keras-hub-nightly 0.19.0.dev202502020345__py3-none-any.whl → 0.19.0.dev202502040344__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/src/models/gemma/gemma_backbone.py +2 -2
- keras_hub/src/models/pali_gemma/pali_gemma_vit.py +1 -2
- keras_hub/src/models/vit/vit_layers.py +2 -0
- keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.19.0.dev202502020345.dist-info → keras_hub_nightly-0.19.0.dev202502040344.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.19.0.dev202502020345.dist-info → keras_hub_nightly-0.19.0.dev202502040344.dist-info}/RECORD +8 -8
- {keras_hub_nightly-0.19.0.dev202502020345.dist-info → keras_hub_nightly-0.19.0.dev202502040344.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.19.0.dev202502020345.dist-info → keras_hub_nightly-0.19.0.dev202502040344.dist-info}/top_level.txt +0 -0
@@ -148,10 +148,10 @@ class GemmaBackbone(Backbone):
|
|
148
148
|
|
149
149
|
# === Functional Model ===
|
150
150
|
token_id_input = keras.Input(
|
151
|
-
shape=(None,), dtype="
|
151
|
+
shape=(None,), dtype="int32", name="token_ids"
|
152
152
|
)
|
153
153
|
padding_mask_input = keras.Input(
|
154
|
-
shape=(None,), dtype="
|
154
|
+
shape=(None,), dtype="int32", name="padding_mask"
|
155
155
|
)
|
156
156
|
x = self.token_embedding(token_id_input)
|
157
157
|
x = x * ops.cast(ops.sqrt(hidden_dim), x.dtype)
|
@@ -204,9 +204,8 @@ class PaliGemmaVitEncoderBlock(keras.layers.Layer):
|
|
204
204
|
self.intermediate_dim = intermediate_dim
|
205
205
|
|
206
206
|
def compute_attention(self, x, mask=None):
|
207
|
-
mask = None
|
208
207
|
if mask is not None:
|
209
|
-
mask = ops.cast(mask, dtype=x.dtype)
|
208
|
+
mask = ops.cast(mask, dtype=x.dtype)
|
210
209
|
return self.attn(x, attention_mask=mask)[0]
|
211
210
|
|
212
211
|
def build(self, input_shape):
|
@@ -65,6 +65,7 @@ class MLP(keras.layers.Layer):
|
|
65
65
|
|
66
66
|
def call(self, inputs):
|
67
67
|
x = self.dense_1(inputs)
|
68
|
+
x = self.dropout(x)
|
68
69
|
x = self.dense_2(x)
|
69
70
|
out = self.dropout(x)
|
70
71
|
return out
|
@@ -257,6 +258,7 @@ class ViTEncoderBlock(keras.layers.Layer):
|
|
257
258
|
hidden_dim=self.hidden_dim,
|
258
259
|
mlp_dim=self.mlp_dim,
|
259
260
|
use_bias=self.use_mlp_bias,
|
261
|
+
dropout_rate=self.dropout_rate,
|
260
262
|
name="mlp",
|
261
263
|
dtype=self.dtype_policy,
|
262
264
|
)
|
keras_hub/src/version_utils.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: keras-hub-nightly
|
3
|
-
Version: 0.19.0.
|
3
|
+
Version: 0.19.0.dev202502040344
|
4
4
|
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
5
|
Home-page: https://github.com/keras-team/keras-hub
|
6
6
|
Author: Keras team
|
@@ -9,7 +9,7 @@ keras_hub/api/tokenizers/__init__.py,sha256=mtJgQy1spfQnPAkeLoeinsT_W9iCWHlJXwzc
|
|
9
9
|
keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
|
10
10
|
keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
11
11
|
keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
|
12
|
-
keras_hub/src/version_utils.py,sha256=
|
12
|
+
keras_hub/src/version_utils.py,sha256=_3YocG-9OFVcMMJhLnBN9rRdEEz1ov_ACEfFhphowgk,222
|
13
13
|
keras_hub/src/bounding_box/__init__.py,sha256=7i6KnGupN4AVivR_dFjQyuuTbI0GkHy8d-aMXeqZdU8,95
|
14
14
|
keras_hub/src/bounding_box/converters.py,sha256=UUp1hwegpDZyIo8sh9TLNy1v6JjwmvwzL6wmHFMAtbk,21916
|
15
15
|
keras_hub/src/bounding_box/formats.py,sha256=YmskOz2BOSat7NaE__J9VfpSNGPJJR0znSzA4lp8MMI,3868
|
@@ -190,7 +190,7 @@ keras_hub/src/models/flux/flux_text_to_image.py,sha256=Rf5dD2EhG0bE8Gyg9sqaA8YEe
|
|
190
190
|
keras_hub/src/models/flux/flux_text_to_image_preprocessor.py,sha256=Fs9jr97QtmRUbRRz1kITpkuhDM2GoV3n0XSFC-qQA14,2252
