keras-hub-nightly 0.19.0.dev202501270344__py3-none-any.whl → 0.19.0.dev202501290343__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/src/layers/preprocessing/image_converter.py +10 -0
- keras_hub/src/models/falcon/falcon_attention.py +6 -3
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +23 -6
- keras_hub/src/models/llama/llama_attention.py +23 -2
- keras_hub/src/models/mistral/mistral_attention.py +23 -4
- keras_hub/src/models/phi3/phi3_attention.py +23 -2
- keras_hub/src/models/stable_diffusion_3/mmdit.py +5 -8
- keras_hub/src/utils/keras_utils.py +7 -0
- keras_hub/src/utils/preset_utils.py +1 -1
- keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.19.0.dev202501270344.dist-info → keras_hub_nightly-0.19.0.dev202501290343.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.19.0.dev202501270344.dist-info → keras_hub_nightly-0.19.0.dev202501290343.dist-info}/RECORD +14 -14
- {keras_hub_nightly-0.19.0.dev202501270344.dist-info → keras_hub_nightly-0.19.0.dev202501290343.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.19.0.dev202501270344.dist-info → keras_hub_nightly-0.19.0.dev202501290343.dist-info}/top_level.txt +0 -0
@@ -98,6 +98,7 @@ class ImageConverter(PreprocessingLayer):
|
|
98
98
|
scale=None,
|
99
99
|
offset=None,
|
100
100
|
crop_to_aspect_ratio=True,
|
101
|
+
pad_to_aspect_ratio=False,
|
101
102
|
interpolation="bilinear",
|
102
103
|
data_format=None,
|
103
104
|
**kwargs,
|
@@ -112,12 +113,19 @@ class ImageConverter(PreprocessingLayer):
|
|
112
113
|
|
113
114
|
super().__init__(**kwargs)
|
114
115
|
|
116
|
+
if crop_to_aspect_ratio and pad_to_aspect_ratio:
|
117
|
+
raise ValueError(
|
118
|
+
"Only one of 'crop_to_aspect_ratio' or 'pad_to_aspect_ratio' "
|
119
|
+
"can be True."
|
120
|
+
)
|
121
|
+
|
115
122
|
# Create the `Resizing` layer here even if it's not being used. That
|
116
123
|
# allows us to make `image_size` a settable property.
|
117
124
|
self.resizing = keras.layers.Resizing(
|
118
125
|
height=image_size[0] if image_size else None,
|
119
126
|
width=image_size[1] if image_size else None,
|
120
127
|
crop_to_aspect_ratio=crop_to_aspect_ratio,
|
128
|
+
pad_to_aspect_ratio=pad_to_aspect_ratio,
|
121
129
|
interpolation=interpolation,
|
122
130
|
data_format=data_format,
|
123
131
|
dtype=self.dtype_policy,
|
@@ -126,6 +134,7 @@ class ImageConverter(PreprocessingLayer):
|
|
126
134
|
self.scale = scale
|
127
135
|
self.offset = offset
|
128
136
|
self.crop_to_aspect_ratio = crop_to_aspect_ratio
|
137
|
+
self.pad_to_aspect_ratio = pad_to_aspect_ratio
|
129
138
|
self.interpolation = interpolation
|
130
139
|
self.data_format = standardize_data_format(data_format)
|
131
140
|
|
@@ -182,6 +191,7 @@ class ImageConverter(PreprocessingLayer):
|
|
182
191
|
"offset": self.offset,
|
183
192
|
"interpolation": self.interpolation,
|
184
193
|
"crop_to_aspect_ratio": self.crop_to_aspect_ratio,
|
194
|
+
"pad_to_aspect_ratio": self.pad_to_aspect_ratio,
|
185
195
|
}
|
186
196
|
)
|
187
197
|
return config
|
@@ -110,9 +110,11 @@ class FalconAttention(keras.layers.Layer):
|
|
110
110
|
|
111
111
|
attention_scores = ops.einsum("bqnh,bknh->bnqk", query, key)
|
112
112
|
attention_scores = ops.add(attention_scores, alibi)
|
113
|
-
|
114
|
-
|
115
|
-
|
113
|
+
# [batch_size, num_heads, query_length, kv_length]
|
114
|
+
attention_scores = ops.multiply(
|
115
|
+
attention_scores,
|
116
|
+
ops.cast(self.inv_norm_factor, self.compute_dtype),
|
117
|
+
)
|
