keras-hub-nightly 0.19.0.dev202501270344__py3-none-any.whl → 0.19.0.dev202501290343__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -98,6 +98,7 @@ class ImageConverter(PreprocessingLayer):
98
98
  scale=None,
99
99
  offset=None,
100
100
  crop_to_aspect_ratio=True,
101
+ pad_to_aspect_ratio=False,
101
102
  interpolation="bilinear",
102
103
  data_format=None,
103
104
  **kwargs,
@@ -112,12 +113,19 @@ class ImageConverter(PreprocessingLayer):
112
113
 
113
114
  super().__init__(**kwargs)
114
115
 
116
+ if crop_to_aspect_ratio and pad_to_aspect_ratio:
117
+ raise ValueError(
118
+ "Only one of 'crop_to_aspect_ratio' or 'pad_to_aspect_ratio' "
119
+ "can be True."
120
+ )
121
+
115
122
  # Create the `Resizing` layer here even if it's not being used. That
116
123
  # allows us to make `image_size` a settable property.
117
124
  self.resizing = keras.layers.Resizing(
118
125
  height=image_size[0] if image_size else None,
119
126
  width=image_size[1] if image_size else None,
120
127
  crop_to_aspect_ratio=crop_to_aspect_ratio,
128
+ pad_to_aspect_ratio=pad_to_aspect_ratio,
121
129
  interpolation=interpolation,
122
130
  data_format=data_format,
123
131
  dtype=self.dtype_policy,
@@ -126,6 +134,7 @@ class ImageConverter(PreprocessingLayer):
126
134
  self.scale = scale
127
135
  self.offset = offset
128
136
  self.crop_to_aspect_ratio = crop_to_aspect_ratio
137
+ self.pad_to_aspect_ratio = pad_to_aspect_ratio
129
138
  self.interpolation = interpolation
130
139
  self.data_format = standardize_data_format(data_format)
131
140
 
@@ -182,6 +191,7 @@ class ImageConverter(PreprocessingLayer):
182
191
  "offset": self.offset,
183
192
  "interpolation": self.interpolation,
184
193
  "crop_to_aspect_ratio": self.crop_to_aspect_ratio,
194
+ "pad_to_aspect_ratio": self.pad_to_aspect_ratio,
185
195
  }
186
196
  )
187
197
  return config
@@ -110,9 +110,11 @@ class FalconAttention(keras.layers.Layer):
110
110
 
111
111
  attention_scores = ops.einsum("bqnh,bknh->bnqk", query, key)
112
112
  attention_scores = ops.add(attention_scores, alibi)
113
- attention_scores = (
114
- attention_scores * self.inv_norm_factor
115
- ) # [batch_size, num_heads, query_length, kv_length]
113
+ # [batch_size, num_heads, query_length, kv_length]
114
+ attention_scores = ops.multiply(
115
+ attention_scores,
116
+ ops.cast(self.inv_norm_factor, self.compute_dtype),
117
+ )
116
118
  attention_scores = self.softmax(
117
119
  attention_scores, ops.expand_dims(attention_mask, 1)
118
120
  )
@@ -120,6 +122,7 @@ class FalconAttention(keras.layers.Layer):
120
122
  attention_output = ops.einsum(
121
123
  "bnqk,bknh->bqnh", attention_scores, value
122
124
  )
125
+
123
126
  attention_output = ops.reshape(
124
127
  attention_output,
125
128
  [batch_size, seq_length, self.num_heads * self.head_dim],
@@ -1,8 +1,11 @@
1
+ import math
2
+
1
3
  import keras
2
4
  from keras import ops
3
5
 
4
6
  from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
5
7
  from keras_hub.src.utils.keras_utils import clone_initializer
8
+ from keras_hub.src.utils.keras_utils import has_flash_attention_support
6
9
 
7
10
 
8
11
  class GPTNeoXAttention(keras.layers.Layer):
@@ -58,6 +61,8 @@ class GPTNeoXAttention(keras.layers.Layer):
58
61
  self.bias_initializer = keras.initializers.get(bias_initializer)
59
62
  self.max_sequence_length = max_sequence_length
60
63
 
