format: str. Ground truth format of bounding boxes.
|
32
28
|
encoding_format: str. The desired target encoding format for the boxes.
|
33
|
-
|
29
|
+
Refer: `keras.utils.bounding_boxes.convert_format` for supported
|
30
|
+
formats.
|
34
31
|
positive_threshold: float. the threshold to set an anchor to positive
|
35
32
|
match to gt box. Values above it are positive matches.
|
36
33
|
Defaults to `0.5`
|
@@ -113,7 +110,7 @@ class RetinaNetLabelEncoder(keras.layers.Layer):
|
|
113
110
|
"support unbatched inputs for the `images` argument. "
|
114
111
|
f"Received `shape(images)={images_shape}`."
|
115
112
|
)
|
116
|
-
|
113
|
+
height, width, channels = images_shape[1:]
|
117
114
|
|
118
115
|
if len(ops.shape(gt_classes)) == 2:
|
119
116
|
gt_classes = ops.expand_dims(gt_classes, axis=-1)
|
@@ -122,14 +119,16 @@ class RetinaNetLabelEncoder(keras.layers.Layer):
|
|
122
119
|
anchor_boxes = ops.concatenate(list(anchor_boxes.values()), axis=0)
|
123
120
|
|
124
121
|
box_targets, class_targets = self._encode_sample(
|
125
|
-
gt_boxes, gt_classes, anchor_boxes,
|
122
|
+
gt_boxes, gt_classes, anchor_boxes, height, width, channels
|
126
123
|
)
|
127
124
|
box_targets = ops.reshape(
|
128
125
|
box_targets, (-1, ops.shape(box_targets)[1], 4)
|
129
126
|
)
|
130
127
|
return box_targets, class_targets
|
131
128
|
|
132
|
-
def _encode_sample(
|
129
|
+
def _encode_sample(
|
130
|
+
self, gt_boxes, gt_classes, anchor_boxes, height, width, channels
|
131
|
+
):
|
133
132
|
"""Creates box and classification targets for a batched sample.
|
134
133
|
|
135
134
|
Matches ground truth boxes to anchor boxes based on IOU.
|
@@ -149,23 +148,26 @@ class RetinaNetLabelEncoder(keras.layers.Layer):
|
|
149
148
|
anchor_boxes: A Tensor with the shape `[total_anchors, 4]`
|
150
149
|
representing all the anchor boxes for a given input image shape,
|
151
150
|
where each anchor box is of the format `[x, y, width, height]`.
|
152
|
-
|
151
|
+
height: int. Height of the inputs.
|
152
|
+
width: int. Width of the inputs.
|
153
|
+
channels: int. Number of channesl in the inputs.
|
153
154
|
|
154
155
|
Returns:
|
155
156
|
Encoded bounding boxes in the format of `center_yxwh` and
|
156
157
|
corresponding labels for each encoded bounding box.
|
157
158
|
"""
|
158
|
-
anchor_boxes = convert_format(
|
159
|
+
anchor_boxes = keras.utils.bounding_boxes.convert_format(
|
159
160
|
anchor_boxes,
|
160
161
|
source=self.anchor_generator.bounding_box_format,
|
161
162
|
target=self.bounding_box_format,
|
162
|
-
|
163
|
+
height=height,
|
164
|
+
width=width,
|
163
165
|
)
|
164
|
-
iou_matrix = compute_iou(
|
166
|
+
iou_matrix = keras.utils.bounding_boxes.compute_iou(
|
165
167
|
anchor_boxes,
|
166
168
|
gt_boxes,
|
167
169
|
bounding_box_format=self.bounding_box_format,
|
168
|
-
image_shape=
|
170
|
+
image_shape=(height, width, channels),
|
169
171
|
)
|
170
172
|
|
171
173
|
matched_gt_idx, matched_vals = self.box_matcher(iou_matrix)
|
@@ -179,14 +181,14 @@ class RetinaNetLabelEncoder(keras.layers.Layer):
|
|
179
181
|
matched_gt_boxes, (-1, ops.shape(matched_gt_boxes)[1], 4)
|
180
182
|
)
|
181
183
|
|
182
|
-
box_targets = encode_box_to_deltas(
|
184
|
+
box_targets = keras.utils.bounding_boxes.encode_box_to_deltas(
|
183
185
|
anchors=anchor_boxes,
|
184
186
|
boxes=matched_gt_boxes,
|
185
187
|
anchor_format=self.bounding_box_format,
|
186
188
|
box_format=self.bounding_box_format,
|
187
189
|
encoding_format=self.encoding_format,
|
188
190
|
variance=self.box_variance,
|
189
|
-
image_shape=
|
191
|
+
image_shape=(height, width, channels),
|
190
192
|
)
|
191
193
|
|
192
194
|
matched_gt_cls_ids = tensor_utils.target_gather(
|
@@ -2,13 +2,9 @@ import keras
|
|
2
2
|
from keras import ops
|
3
3
|
|
4
4
|
from keras_hub.src.api_export import keras_hub_export
|
5
|
-
|
6
|
-
|
7
|
-
from keras_hub.src.