116
118
|
attention_scores = self.softmax(
|
117
119
|
attention_scores, ops.expand_dims(attention_mask, 1)
|
118
120
|
)
|
@@ -120,6 +122,7 @@ class FalconAttention(keras.layers.Layer):
|
|
120
122
|
attention_output = ops.einsum(
|
121
123
|
"bnqk,bknh->bqnh", attention_scores, value
|
122
124
|
)
|
125
|
+
|
123
126
|
attention_output = ops.reshape(
|
124
127
|
attention_output,
|
125
128
|
[batch_size, seq_length, self.num_heads * self.head_dim],
|
@@ -1,8 +1,11 @@
|
|
1
|
+
import math
|
2
|
+
|
1
3
|
import keras
|
2
4
|
from keras import ops
|
3
5
|
|
4
6
|
from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
|
5
7
|
from keras_hub.src.utils.keras_utils import clone_initializer
|
8
|
+
from keras_hub.src.utils.keras_utils import has_flash_attention_support
|
6
9
|
|
7
10
|
|
8
11
|
class GPTNeoXAttention(keras.layers.Layer):
|
@@ -58,6 +61,8 @@ class GPTNeoXAttention(keras.layers.Layer):
|
|
58
61
|
self.bias_initializer = keras.initializers.get(bias_initializer)
|
59
62
|
self.max_sequence_length = max_sequence_length
|
60
63
|
|
64
|
+
self._inv_norm_factor = 1.0 / math.sqrt(self.attn_head_size)
|
65
|
+
|
61
66
|
def build(self, input_shape):
|
62
67
|
self._qkv_dense = keras.layers.EinsumDense(
|
63
68
|
equation="abc,cde->abde",
|
@@ -120,14 +125,26 @@ class GPTNeoXAttention(keras.layers.Layer):
|
|
120
125
|
def _compute_attention(
|
121
126
|
self, query, key, value, attention_mask=None, training=None
|
122
127
|
):
|
123
|
-
|
128
|
+
if has_flash_attention_support() and self.dropout == 0:
|
129
|
+
# Use `dot_product_attention` with Flash Attention support if
|
130
|
+
# available.
|
131
|
+
if attention_mask is not None:
|
132
|
+
attention_mask = ops.expand_dims(attention_mask, axis=1)
|
133
|
+
attention_mask = ops.cast(attention_mask, dtype="bool")
|
134
|
+
attention_output = ops.dot_product_attention(
|
135
|
+
query,
|
136
|
+
key,
|
137
|
+
value,
|
138
|
+
mask=attention_mask,
|
139
|
+
scale=self._inv_norm_factor,
|
140
|
+
)
|
141
|
+
return attention_output
|
124
142
|
|
125
|
-
|
126
|
-
|
143
|
+
attention_scores = ops.einsum("aecd,abcd->acbe", key, query)
|
144
|
+
attention_scores = ops.multiply(
|
145
|
+
attention_scores,
|
146
|
+
ops.cast(self._inv_norm_factor, self.compute_dtype),
|
127
147
|
)
|
128
|
-
|
129
|
-
attention_scores /= norm_factor
|
130
|
-
|
131
148
|
attention_scores = self._masked_softmax(
|
132
149
|
attention_scores, attention_mask
|
133
150
|
)
|
@@ -1,8 +1,11 @@
|
|
1
|
+
import math
|
2
|
+
|
1
3
|
import keras
|
2
4
|
from keras import ops
|
3
5
|
|
4
6
|
from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
|
5
7
|
from keras_hub.src.utils.keras_utils import clone_initializer
|
8
|
+
from keras_hub.src.utils.keras_utils import has_flash_attention_support
|
6
9
|
|
7
10
|
|
8
11
|
class LlamaAttention(keras.layers.Layer):
|
@@ -43,7 +46,7 @@ class LlamaAttention(keras.layers.Layer):
|
|
43
46
|
# h = head dim
|
44
47
|
hidden_dim = inputs_shape[-1]
|
45
48
|
head_dim = hidden_dim // self.num_query_heads
|
46
|
-
self.
|
49
|
+
self._inv_norm_factor = 1.0 / math.sqrt(head_dim)
|
47
50
|
|
48
51
|
self._query_dense = keras.layers.EinsumDense(
|
49
52
|
equation="bqm,muh->bquh",
|
@@ -182,9 +185,27 @@ class LlamaAttention(keras.layers.Layer):
|
|
182
185
|
return self._softmax(attention_scores)
|
183
186
|
|
184
187
|
def _compute_attention(self, query, key, value, attention_mask=None):
|
188
|
+
if has_flash_attention_support():