64
+ self._inv_norm_factor = 1.0 / math.sqrt(self.attn_head_size)
65
+
61
66
  def build(self, input_shape):
62
67
  self._qkv_dense = keras.layers.EinsumDense(
63
68
  equation="abc,cde->abde",
@@ -120,14 +125,26 @@ class GPTNeoXAttention(keras.layers.Layer):
120
125
  def _compute_attention(
121
126
  self, query, key, value, attention_mask=None, training=None
122
127
  ):
123
- attention_scores = ops.einsum("aecd,abcd->acbe", key, query)
128
+ if has_flash_attention_support() and self.dropout == 0:
129
+ # Use `dot_product_attention` with Flash Attention support if
130
+ # available.
131
+ if attention_mask is not None:
132
+ attention_mask = ops.expand_dims(attention_mask, axis=1)
133
+ attention_mask = ops.cast(attention_mask, dtype="bool")
134
+ attention_output = ops.dot_product_attention(
135
+ query,
136
+ key,
137
+ value,
138
+ mask=attention_mask,
139
+ scale=self._inv_norm_factor,
140
+ )
141
+ return attention_output
124
142
 
125
- norm_factor = ops.sqrt(
126
- ops.convert_to_tensor(self.attn_head_size, self.compute_dtype)
143
+ attention_scores = ops.einsum("aecd,abcd->acbe", key, query)
144
+ attention_scores = ops.multiply(
145
+ attention_scores,
146
+ ops.cast(self._inv_norm_factor, self.compute_dtype),
127
147
  )
128
-
129
- attention_scores /= norm_factor
130
-
131
148
  attention_scores = self._masked_softmax(
132
149
  attention_scores, attention_mask
133
150
  )
@@ -1,8 +1,11 @@
1
+ import math
2
+
1
3
  import keras
2
4
  from keras import ops
3
5
 
4
6
  from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
5
7
  from keras_hub.src.utils.keras_utils import clone_initializer
8
+ from keras_hub.src.utils.keras_utils import has_flash_attention_support
6
9
 
7
10
 
8
11
  class LlamaAttention(keras.layers.Layer):
@@ -43,7 +46,7 @@ class LlamaAttention(keras.layers.Layer):
43
46
  # h = head dim
44
47
  hidden_dim = inputs_shape[-1]
45
48
  head_dim = hidden_dim // self.num_query_heads
46
- self._norm_factor = ops.sqrt(ops.cast(head_dim, self.compute_dtype))
49
+ self._inv_norm_factor = 1.0 / math.sqrt(head_dim)
47
50
 
48
51
  self._query_dense = keras.layers.EinsumDense(
49
52
  equation="bqm,muh->bquh",
@@ -182,9 +185,27 @@ class LlamaAttention(keras.layers.Layer):
182
185
  return self._softmax(attention_scores)
183
186
 
184
187
  def _compute_attention(self, query, key, value, attention_mask=None):
188
+ if has_flash_attention_support():
189
+ # Use `dot_product_attention` with Flash Attention support if
190
+ # available.
191
+ if attention_mask is not None:
192
+ attention_mask = ops.expand_dims(attention_mask, axis=1)
193
+ attention_mask = ops.cast(attention_mask, dtype="bool")
194
+ attention_output = ops.dot_product_attention(
195
+ query,
196
+ key,
197
+ value,
198
+ mask=attention_mask,
199
+ scale=self._inv_norm_factor,
200
+ )
201
+ return attention_output
202
+
185
203
  attention_scores = ops.einsum(self._dot_product_equation, query, key)
186
204
 
187
- attention_scores = attention_scores / self._norm_factor
205
+ attention_scores = ops.multiply(
206
+ attention_scores,
207
+ ops.cast(self._inv_norm_factor, self.compute_dtype),
208
+ )
188
209
  attention_scores = self._masked_softmax(
189
210
  attention_scores, attention_mask
190
211
  )
@@ -1,8 +1,11 @@
1
+ import math
2
+
1
3
  import keras
2
4
  from keras import ops
3
5
 
4
6
  from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
5
7
  from keras_hub.src.utils.keras_utils import clone_initializer
8
+ from keras_hub.src.utils.keras_utils import has_flash_attention_support
6
9
 
7
10
 
8
11
  # This is just a self-attention layer in Mistral. But it can be generalized
@@ -52,6 +55,7 @@ class CachedMistralAttention(keras.layers.Layer):
52
55
  # h = head dim
53
56
  self._hidden_dim = inputs_shape[-1]
54
57
  self._head_dim = self._hidden_dim // self._num_query_heads
58
+ self._inv_norm_factor = 1.0 / math.sqrt(self._head_dim)
55
59
 