|
191
191
|
keras_hub/src/models/gemma/__init__.py,sha256=rVzOJMJ39bgVlT8UdC0t8PlN2c237GKTBmfHIsbPuOQ,251
|
192
192
|
keras_hub/src/models/gemma/gemma_attention.py,sha256=1CVN5z9GKoU8TuNMih2_MweDkpd98xSqdic9F8xIBE8,8317
|
193
|
-
keras_hub/src/models/gemma/gemma_backbone.py,sha256=
|
193
|
+
keras_hub/src/models/gemma/gemma_backbone.py,sha256=GzAUSArw_pN9dtWQzTVhWDbW-XyWt4GyMcFLn9hwmh0,13391
|
194
194
|
keras_hub/src/models/gemma/gemma_causal_lm.py,sha256=3OXaIXlrKqMIuUnBk-bUz-0SYFL-XkkQTWm8qRY2YII,16770
|
195
195
|
keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py,sha256=bpKkEurWIfa6Kp9s4pz84-sBDSA6ZFNHP8nXG1fFQrg,2912
|
196
196
|
keras_hub/src/models/gemma/gemma_decoder_block.py,sha256=f5UsRO-VNsKJfm_WHVJWK4UahhzYm3sKprJ8jjr-zm4,7628
|
@@ -259,7 +259,7 @@ keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py,sha256=24ABQ1vGlppV-
|
|
259
259
|
keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=5yM_jUtrFsWIieiwfFBoP7mtPmQAwywkeLKbd7fhmzk,371
|
260
260
|
keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=Ka1ChUUSKw-yY2th3QtmNtkeXt0krYfwhkHrScioMls,8979
|
261
261
|
keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=ljTiADHo0Ok88q-jVzwJIle2C8xcxnudLTsBLzIySaM,2415
|
262
|
-
keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=
|
262
|
+
keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=R-W7SCnlLjkgiJ9vrn3ctbBES_yCxJSrCld5dV7nzaY,18235
|
263
263
|
keras_hub/src/models/phi3/__init__.py,sha256=zIbf1MU-ks91mEkjTRJAsk51N3BBnXDF2JM1vO-13PQ,245
|
264
264
|
keras_hub/src/models/phi3/phi3_attention.py,sha256=7eeEP3za6arfqzyLtrJV6desV2_9b6bR5LkupeURrHs,9978
|
265
265
|
keras_hub/src/models/phi3/phi3_backbone.py,sha256=fY-OY2ZrqxDHglYjTM0OCacBdEQHwj-XNmU0MnXL7iU,8885
|
@@ -344,7 +344,7 @@ keras_hub/src/models/vit/vit_backbone.py,sha256=kGmRZO4u-1q4PBcbhJbiWVIEVYAcp2H4
|
|
344
344
|
keras_hub/src/models/vit/vit_image_classifier.py,sha256=lMVxiD1_6drx7XQ7P7YzlqnFP7kT1zlMe84f-T3SDQI,6332
|
345
345
|
keras_hub/src/models/vit/vit_image_classifier_preprocessor.py,sha256=wu6YcBlXMWB9sKCPvmNdGBZKTLQt_HyHWS6P9nyDwsk,504
|
346
346
|
keras_hub/src/models/vit/vit_image_converter.py,sha256=5xVF04BzMcdTDc6aErAYj3_BuGmVd3zoJMcH1ho4T0g,2561
|
347
|
-
keras_hub/src/models/vit/vit_layers.py,sha256=
|
347
|
+
keras_hub/src/models/vit/vit_layers.py,sha256=_cZ1FMYEXcnjwvNPVJXug3rEbatv89OzRTMuzx62dnA,13312
|
348
348
|
keras_hub/src/models/vit/vit_presets.py,sha256=zZhxUleOom1ie3gn0Mi-_xhhdFEEsnqSQyKADV2L38k,4479
|
349
349
|
keras_hub/src/models/vit_det/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
350
350
|
keras_hub/src/models/vit_det/vit_det_backbone.py,sha256=DOZ5J7c1t5PAZ6y0pMmBoQTMOUup7UoUrYVfCs69ltY,7697
|
@@ -417,7 +417,7 @@ keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYum
|
|
417
417
|
keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
|
418
418
|
keras_hub/src/utils/transformers/preset_loader.py,sha256=DgGJXbTSB9Na8FIR-YWWVqQPOFxHwWrGm41EwcS_EFs,3797
|
419
419
|
keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
|
420
|
-
keras_hub_nightly-0.19.0.
|
421
|
-
keras_hub_nightly-0.19.0.
|
422
|
-
keras_hub_nightly-0.19.0.
|
423
|
-
keras_hub_nightly-0.19.0.
|
420
|
+
keras_hub_nightly-0.19.0.dev202502040344.dist-info/METADATA,sha256=H26xu4ByN7wPqk5Rb5JIFJJPW7WCzpYaYO2UTglokY0,7498
|
421
|
+
keras_hub_nightly-0.19.0.dev202502040344.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
422
|
+
keras_hub_nightly-0.19.0.dev202502040344.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
423
|
+
keras_hub_nightly-0.19.0.dev202502040344.dist-info/RECORD,,
|
File without changes
|