|
8
|
-
from keras_hub.src.bounding_box.converters import decode_deltas_to_boxes
|
9
|
-
from keras_hub.src.models.image_object_detector import ImageObjectDetector
|
10
|
-
from keras_hub.src.models.retinanet.anchor_generator import AnchorGenerator
|
11
|
-
from keras_hub.src.models.retinanet.non_max_supression import NonMaxSuppression
|
5
|
+
from keras_hub.src.layers.modeling.anchor_generator import AnchorGenerator
|
6
|
+
from keras_hub.src.layers.modeling.non_max_supression import NonMaxSuppression
|
7
|
+
from keras_hub.src.models.object_detector import ObjectDetector
|
12
8
|
from keras_hub.src.models.retinanet.prediction_head import PredictionHead
|
13
9
|
from keras_hub.src.models.retinanet.retinanet_backbone import RetinaNetBackbone
|
14
10
|
from keras_hub.src.models.retinanet.retinanet_label_encoder import (
|
@@ -17,10 +13,11 @@ from keras_hub.src.models.retinanet.retinanet_label_encoder import (
|
|
17
13
|
from keras_hub.src.models.retinanet.retinanet_object_detector_preprocessor import ( # noqa: E501
|
18
14
|
RetinaNetObjectDetectorPreprocessor,
|
19
15
|
)
|
16
|
+
from keras_hub.src.utils.tensor_utils import assert_bounding_box_support
|
20
17
|
|
21
18
|
|
22
19
|
@keras_hub_export("keras_hub.models.RetinaNetObjectDetector")
|
23
|
-
class RetinaNetObjectDetector(
|
20
|
+
class RetinaNetObjectDetector(ObjectDetector):
|
24
21
|
"""RetinaNet object detector model.
|
25
22
|
|
26
23
|
This class implements the RetinaNet object detection architecture.
|
@@ -47,9 +44,7 @@ class RetinaNetObjectDetector(ImageObjectDetector):
|
|
47
44
|
arguments.
|
48
45
|
num_classes: int. The number of object classes to be detected.
|
49
46
|
bounding_box_format: str. Dataset bounding box format (e.g., "xyxy",
|
50
|
-
"yxyx").
|
51
|
-
refer TODO: https://github.com/keras-team/keras-hub/issues/1907.
|
52
|
-
Defaults to `yxyx`.
|
47
|
+
"yxyx"). Defaults to `yxyx`.