56
60
  self._query_dense = keras.layers.EinsumDense(
57
61
  equation="bqm,muh->bquh",
@@ -192,11 +196,26 @@ class CachedMistralAttention(keras.layers.Layer):
192
196
  return self._softmax(attention_scores)
193
197
 
194
198
  def _compute_attention(self, query, key, value, attention_mask=None):
195
- attention_scores = ops.einsum(self._dot_product_equation, query, key)
196
-
197
- norm_factor = ops.sqrt(ops.cast(self._head_dim, self.compute_dtype))
199
+ if has_flash_attention_support():
200
+ # Use `dot_product_attention` with Flash Attention support if
201
+ # available.
202
+ if attention_mask is not None:
203
+ attention_mask = ops.expand_dims(attention_mask, axis=1)
204
+ attention_mask = ops.cast(attention_mask, dtype="bool")
205
+ attention_output = ops.dot_product_attention(
206
+ query,
207
+ key,
208
+ value,
209
+ mask=attention_mask,
210
+ scale=self._inv_norm_factor,
211
+ )
212
+ return attention_output
198
213
 
199
- attention_scores = attention_scores / norm_factor
214
+ attention_scores = ops.einsum(self._dot_product_equation, query, key)
215
+ attention_scores = ops.multiply(
216
+ attention_scores,
217
+ ops.cast(self._inv_norm_factor, self.compute_dtype),
218
+ )
200
219
  attention_scores = self._masked_softmax(
201
220
  attention_scores, attention_mask
202
221
  )
@@ -1,3 +1,5 @@
1
+ import math
2
+
1
3
  import keras
2
4
  from keras import ops
3
5
 
@@ -6,6 +8,7 @@ from keras_hub.src.models.phi3.phi3_rotary_embedding import (
6
8
  Phi3SuScaledRotaryEmbedding,
7
9
  )
8
10
  from keras_hub.src.utils.keras_utils import clone_initializer
11
+ from keras_hub.src.utils.keras_utils import has_flash_attention_support
9
12
 
10
13
 
11
14
  class Phi3Attention(keras.layers.Layer):
@@ -53,7 +56,7 @@ class Phi3Attention(keras.layers.Layer):
53
56
  # h = head dim
54
57
  hidden_dim = inputs_shape[-1]
55
58
  head_dim = hidden_dim // self.num_query_heads
56
- self._norm_factor = ops.sqrt(ops.cast(head_dim, self.compute_dtype))
59
+ self._inv_norm_factor = 1.0 / math.sqrt(head_dim)
57
60
 
58
61
  self.query_dense = keras.layers.EinsumDense(
59
62
  equation="bqm,muh->bquh",
@@ -214,8 +217,26 @@ class Phi3Attention(keras.layers.Layer):
214
217
  return self.softmax(attention_scores)
215
218
 
216
219
  def _compute_attention(self, query, key, value, attention_mask=None):
220
+ if has_flash_attention_support():
221
+ # Use `dot_product_attention` with Flash Attention support if
222
+ # available.
223
+ if attention_mask is not None:
224
+ attention_mask = ops.expand_dims(attention_mask, axis=1)
225
+ attention_mask = ops.cast(attention_mask, dtype="bool")
226
+ attention_output = ops.dot_product_attention(
227
+ query,
228
+ key,
229
+ value,
230
+ mask=attention_mask,
231
+ scale=self._inv_norm_factor,
232
+ )
233
+ return attention_output
234
+
217
235
  attention_scores = ops.einsum("bquh,bkuh->buqk", query, key)
218
- attention_scores = attention_scores / self._norm_factor
236
+ attention_scores = ops.multiply(
237
+ attention_scores,
238
+ ops.cast(self._inv_norm_factor, self.compute_dtype),
239
+ )
219
240
  attention_scores = self._masked_softmax(
220
241
  attention_scores, attention_mask
221
242
  )
@@ -7,6 +7,7 @@ from keras import ops
7
7
  from keras_hub.src.layers.modeling.position_embedding import PositionEmbedding
8
8
  from keras_hub.src.models.backbone import Backbone
9
9
  from keras_hub.src.utils.keras_utils import gelu_approximate
10
+ from keras_hub.src.utils.keras_utils import has_flash_attention_support
10
11
  from keras_hub.src.utils.keras_utils import standardize_data_format
11
12
 
