keras-hub-nightly 0.19.0.dev202502020345__py3-none-any.whl → 0.19.0.dev202502040344__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -148,10 +148,10 @@ class GemmaBackbone(Backbone):
148
148
 
149
149
  # === Functional Model ===
150
150
  token_id_input = keras.Input(
151
- shape=(None,), dtype="float32", name="token_ids"
151
+ shape=(None,), dtype="int32", name="token_ids"
152
152
  )
153
153
  padding_mask_input = keras.Input(
154
- shape=(None,), dtype="float32", name="padding_mask"
154
+ shape=(None,), dtype="int32", name="padding_mask"
155
155
  )
156
156
  x = self.token_embedding(token_id_input)
157
157
  x = x * ops.cast(ops.sqrt(hidden_dim), x.dtype)
@@ -204,9 +204,8 @@ class PaliGemmaVitEncoderBlock(keras.layers.Layer):
204
204
  self.intermediate_dim = intermediate_dim
205
205
 
206
206
  def compute_attention(self, x, mask=None):
207
- mask = None
208
207
  if mask is not None:
209
- mask = ops.cast(mask, dtype=x.dtype) if mask is not None else None
208
+ mask = ops.cast(mask, dtype=x.dtype)
210
209
  return self.attn(x, attention_mask=mask)[0]
211
210
 
212
211
  def build(self, input_shape):
@@ -65,6 +65,7 @@ class MLP(keras.layers.Layer):
65
65
 