|
53
48
|
label_encoder: Optional. A `RetinaNetLabelEncoder` instance. Encodes
|
54
49
|
ground truth boxes and classes into training targets. It matches
|
55
50
|
ground truth boxes to anchors based on IoU and encodes box
|
@@ -107,6 +102,9 @@ class RetinaNetObjectDetector(ImageObjectDetector):
|
|
107
102
|
prediction_decoder=None,
|
108
103
|
**kwargs,
|
109
104
|
):
|
105
|
+
# Check whether current version of keras support bounding box utils
|
106
|
+
assert_bounding_box_support(self.__class__.__name__)
|
107
|
+
|
110
108
|
# === Layers ===
|
111
109
|
image_input = keras.layers.Input(backbone.image_shape, name="images")
|
112
110
|
head_dtype = dtype or backbone.dtype_policy
|
@@ -204,17 +202,19 @@ class RetinaNetObjectDetector(ImageObjectDetector):
|
|
204
202
|
)
|
205
203
|
|
206
204
|
def compute_loss(self, x, y, y_pred, sample_weight, **kwargs):
|
207
|
-
|
205
|
+
_, height, width, _ = keras.ops.shape(x)
|
206
|
+
y_for_label_encoder = keras.utils.bounding_boxes.convert_format(
|
208
207
|
y,
|
209
208
|
source=self.bounding_box_format,
|
210
209
|
target=self.label_encoder.bounding_box_format,
|
211
|
-
|
210
|
+
height=height,
|
211
|
+
width=width,
|
212
212
|
)
|
213
213
|
|
214
|
-
boxes,
|
214
|
+
boxes, labels = self.label_encoder(
|
215
215
|
images=x,
|
216
216
|
gt_boxes=y_for_label_encoder["boxes"],
|
217
|
-
gt_classes=y_for_label_encoder["
|
217
|
+
gt_classes=y_for_label_encoder["labels"],
|
218
218
|
)
|
219
219
|
|
220
220
|
box_pred = y_pred["bbox_regression"]
|
@@ -242,11 +242,11 @@ class RetinaNetObjectDetector(ImageObjectDetector):
|
|
242
242
|
)
|
243
243
|
|
244
244
|
cls_labels = ops.one_hot(
|
245
|
-
ops.cast(
|
245
|
+
ops.cast(labels, "int32"), self.num_classes, dtype="float32"
|
246
246
|
)
|
247
|
-
positive_mask = ops.cast(ops.greater(
|
247
|
+
positive_mask = ops.cast(ops.greater(labels, -1.0), dtype="float32")
|
248
248
|
normalizer = ops.sum(positive_mask)
|
249
|
-
cls_weights = ops.cast(ops.not_equal(
|
249
|
+
cls_weights = ops.cast(ops.not_equal(labels, -2.0), dtype="float32")
|
250
250
|
cls_weights /= normalizer
|
251
251
|
box_weights = positive_mask / normalizer
|
252
252
|
|
@@ -306,32 +306,32 @@ class RetinaNetObjectDetector(ImageObjectDetector):
|
|
306
306
|
images, _ = data
|
307
307
|
else:
|
308
308
|
images = data
|
309
|
-
|
309
|
+
height, width, channels = ops.shape(images)[1:]
|
310
310
|
anchor_boxes = self.anchor_generator(images)
|
311
311
|
anchor_boxes = ops.concatenate(list(anchor_boxes.values()), axis=0)
|
312
|
-
box_pred = decode_deltas_to_boxes(
|
312
|
+
box_pred = keras.utils.bounding_boxes.decode_deltas_to_boxes(
|
313
313
|
anchors=anchor_boxes,
|
314
314
|
boxes_delta=box_pred,
|
315
315
|
encoded_format="center_xywh",
|
316
316
|
anchor_format=self.anchor_generator.bounding_box_format,
|
317
317
|
box_format=self.bounding_box_format,
|
318
|
-
image_shape=
|
318
|
+
image_shape=(height, width, channels),
|
319
319
|
)
|
320
320
|
# box_pred is now in "self.bounding_box_format" format
|
321
|
-
box_pred = convert_format(
|
321
|
+
box_pred = keras.utils.bounding_boxes.convert_format(
|
322
322
|
box_pred,
|
323
323
|
source=self.bounding_box_format,
|
324
324
|
target=self.prediction_decoder.bounding_box_format,
|
325
|
-
|
326
|
-
|
327
|
-
y_pred = self.prediction_decoder(
|
328
|
-
box_pred, cls_pred, image_shape=image_shape
|
325
|
+
height=height,
|
326
|
+
width=width,
|
329
327
|
)
|
330
|
-
y_pred
|
328
|
+
y_pred = self.prediction_decoder(box_pred, cls_pred, images=images)
|
329
|
+
y_pred["boxes"] = keras.utils.bounding_boxes.convert_format(
|
331
330
|
y_pred["boxes"],
|
332
331
|
source=self.prediction_decoder.bounding_box_format,
|
333
332
|
target=self.bounding_box_format,
|
334
|
-
|
333
|
+
height=height,
|
334
|
+
width=width,
|
335
335
|
)
|
336
336
|
return y_pred
|
337
337
|
|
@@ -1,6 +1,6 @@
|
|
1
1
|
from keras_hub.src.api_export import keras_hub_export
|
2
|
-
from keras_hub.src.models.