12
13
 
@@ -770,17 +771,14 @@ class MMDiTBlock(layers.Layer):
770
771
  def _compute_attention(self, query, key, value):
771
772
  batch_size = ops.shape(query)[0]
772
773
 
773
- # Use the fast path when `ops.dot_product_attention` and flash attention
774
- # are available.
775
- if hasattr(ops, "dot_product_attention") and hasattr(
776
- keras.config, "is_flash_attention_enabled"
777
- ):
774
+ if has_flash_attention_support():
775
+ # Use `dot_product_attention` with Flash Attention support if
776
+ # available.
778
777
  encoded = ops.dot_product_attention(
779
778
  query,
780
779
  key,
781
780
  value,
782
781
  scale=self._inverse_sqrt_key_dim,
783
- flash_attention=keras.config.is_flash_attention_enabled(),
784
782
  )
785
783
  return ops.reshape(
786
784
  encoded, (batch_size, -1, self.num_heads * self.head_dim)
@@ -793,10 +791,9 @@ class MMDiTBlock(layers.Layer):
793
791
  probs = self.softmax(logits)
794
792
  probs = ops.cast(probs, self.compute_dtype)
795
793
  encoded = ops.einsum("BNTS,BSNH->BTNH", probs, value)
796
- encoded = ops.reshape(
794
+ return ops.reshape(
797
795
  encoded, (batch_size, -1, self.num_heads * self.head_dim)
798
796
  )
799
- return encoded
800
797
 
801
798
  def call(self, inputs, context, timestep_embedding, training=None):
802
799
  # Compute pre-attention.
@@ -53,3 +53,10 @@ def standardize_data_format(data_format):
53
53
  f"Received: data_format={data_format}"
54
54
  )
55
55
  return data_format
56
+
57
+
58
+ def has_flash_attention_support():
59
+ if hasattr(keras.config, "is_flash_attention_enabled"):
60
+ return True
61
+ else:
62
+ return False
@@ -240,7 +240,7 @@ def tf_copy_gfile_to_cache(preset, path):
240
240
  try:
241
241
  import tensorflow as tf
242
242
 