66
66
  def call(self, inputs):
67
67
  x = self.dense_1(inputs)
68
+ x = self.dropout(x)
68
69
  x = self.dense_2(x)
69
70
  out = self.dropout(x)
70
71
  return out
@@ -257,6 +258,7 @@ class ViTEncoderBlock(keras.layers.Layer):
257
258
  hidden_dim=self.hidden_dim,
258
259
  mlp_dim=self.mlp_dim,
259
260
  use_bias=self.use_mlp_bias,
261
+ dropout_rate=self.dropout_rate,
260
262
  name="mlp",
261
263
  dtype=self.dtype_policy,
262
264
  )
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.19.0.dev202502020345"
4
+ __version__ = "0.19.0.dev202502040344"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: keras-hub-nightly
3
- Version: 0.19.0.dev202502020345
3
+ Version: 0.19.0.dev202502040344
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -9,7 +9,7 @@ keras_hub/api/tokenizers/__init__.py,sha256=mtJgQy1spfQnPAkeLoeinsT_W9iCWHlJXwzc
9
9
  keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
10
10
  keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
11
  keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
12
- keras_hub/src/version_utils.py,sha256=60fqfu0TDCmWbkIcPp7NLXYDRws-PasAKXopDrWpecc,222
12
+ keras_hub/src/version_utils.py,sha256=_3YocG-9OFVcMMJhLnBN9rRdEEz1ov_ACEfFhphowgk,222
13
13
  keras_hub/src/bounding_box/__init__.py,sha256=7i6KnGupN4AVivR_dFjQyuuTbI0GkHy8d-aMXeqZdU8,95
14
14
  keras_hub/src/bounding_box/converters.py,sha256=UUp1hwegpDZyIo8sh9TLNy1v6JjwmvwzL6wmHFMAtbk,21916
15
15
  keras_hub/src/bounding_box/formats.py,sha256=YmskOz2BOSat7NaE__J9VfpSNGPJJR0znSzA4lp8MMI,3868
@@ -190,7 +190,7 @@ keras_hub/src/models/flux/flux_text_to_image.py,sha256=Rf5dD2EhG0bE8Gyg9sqaA8YEe
190
190
  keras_hub/src/models/flux/flux_text_to_image_preprocessor.py,sha256=Fs9jr97QtmRUbRRz1kITpkuhDM2GoV3n0XSFC-qQA14,2252
191
191
  keras_hub/src/models/gemma/__init__.py,sha256=rVzOJMJ39bgVlT8UdC0t8PlN2c237GKTBmfHIsbPuOQ,251
192
192
  keras_hub/src/models/gemma/gemma_attention.py,sha256=1CVN5z9GKoU8TuNMih2_MweDkpd98xSqdic9F8xIBE8,8317
193
- keras_hub/src/models/gemma/gemma_backbone.py,sha256=lNGsv3xmCD66N1WaebHkTMb4lISOYvvM4qY22UduxUk,13395
193
+ keras_hub/src/models/gemma/gemma_backbone.py,sha256=GzAUSArw_pN9dtWQzTVhWDbW-XyWt4GyMcFLn9hwmh0,13391
194
194
  keras_hub/src/models/gemma/gemma_causal_lm.py,sha256=3OXaIXlrKqMIuUnBk-bUz-0SYFL-XkkQTWm8qRY2YII,16770
195
195
  keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py,sha256=bpKkEurWIfa6Kp9s4pz84-sBDSA6ZFNHP8nXG1fFQrg,2912
196
196
  keras_hub/src/models/gemma/gemma_decoder_block.py,sha256=f5UsRO-VNsKJfm_WHVJWK4UahhzYm3sKprJ8jjr-zm4,7628
@@ -259,7 +259,7 @@ keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py,sha256=24ABQ1vGlppV-
259
259
  keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=5yM_jUtrFsWIieiwfFBoP7mtPmQAwywkeLKbd7fhmzk,371
260
260
  keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=Ka1ChUUSKw-yY2th3QtmNtkeXt0krYfwhkHrScioMls,8979
261
261
  keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=ljTiADHo0Ok88q-jVzwJIle2C8xcxnudLTsBLzIySaM,2415
262
- keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=ViPKfGksbxBGJ3iS3M_KWxRc8Ie4LF7rWWUKDiqECJE,18285
262
+ keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=R-W7SCnlLjkgiJ9vrn3ctbBES_yCxJSrCld5dV7nzaY,18235
263
263
  keras_hub/src/models/phi3/__init__.py,sha256=zIbf1MU-ks91mEkjTRJAsk51N3BBnXDF2JM1vO-13PQ,245
264
264
  keras_hub/src/models/phi3/phi3_attention.py,sha256=7eeEP3za6arfqzyLtrJV6desV2_9b6bR5LkupeURrHs,9978
265
265
  keras_hub/src/models/phi3/phi3_backbone.py,sha256=fY-OY2ZrqxDHglYjTM0OCacBdEQHwj-XNmU0MnXL7iU,8885
@@ -344,7 +344,7 @@ keras_hub/src/models/vit/vit_backbone.py,sha256=kGmRZO4u-1q4PBcbhJbiWVIEVYAcp2H4
344
344
  keras_hub/src/models/vit/vit_image_classifier.py,sha256=lMVxiD1_6drx7XQ7P7YzlqnFP7kT1zlMe84f-T3SDQI,6332
345
345
  keras_hub/src/models/vit/vit_image_classifier_preprocessor.py,sha256=wu6YcBlXMWB9sKCPvmNdGBZKTLQt_HyHWS6P9nyDwsk,504
346
346
  keras_hub/src/models/vit/vit_image_converter.py,sha256=5xVF04BzMcdTDc6aErAYj3_BuGmVd3zoJMcH1ho4T0g,2561
347
- keras_hub/src/models/vit/vit_layers.py,sha256=Zsz-ARPY49S1nXLUtpFwtPfw31D-vCtKesEo_2JIKPA,13240
347
+ keras_hub/src/models/vit/vit_layers.py,sha256=_cZ1FMYEXcnjwvNPVJXug3rEbatv89OzRTMuzx62dnA,13312
348
348
  keras_hub/src/models/vit/vit_presets.py,sha256=zZhxUleOom1ie3gn0Mi-_xhhdFEEsnqSQyKADV2L38k,4479
349
349
  keras_hub/src/models/vit_det/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
350
350
  keras_hub/src/models/vit_det/vit_det_backbone.py,sha256=DOZ5J7c1t5PAZ6y0pMmBoQTMOUup7UoUrYVfCs69ltY,7697
@@ -417,7 +417,7 @@ keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYum
417
417
  keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
418
418
  keras_hub/src/utils/transformers/preset_loader.py,sha256=DgGJXbTSB9Na8FIR-YWWVqQPOFxHwWrGm41EwcS_EFs,3797
419
419
  keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
420
- keras_hub_nightly-0.19.0.dev202502020345.dist-info/METADATA,sha256=ZLZBYzhulhqVimkEHIsZy21sSKzfy_fFHljxreXxnBQ,7498
421
- keras_hub_nightly-0.19.0.dev202502020345.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
422
- keras_hub_nightly-0.19.0.dev202502020345.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
423
- keras_hub_nightly-0.19.0.dev202502020345.dist-info/RECORD,,
420
+ keras_hub_nightly-0.19.0.dev202502040344.dist-info/METADATA,sha256=H26xu4ByN7wPqk5Rb5JIFJJPW7WCzpYaYO2UTglokY0,7498
421
+ keras_hub_nightly-0.19.0.dev202502040344.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
422
+ keras_hub_nightly-0.19.0.dev202502040344.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
423
+ keras_hub_nightly-0.19.0.dev202502040344.dist-info/RECORD,,