|
3
|
-
|
2
|
+
from keras_hub.src.models.object_detector_preprocessor import (
|
3
|
+
ObjectDetectorPreprocessor,
|
4
4
|
)
|
5
5
|
from keras_hub.src.models.retinanet.retinanet_backbone import RetinaNetBackbone
|
6
6
|
from keras_hub.src.models.retinanet.retinanet_image_converter import (
|
@@ -9,6 +9,6 @@ from keras_hub.src.models.retinanet.retinanet_image_converter import (
|
|
9
9
|
|
10
10
|
|
11
11
|
@keras_hub_export("keras_hub.models.RetinaNetObjectDetectorPreprocessor")
|
12
|
-
class RetinaNetObjectDetectorPreprocessor(
|
12
|
+
class RetinaNetObjectDetectorPreprocessor(ObjectDetectorPreprocessor):
|
13
13
|
backbone_cls = RetinaNetBackbone
|
14
14
|
image_converter_cls = RetinaNetImageConverter
|
@@ -6,6 +6,7 @@ import threading
|
|
6
6
|
import keras
|
7
7
|
import numpy as np
|
8
8
|
from keras import ops
|
9
|
+
from packaging import version
|
9
10
|
|
10
11
|
try:
|
11
12
|
import tensorflow as tf
|
@@ -262,6 +263,18 @@ def assert_tf_libs_installed(symbol_name):
|
|
262
263
|
)
|
263
264
|
|
264
265
|
|
266
|
+
def check_bounding_box_support():
|
267
|
+
return version.parse(keras.__version__) >= version.parse("3.8.0")
|
268
|
+
|
269
|
+
|
270
|
+
def assert_bounding_box_support(symbol_name):
|
271
|
+
if not check_bounding_box_support():
|
272
|
+
raise ImportError(
|
273
|
+
f"{symbol_name} requires Keras version to be 3.8.0 or higher. "
|
274
|
+
f"Current keras version: {keras.__version__}"
|
275
|
+
)
|
276
|
+
|
277
|
+
|
265
278
|
def assert_tf_backend(symbol_name):
|
266
279
|
if keras.config.backend() != "tensorflow":
|
267
280
|
raise RuntimeError(
|
keras_hub/src/version_utils.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: keras-hub-nightly
|
3
|
-
Version: 0.19.0.
|
3
|
+
Version: 0.19.0.dev202502080344
|
4
4
|
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
5
|
Home-page: https://github.com/keras-team/keras-hub
|
6
6
|
Author: Keras team
|
@@ -1,29 +1,23 @@
|
|
1
1
|
keras_hub/__init__.py,sha256=QGdXyHgYt6cMUAP1ebxwc6oR86dE0dkMxNy2eOCQtFo,855
|
2
|
-
keras_hub/api/__init__.py,sha256=
|
3
|
-
keras_hub/api/
|
4
|
-
keras_hub/api/layers/__init__.py,sha256=YO_YLbcxMEboFEgmFkzRf_JfQciQukX2AseOGpWEbDo,3195
|
2
|
+
keras_hub/api/__init__.py,sha256=EzR6D-XWsm_gDrX5LDwKEmrah_gu3ffpj8GKBudE0yI,485
|
3
|
+
keras_hub/api/layers/__init__.py,sha256=oHP3UTIAom7bK1E3nCZzK8wQ-TdYKtgF-wL9_-xzyhQ,3338
|
5
4
|
keras_hub/api/metrics/__init__.py,sha256=So8Ec-lOcTzn_UUMmAdzDm8RKkPu2dbRUm2px8gpUEI,381
|
6
|
-
keras_hub/api/models/__init__.py,sha256=
|
5
|
+
keras_hub/api/models/__init__.py,sha256=YqsLw0u69F93OpS6E677hIeka_hIgjIleSt-xjVqqrk,17002
|
7
6
|
keras_hub/api/samplers/__init__.py,sha256=n-_SEXxr2LNUzK2FqVFN7alsrkx1P_HOVTeLZKeGCdE,730