243
- os.make_dirs(os.path.dirname(local_path), exist_ok=True)
243
+ os.makedirs(os.path.dirname(local_path), exist_ok=True)
244
244
  tf.io.gfile.copy(url, local_path)
245
245
  except Exception as e:
246
246
  # gfile.copy will leave an empty file after an error.
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.19.0.dev202501270344"
4
+ __version__ = "0.19.0.dev202501290343"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: keras-hub-nightly
3
- Version: 0.19.0.dev202501270344
3
+ Version: 0.19.0.dev202501290343
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -9,7 +9,7 @@ keras_hub/api/tokenizers/__init__.py,sha256=mtJgQy1spfQnPAkeLoeinsT_W9iCWHlJXwzc
9
9
  keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
10
10
  keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
11
  keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
12
- keras_hub/src/version_utils.py,sha256=zEJjYSSegzR2k-8rtXOP5PNiX00pt5mYEbJZMwvWIos,222
12
+ keras_hub/src/version_utils.py,sha256=I_PEW1lDeDRalBs5L1P1JM6o85YjT0_X-wZPbsOS_iI,222
13
13
  keras_hub/src/bounding_box/__init__.py,sha256=7i6KnGupN4AVivR_dFjQyuuTbI0GkHy8d-aMXeqZdU8,95
14
14
  keras_hub/src/bounding_box/converters.py,sha256=UUp1hwegpDZyIo8sh9TLNy1v6JjwmvwzL6wmHFMAtbk,21916
15
15
  keras_hub/src/bounding_box/formats.py,sha256=YmskOz2BOSat7NaE__J9VfpSNGPJJR0znSzA4lp8MMI,3868
@@ -35,7 +35,7 @@ keras_hub/src/layers/modeling/transformer_encoder.py,sha256=Qe19_aR6w4PTFbzvBmSP
35
35
  keras_hub/src/layers/modeling/transformer_layer_utils.py,sha256=FuznrW33iG50B-VDN8R1RjuA5JG72yNMJ1TBgWLxR0E,3487
36
36
  keras_hub/src/layers/preprocessing/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
37
37
  keras_hub/src/layers/preprocessing/audio_converter.py,sha256=YGh_kQw65a1Z6S5zzSNVP-ChyLYHq3-eOYpOS53xIN8,4156
38
- keras_hub/src/layers/preprocessing/image_converter.py,sha256=QZr1XGsIR67-wuTspHgBt9a44mjuwIw9b5frzSF5Ia8,10542
38
+ keras_hub/src/layers/preprocessing/image_converter.py,sha256=XwqgHYWj0Z14UMGQw5E4pOm3MmgbuvQpBcKl36e-nvo,10962
39
39
  keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py,sha256=itxWq3FHYlR0I7jKarQlSKbSmRLl9ut_UTSP3ZDwP0A,8162
40
40
  keras_hub/src/layers/preprocessing/multi_segment_packer.py,sha256=ZNqnUFnc9Af122Q7T6YyUoXgIdU9AgIJfsvR1UrCjFU,12068
41
41
  keras_hub/src/layers/preprocessing/preprocessing_layer.py,sha256=WyX41b9Ev_YJ5uVQVOAqD0PQasMOPDoyDjl_PkzkAkE,687
@@ -174,7 +174,7 @@ keras_hub/src/models/f_net/f_net_text_classifier.py,sha256=YoWq08mcn-oOsdiajxLy2
174
174
  keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py,sha256=UUa7RKylLt41Z0wRxGzhSgWTaJjNAcgqkVeC-ZzJbfo,4822
175
175
  keras_hub/src/models/f_net/f_net_tokenizer.py,sha256=ZRTaSfgZnYLTVXgM51303LpryRsSL5GaC2Cl_D7g27A,2285
176
176
  keras_hub/src/models/falcon/__init__.py,sha256=IVwPgPbw0l8XJRPQETmeQNvpdn_SneXhe_3oRMOvdx8,257
177
- keras_hub/src/models/falcon/falcon_attention.py,sha256=nBpvh3KGElNG062NfqznNJmTqKGN-0k_VZ7j7DryjMI,4497
177
+ keras_hub/src/models/falcon/falcon_attention.py,sha256=fRHuK_y_w64hrqq0XYfcsycs3KD1_3RmeKP7j8LEjGU,4559
178
178
  keras_hub/src/models/falcon/falcon_backbone.py,sha256=nGJcHnbqncZRTPERRi4ZuYGcODpkH2Mu0-Db59vH5io,5451
179
179
  keras_hub/src/models/falcon/falcon_causal_lm.py,sha256=2UEIeju5Tg-FstVuusejJ-MbHZ6vsNfsSJzzBM89fnU,10908
180
180
  keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py,sha256=nI9E8N9enx5DppDHpLwGslb65rqGorL2sEz1jzet4gA,3033
@@ -205,14 +205,14 @@ keras_hub/src/models/gpt2/gpt2_preprocessor.py,sha256=eYMIXw8Oebsr14GhqBh1CEhbLb
205
205