|
8
7
|
keras_hub/api/tokenizers/__init__.py,sha256=mtJgQy1spfQnPAkeLoeinsT_W9iCWHlJXwzcol5W1aU,2524
|
9
8
|
keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
|
10
9
|
keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
11
10
|
keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
|
12
|
-
keras_hub/src/version_utils.py,sha256=
|
13
|
-
keras_hub/src/bounding_box/__init__.py,sha256=7i6KnGupN4AVivR_dFjQyuuTbI0GkHy8d-aMXeqZdU8,95
|
14
|
-
keras_hub/src/bounding_box/converters.py,sha256=UUp1hwegpDZyIo8sh9TLNy1v6JjwmvwzL6wmHFMAtbk,21916
|
15
|
-
keras_hub/src/bounding_box/formats.py,sha256=YmskOz2BOSat7NaE__J9VfpSNGPJJR0znSzA4lp8MMI,3868
|
16
|
-
keras_hub/src/bounding_box/iou.py,sha256=wmBKEUwu7Q-dJMoTO9I493NQAwpU7lF4oWLpccpkQ0I,9116
|
17
|
-
keras_hub/src/bounding_box/to_dense.py,sha256=usSkar5PfEoW-ZasacBXNHpJ-XaRHLUTnSagef2sZxo,2775
|
18
|
-
keras_hub/src/bounding_box/to_ragged.py,sha256=Z7lZN-wlMIF0FLRknewgqrRlIDhmhvWh8QwLAcNxoek,2874
|
19
|
-
keras_hub/src/bounding_box/utils.py,sha256=ejWDLDTsZd_k3cfBqxhKWlYV2vwd0RInLmPNTPYpsLA,6441
|
20
|
-
keras_hub/src/bounding_box/validate_format.py,sha256=05hdCs7ICavuEPog2syCuNe8i8r0xPZQSnkQA7ncr2c,3054
|
11
|
+
keras_hub/src/version_utils.py,sha256=xerud-Qd3XquCvXGjsryhnIuIA6bgqbnKrFjbxL91i0,222
|
21
12
|
keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
22
13
|
keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
23
14
|
keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
|
15
|
+
keras_hub/src/layers/modeling/anchor_generator.py,sha256=gmT-RCtXpLzNoS4wf5xPgZZMjHnj9zp3VnEXRyxLE5c,6671
|
16
|
+
keras_hub/src/layers/modeling/box_matcher.py,sha256=lp1aQpTZtrGWScWM2iFnkIlXkzYO-Id6QvKnOPfXKWM,11242
|
24
17
|
keras_hub/src/layers/modeling/cached_multi_head_attention.py,sha256=8IDyP3JMeALV1K7Ot04o6MehyS7zDVpci4uvlTZY1oc,5600
|
25
18
|
keras_hub/src/layers/modeling/f_net_encoder.py,sha256=zkVeO5Nk_kBZCUGq2LeDGmPEIM_cr-aGqCKtQGOHKTY,6842
|
26
19
|
keras_hub/src/layers/modeling/masked_lm_head.py,sha256=no6XQb76KB2cUiksYC0MSdyeDOK7pn8MY6cmdCDxpKs,9015
|
20
|
+
keras_hub/src/layers/modeling/non_max_supression.py,sha256=yAkAH1CCj_tYXgQTav39IRr_Uxn8hmzJgIxqbYQyZY8,22565
|
27
21
|
keras_hub/src/layers/modeling/position_embedding.py,sha256=FfTS6JGMhnOIzo9bHzvoxBbdQNctc32iRLI7ZjdxoTY,3850
|
28
22
|
keras_hub/src/layers/modeling/reversible_embedding.py,sha256=sfm5giI-bHu2J9xm9Tkydx8XM-I_m8Oe0wbW1gzrYjk,11141
|
29
23
|
keras_hub/src/layers/modeling/rms_normalization.py,sha256=Ylnc9vkDw1A_ZqiKpQ09jVTAGumS5rspjdQOkH-mxf4,1084
|
@@ -35,7 +29,7 @@ keras_hub/src/layers/modeling/transformer_encoder.py,sha256=Qe19_aR6w4PTFbzvBmSP
|
|
35
29
|
keras_hub/src/layers/modeling/transformer_layer_utils.py,sha256=FuznrW33iG50B-VDN8R1RjuA5JG72yNMJ1TBgWLxR0E,3487
|
36
30
|
keras_hub/src/layers/preprocessing/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
37
31
|
keras_hub/src/layers/preprocessing/audio_converter.py,sha256=YGh_kQw65a1Z6S5zzSNVP-ChyLYHq3-eOYpOS53xIN8,4156
|
38
|
-
keras_hub/src/layers/preprocessing/image_converter.py,sha256=
|
32
|
+
keras_hub/src/layers/preprocessing/image_converter.py,sha256=z0lLTbAxNixecQcfxvugWaidRmjvlEUZSlPhv8DdS1k,12082
|
39
33
|
keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py,sha256=itxWq3FHYlR0I7jKarQlSKbSmRLl9ut_UTSP3ZDwP0A,8162
|
40
34
|
keras_hub/src/layers/preprocessing/multi_segment_packer.py,sha256=ZNqnUFnc9Af122Q7T6YyUoXgIdU9AgIJfsvR1UrCjFU,12068
|
41
35
|
keras_hub/src/layers/preprocessing/preprocessing_layer.py,sha256=WyX41b9Ev_YJ5uVQVOAqD0PQasMOPDoyDjl_PkzkAkE,687
|
@@ -56,14 +50,14 @@ keras_hub/src/models/causal_lm_preprocessor.py,sha256=YY7VJZicdmnjDSWi9g4_pEpd5b
|
|
56
50
|
keras_hub/src/models/feature_pyramid_backbone.py,sha256=clEW-TTQSVJ_5qFNdDF0iABkin1p_xlBUFjJrC7T0IA,2247
|
57
51
|
keras_hub/src/models/image_classifier.py,sha256=yt6cjhPfqs8A_eWXBsXdXFzn-aRgH2rVHUq7Zu7CyK8,7804
|
58
52
|
keras_hub/src/models/image_classifier_preprocessor.py,sha256=Bf7jSqHB1hX2ZWoWQS4GcXNOY_EjeoJi-_vtzCAqw4o,2690
|
59
|
-
keras_hub/src/models/image_object_detector.py,sha256=b4Gx6um7Li2-xNA6O2Nb_u0gGD4lmYGNbT3wVo5djho,3721
|
60
|
-
keras_hub/src/models/image_object_detector_preprocessor.py,sha256=3g_Qfcu5Gi_HDzXai-QOAL7Td_NC-VsUr-7rJbXnQvk,2232
|
61
53
|
keras_hub/src/models/image_segmenter.py,sha256=C1bzIO59pG58iist5GLn_qnlotDpcAVxPV_8a68BkAc,2876
|
62
54
|
keras_hub/src/models/image_segmenter_preprocessor.py,sha256=d7I2Hk0SKWyKpjRS6WYccmh_CYQBpWoj0JF5RRrU6rw,3748
|
63
55
|
keras_hub/src/models/image_to_image.py,sha256=IJLZ6svgvcQvypwF6oe4SbJj_Zuk2-CrgHFBQcsY7n8,16753
|
64
56
|
keras_hub/src/models/inpaint.py,sha256=fxZZrheYIK1rI6BjqZsxt9G2U0afMZR62Z87ZzuSNrQ,20815
|
65
57
|
keras_hub/src/models/masked_lm.py,sha256=uXO_dE_hILlOC9jNr6oK6IHi9IGUqLyNGvr6nMt8Rk0,3576
|
66
58
|
keras_hub/src/models/masked_lm_preprocessor.py,sha256=g8vrnyYwqdnSw5xppROM1Gzo_jmMWKYZoQCsKdfrFKk,5656
|
59
|
+
keras_hub/src/models/object_detector.py,sha256=oAK42fFBKuN0G_WM-DhygFkgQ0KsEwU_ZiU4umHywqc,3757
|
60
|
+
keras_hub/src/models/object_detector_preprocessor.py,sha256=kOSVRNFAg-UjtrCEVBdHXUFyJy7kQtlVuGnZ1aLEfOk,2664
|
67
61
|
keras_hub/src/models/preprocessor.py,sha256=kBlahgVST3L6vKeWDM4fXuDoXa6pwaJW2A5__L85wFU,8487
|
68
62
|
keras_hub/src/models/seq_2_seq_lm.py,sha256=w0gX-5YZjatfvAJmFAgSHyqS_BLqc8FF8DPLGK8mrgI,1864
|
69
63
|
keras_hub/src/models/seq_2_seq_lm_preprocessor.py,sha256=DJmm4VTt8AdLtq1k9YKl_VR31cKUHaYjfSbrk7-fJqA,9667