  keras_hub/src/models/gpt2/gpt2_presets.py,sha256=1mflR1dVuEwFfNe3Fkra6vt7DrjmkAckjyP-LclNLFc,1897
206
206
  keras_hub/src/models/gpt2/gpt2_tokenizer.py,sha256=-wA7ZTiRZDVdEKAskyQiXB5GLYuj9TkuADtyyYpoBuA,2615
207
207
  keras_hub/src/models/gpt_neo_x/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
208
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py,sha256=iCwNoeaHMLfnL-MLOeLir7G75XRJilvpmdKJeBAqLTY,8535
208
+ keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py,sha256=IwfmmAlndr8W1VfXXMK9lkncBxo-AHYqzLo_3hS-k_s,9285
209
209
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py,sha256=yov92B8j9lXz-9ZOpLa_PLT7WgcRKWG8fwB824Z_1hw,6508
210
210
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py,sha256=HriMXNVjGlFTjCIgfLRR3AvsOPbjGToDM_XY-bdger0,7690
211
211
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py,sha256=YiVz9qBHjQlwKgtUVrgBTFitHcX5pbmhhfHwaulyRxY,1957
212
212
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py,sha256=hmB81V0SuI6bEsxEuFkYgq58wbcrv1YLvmXGin5T3E0,9732
213
213
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py,sha256=aKso-8yGrynn3tZ5xm2egcXIBQo3__sWZDBtjmS3ZgU,1991
214
214
  keras_hub/src/models/llama/__init__.py,sha256=svVZjGi71R3lVbq0AdbqlXj909mr3Rp9EPXdiO0w0G0,251
215
- keras_hub/src/models/llama/llama_attention.py,sha256=HzTWtvTjfN_j0vA9-ComstHpI81tzUrJU3RSSvSCaI4,7194
215
+ keras_hub/src/models/llama/llama_attention.py,sha256=i2OHkBAuC7iKDZmZF9eRUilxTKjbmLYXXyO2vbSLT8A,7929
216
216
  keras_hub/src/models/llama/llama_backbone.py,sha256=tjNEIKIL9ncoEL5KNFE5i0oTUkysjmJmh3mHmCz4RCw,11861
217
217
  keras_hub/src/models/llama/llama_causal_lm.py,sha256=9bP4-XDCMgsZuH1ILIMzmwq2Fyy6vkk1Vsht-lMGCNo,13258
218
218
  keras_hub/src/models/llama/llama_causal_lm_preprocessor.py,sha256=VTboOMiRBoxHrwP343upLUTsv3AG65r2H8h_PNPVphE,3047
@@ -227,7 +227,7 @@ keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py,sha256=twbXel9hsQgG
227
227
  keras_hub/src/models/llama3/llama3_presets.py,sha256=PWEW_hLMCD9SIYm3QLhRVIcwjrPuqv-KDebXACXRNbM,1579
228
228
  keras_hub/src/models/llama3/llama3_tokenizer.py,sha256=J-KxRc08vGs4olFw_4mtJs0W_dTeUyj_XxMycazBmxI,1934
229
229
  keras_hub/src/models/mistral/__init__.py,sha256=vjBlzcrIsFSwJKnfwfTNMKstIEKGFTE3kVcdAdfwlnE,263
230
- keras_hub/src/models/mistral/mistral_attention.py,sha256=HCkUIc2DVIlYC5hhwomENlqLOsKTvbCKF0lx0_OBAyA,7862
230
+ keras_hub/src/models/mistral/mistral_attention.py,sha256=00_bwlkBkxZoCuqhy4aMV6o-8kc4Ek06_m-ZeyPlsE8,8607
231
231
  keras_hub/src/models/mistral/mistral_backbone.py,sha256=oatoqSX0z-xjKfXeSveL4P0Dcr84kd0o0pK_kuTbJtY,7257
232
232
  keras_hub/src/models/mistral/mistral_causal_lm.py,sha256=ujCKfsbuYzr8VusqPYcnTH6rTb0MRfzsinEraVhQksc,13234
233
233
  keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py,sha256=_4qq-uKktfIg_i081ZWjZGEIYZpedBwtBGpchQQ-qEk,3079
@@ -261,7 +261,7 @@ keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=Ka1ChUUSKw-yY2th3Qt
261
261
  keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=ljTiADHo0Ok88q-jVzwJIle2C8xcxnudLTsBLzIySaM,2415
262
262
  keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=ViPKfGksbxBGJ3iS3M_KWxRc8Ie4LF7rWWUKDiqECJE,18285
263
263
  keras_hub/src/models/phi3/__init__.py,sha256=zIbf1MU-ks91mEkjTRJAsk51N3BBnXDF2JM1vO-13PQ,245
264
- keras_hub/src/models/phi3/phi3_attention.py,sha256=dN8QwwTP9TxPBDv0MCvObLF3nHm1H6xbYr3T1K0nmg8,9243
264
+ keras_hub/src/models/phi3/phi3_attention.py,sha256=7eeEP3za6arfqzyLtrJV6desV2_9b6bR5LkupeURrHs,9978
265
265
  keras_hub/src/models/phi3/phi3_backbone.py,sha256=fY-OY2ZrqxDHglYjTM0OCacBdEQHwj-XNmU0MnXL7iU,8885
266
266