|
@@ -277,16 +271,13 @@ keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py,sha256=fM7gy
|
|
277
271
|
keras_hub/src/models/resnet/resnet_image_converter.py,sha256=fgTxihJznGFss-y3Z-jp0JE3X1gaaB2y-f2KMwrT8Pk,342
|
278
272
|
keras_hub/src/models/resnet/resnet_presets.py,sha256=cryfXlC_FSEN_jrexKIh5aVbzp87oYetoWeWpX0_lWQ,6947
|
279
273
|
keras_hub/src/models/retinanet/__init__.py,sha256=veWIFvMN6151M69l7FvTcI-IIEe_8dLmNO5NLOszQ1c,275
|
280
|
-
keras_hub/src/models/retinanet/anchor_generator.py,sha256=0OgKSW3OKmbc0cOPHF6FYTAzn7fcHklg665PGSwAaDM,6504
|
281
|
-
keras_hub/src/models/retinanet/box_matcher.py,sha256=l820r1R-ByqiyVgmZ0YFjjz0njchDda-wItzLn1X84o,10834
|
282
274
|
keras_hub/src/models/retinanet/feature_pyramid.py,sha256=hbdrj6X-D2SlwOp2h1WcBlTdSAlLmFK43X7OrkJRoMA,17614
|
283
|
-
keras_hub/src/models/retinanet/non_max_supression.py,sha256=PMOLlRw-EnyEmhlUhJjEbHf1xXiplN95pUxQbiJQbN4,20996
|
284
275
|
keras_hub/src/models/retinanet/prediction_head.py,sha256=xWHt21-SS2t7vCmTONlR1lSbJXhml5jx68V8MGbGybg,7863
|
285
276
|
keras_hub/src/models/retinanet/retinanet_backbone.py,sha256=BJBPJLxpOCOU0Br7b4JsgCZBHQHLAhxLqo9BHNIsl1g,5659
|
286
|
-
keras_hub/src/models/retinanet/retinanet_image_converter.py,sha256=
|
287
|
-
keras_hub/src/models/retinanet/retinanet_label_encoder.py,sha256=
|
288
|
-
keras_hub/src/models/retinanet/retinanet_object_detector.py,sha256=
|
289
|
-
keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py,sha256=
|
277
|
+
keras_hub/src/models/retinanet/retinanet_image_converter.py,sha256=Yr1ACzrPXzX1equjDqkrzRQv5nL5TARICc55Gnhwx7o,785
|
278
|
+
keras_hub/src/models/retinanet/retinanet_label_encoder.py,sha256=Vowhs4uOZAevmVg1a19efIPfvjxkckXwsJDTX3VPDxs,10967
|
279
|
+
keras_hub/src/models/retinanet/retinanet_object_detector.py,sha256=WJ3YLnnC4mcCLLoE7uUFA0cOSVuFgnx9Cr47If50Aig,15595
|
280
|
+
keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py,sha256=RnJkdqv4zYVcGx50sHoA7j9G1AKwEN-RNtyMQg-MMbo,568
|
290
281
|
keras_hub/src/models/retinanet/retinanet_presets.py,sha256=ZOx4SM2c8BsqUQOikkWUhXLGq3Xut1hvjWt_gDXaJRM,510
|
291
282
|
keras_hub/src/models/roberta/__init__.py,sha256=3ouSnKdLlMwoDDLVKD9cNtxam6f8XWgCyc0pwWJ0Zjo,263
|
292
283
|
keras_hub/src/models/roberta/roberta_backbone.py,sha256=q16dylXbgWshT-elCA08lS_b_IZNphsBrrXiv3eJksM,6339
|
@@ -395,7 +386,7 @@ keras_hub/src/utils/keras_utils.py,sha256=ZULqIQylAQen-_pNC96htvLaxSJbfAenNoCo3Z
|
|
395
386
|
keras_hub/src/utils/pipeline_model.py,sha256=jgzB6NQPSl0KOu08N-TazfOnXnUJbZjH2EXXhx25Ftg,9084
|
396
387
|
keras_hub/src/utils/preset_utils.py,sha256=cRsviMUs-Xskg5KefJ-bQCL9y30yJFyVg3RtvmVCo8o,30504
|
397
388
|
keras_hub/src/utils/python_utils.py,sha256=N8nWeO3san4YnGkffRXG3Ix7VEIMTKSN21FX5TuL7G8,202
|
398
|
-
keras_hub/src/utils/tensor_utils.py,sha256=
|
389
|
+
keras_hub/src/utils/tensor_utils.py,sha256=lczQWgPVJU09cLtNbo8MErVFNV9ne4gNlrzbNVQazg4,15042
|
399
390
|
keras_hub/src/utils/imagenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
400
391
|
keras_hub/src/utils/imagenet/imagenet_utils.py,sha256=MvIvv1WJo51ZXBxy4S7t_DsN3ZMtJWlC4cmRvKM2kIA,39304
|
401
392
|
keras_hub/src/utils/timm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -417,7 +408,7 @@ keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYum
|
|
417
408
|
keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
|
418
409
|
keras_hub/src/utils/transformers/preset_loader.py,sha256=DgGJXbTSB9Na8FIR-YWWVqQPOFxHwWrGm41EwcS_EFs,3797
|
419
410
|
keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
|
420
|
-
keras_hub_nightly-0.19.0.
|
421
|
-
keras_hub_nightly-0.19.0.
|
422
|
-
keras_hub_nightly-0.19.0.
|
423
|
-
keras_hub_nightly-0.19.0.
|
411
|
+
keras_hub_nightly-0.19.0.dev202502080344.dist-info/METADATA,sha256=4-2tKEIq093C38m0YTkzJQIsqWpv-UxyR3o0wxGdrqc,7498
|
412
|
+
keras_hub_nightly-0.19.0.dev202502080344.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
413
|
+
keras_hub_nightly-0.19.0.dev202502080344.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
414
|
+
keras_hub_nightly-0.19.0.dev202502080344.dist-info/RECORD,,
|
@@ -1,23 +0,0 @@
|
|
1
|
-
"""DO NOT EDIT.
|
2
|
-
|
3
|
-
This file was autogenerated. Do not edit it by hand,
|
4
|
-
since your modifications would be overwritten.
|
5
|
-
"""
|
6
|
-
|
7
|
-
from keras_hub.src.bounding_box.converters import convert_format
|
8
|
-
from keras_hub.src.bounding_box.formats import CENTER_XYWH
|
9
|
-
from keras_hub.src.bounding_box.formats import REL_XYWH
|
10
|
-
from keras_hub.src.bounding_box.formats import REL_XYXY
|
11
|
-
from keras_hub.src.bounding_box.formats import REL_YXYX
|
12
|
-
from keras_hub.src.bounding_box.formats import XYWH
|
13
|
-
from keras_hub.src.bounding_box.formats import XYXY
|
14
|
-
from keras_hub.src.bounding_box.formats import YXYX
|
15
|
-
from keras_hub.src.bounding_box.iou import compute_ciou
|
16
|
-
from keras_hub.src.bounding_box.iou import compute_iou
|
17
|
-
from keras_hub.src.bounding_box.to_dense import to_dense
|
18
|
-
from keras_hub.src.bounding_box.to_ragged import to_ragged
|
19
|
-
from keras_hub.src.bounding_box.utils import as_relative
|
20
|
-
from keras_hub.src.bounding_box.utils import clip_boxes
|
21
|
-
from keras_hub.src.bounding_box.utils import clip_to_image
|
22
|
-
from keras_hub.src.bounding_box.utils import is_relative
|
23
|
-
from keras_hub.src.bounding_box.validate_format import validate_format
|