  keras_hub/src/models/phi3/phi3_causal_lm.py,sha256=kMMq7fQ8hlb_mLO_nU1lGVqILayulVvzzZgl2EvY9_k,8389
267
267
  keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py,sha256=gNx1k-n7d0XDwpNbcZiO9yLkwdXYCvwGyA3b0QCnPAE,3043
@@ -314,7 +314,7 @@ keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py,sha256=
314
314
  keras_hub/src/models/segformer/segformer_presets.py,sha256=ET39ospixkTaCsjoMLdJrr3wlGvTAQu5prleVC5lMZI,4793
315
315
  keras_hub/src/models/stable_diffusion_3/__init__.py,sha256=ZKYQuaRObyhKq8GVAHmoRvlXp6FpU8ChvutVCHyXKuc,343
316
316
  keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py,sha256=vtVhieAv277mAiZj7Kvvqg_Ba7klfQxZVk4PPxNNQ0s,3062
317
- keras_hub/src/models/stable_diffusion_3/mmdit.py,sha256=0gq2tcIqcbiGKKDDj3vrRsF67U3qE9g706XPs2BfCOY,40979
317
+ keras_hub/src/models/stable_diffusion_3/mmdit.py,sha256=ls0DCsyAP2VMdaKSZ4xm_LaWkvxokCMFWgQCKVWJRLQ,40857
318
318
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py,sha256=w8lsMampk34M9xQi96mEnXmkaKQqFQtoFTW8zP7ilEA,24078
319
319
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py,sha256=oQcVCWOwrdUTrr_JNekoMqdSlKYMGz5tG6v8uD25lTc,5479
320
320
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py,sha256=t4uw920Jn1k80air3WRGimKf71aMVu6q73oWFH348vk,6384
@@ -391,9 +391,9 @@ keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py,sha256=hRv_XxoPIPDpHfO0Z
391
391
  keras_hub/src/tokenizers/word_piece_tokenizer.py,sha256=vP6AZgbzsRiuPCt3W_n94nsF7XiERnagWcH_rqJHtVU,19943
392
392
  keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=cylrs02ZrYQ1TuZr9oyS3NrVbDwGctA3VXbIh1pFJMQ,6743
393
393
  keras_hub/src/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
394
- keras_hub/src/utils/keras_utils.py,sha256=0yKIfFuO_IqAH8vHbG3ncRmCVKg__xRGfQtLYWZ8YuA,1695
394
+ keras_hub/src/utils/keras_utils.py,sha256=ZULqIQylAQen-_pNC96htvLaxSJbfAenNoCo3ZSvY5g,1843
395
395
  keras_hub/src/utils/pipeline_model.py,sha256=jgzB6NQPSl0KOu08N-TazfOnXnUJbZjH2EXXhx25Ftg,9084
396
- keras_hub/src/utils/preset_utils.py,sha256=gy0zjPZ3WYvB5LHekw60NU8bHdrV6qUMG84DuN5mT6M,30505
396
+ keras_hub/src/utils/preset_utils.py,sha256=cRsviMUs-Xskg5KefJ-bQCL9y30yJFyVg3RtvmVCo8o,30504
397
397
  keras_hub/src/utils/python_utils.py,sha256=N8nWeO3san4YnGkffRXG3Ix7VEIMTKSN21FX5TuL7G8,202
398
398
  keras_hub/src/utils/tensor_utils.py,sha256=YVJesN91bk-OzJXY1mOKBppuY8noBU7zhPQNXPxZVGc,14646
399
399
  keras_hub/src/utils/imagenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -417,7 +417,7 @@ keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYum
417
417
  keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
418
418
  keras_hub/src/utils/transformers/preset_loader.py,sha256=DgGJXbTSB9Na8FIR-YWWVqQPOFxHwWrGm41EwcS_EFs,3797
419
419
  keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
420
- keras_hub_nightly-0.19.0.dev202501270344.dist-info/METADATA,sha256=6tqDd98GQK3QD2ep9PaI3cMcNM3k2TXL-LOO6d6R9iw,7498
421
- keras_hub_nightly-0.19.0.dev202501270344.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
422
- keras_hub_nightly-0.19.0.dev202501270344.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
423
- keras_hub_nightly-0.19.0.dev202501270344.dist-info/RECORD,,
420
+ keras_hub_nightly-0.19.0.dev202501290343.dist-info/METADATA,sha256=oJJlEUSh0UxqwuSrTzCcAswHdqKxHDKg6NYVe0HoSGk,7498
421
+ keras_hub_nightly-0.19.0.dev202501290343.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
422
+ keras_hub_nightly-0.19.0.dev202501290343.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
423
+ keras_hub_nightly-0.19.0.dev202501290343.dist-info/RECORD,,