|
189
|
+
# Use `dot_product_attention` with Flash Attention support if
|
190
|
+
# available.
|
191
|
+
if attention_mask is not None:
|
192
|
+
attention_mask = ops.expand_dims(attention_mask, axis=1)
|
193
|
+
attention_mask = ops.cast(attention_mask, dtype="bool")
|
194
|
+
attention_output = ops.dot_product_attention(
|
195
|
+
query,
|
196
|
+
key,
|
197
|
+
value,
|
198
|
+
mask=attention_mask,
|
199
|
+
scale=self._inv_norm_factor,
|
200
|
+
)
|
201
|
+
return attention_output
|
202
|
+
|
185
203
|
attention_scores = ops.einsum(self._dot_product_equation, query, key)
|
186
204
|
|
187
|
-
attention_scores =
|
205
|
+
attention_scores = ops.multiply(
|
206
|
+
attention_scores,
|
207
|
+
ops.cast(self._inv_norm_factor, self.compute_dtype),
|
208
|
+
)
|
188
209
|
attention_scores = self._masked_softmax(
|
189
210
|
attention_scores, attention_mask
|
190
211
|
)
|
@@ -1,8 +1,11 @@
|
|
1
|
+
import math
|
2
|
+
|
1
3
|
import keras
|
2
4
|
from keras import ops
|
3
5
|
|
4
6
|
from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
|
5
7
|
from keras_hub.src.utils.keras_utils import clone_initializer
|
8
|
+
from keras_hub.src.utils.keras_utils import has_flash_attention_support
|
6
9
|
|
7
10
|
|
8
11
|
# This is just a self-attention layer in Mistral. But it can be generalized
|
@@ -52,6 +55,7 @@ class CachedMistralAttention(keras.layers.Layer):
|
|
52
55
|
# h = head dim
|
53
56
|
self._hidden_dim = inputs_shape[-1]
|
54
57
|
self._head_dim = self._hidden_dim // self._num_query_heads
|
58
|
+
self._inv_norm_factor = 1.0 / math.sqrt(self._head_dim)
|
55
59
|
|
56
60
|
self._query_dense = keras.layers.EinsumDense(
|
57
61
|
equation="bqm,muh->bquh",
|
@@ -192,11 +196,26 @@ class CachedMistralAttention(keras.layers.Layer):
|
|
192
196
|
return self._softmax(attention_scores)
|
193
197
|
|
194
198
|
def _compute_attention(self, query, key, value, attention_mask=None):
|
195
|
-
|
196
|
-
|
197
|
-
|
199
|
+
if has_flash_attention_support():
|
200
|
+
# Use `dot_product_attention` with Flash Attention support if
|
201
|
+
# available.
|
202
|
+
if attention_mask is not None:
|
203
|
+
attention_mask = ops.expand_dims(attention_mask, axis=1)
|
204
|
+
attention_mask = ops.cast(attention_mask, dtype="bool")
|
205
|
+
attention_output = ops.dot_product_attention(
|
206
|
+
query,
|
207
|
+
key,
|
208
|
+
value,
|
209
|
+
mask=attention_mask,
|
210
|
+
scale=self._inv_norm_factor,
|
211
|
+
)
|
212
|
+
return attention_output
|
198
213
|
|
199
|
-
attention_scores =
|
214
|
+
attention_scores = ops.einsum(self._dot_product_equation, query, key)
|
215
|
+
attention_scores = ops.multiply(
|
216
|
+
attention_scores,
|
217
|
+
ops.cast(self._inv_norm_factor, self.compute_dtype),
|
218
|
+
)
|
200
219
|
attention_scores = self._masked_softmax(
|
201
220
|
attention_scores, attention_mask
|
202
221
|
)
|
@@ -1,3 +1,5 @@
|
|
1
|
+
import math
|
2
|
+
|
1
3
|
import keras
|
2
4
|
from keras import ops
|
3
5
|
|
@@ -6,6 +8,7 @@ from keras_hub.src.models.phi3.phi3_rotary_embedding import (
|
|
6
8
|
Phi3SuScaledRotaryEmbedding,
|
7
9
|
)
|
8
10
|
from keras_hub.src.utils.keras_utils import clone_initializer
|
11
|
+
from keras_hub.src.utils.keras_utils import has_flash_attention_support
|
9
12
|
|
10
13
|
|
11
14
|
class Phi3Attention(keras.layers.Layer):
|
@@ -53,7 +56,7 @@ class Phi3Attention(keras.layers.Layer):
|
|
53
56
|
# h = head dim
|
54
57
|
hidden_dim = inputs_shape[-1]
|
55
58
|
head_dim = hidden_dim // self.num_query_heads
|
56
|
-
self.
|
59
|
+
self._inv_norm_factor = 1.0 / math.sqrt(head_dim)
|
57
60
|
|
58
61
|
self.query_dense = keras.layers.EinsumDense(
|
59
62
|
equation="bqm,muh->bquh",
|
@@ -214,8 +217,26 @@ class Phi3Attention(keras.layers.Layer):
|
|
214
217
|
return self.softmax(attention_scores)
|
215
218
|
|
216
219
|
def _compute_attention(self, query, key, value, attention_mask=None):
|
220
|
+
if has_flash_attention_support():
|
221
|
+
# Use `dot_product_attention` with Flash Attention support if
|
222
|
+
# available.
|
223
|
+
if attention_mask is not None:
|
224
|
+
attention_mask = ops.expand_dims(attention_mask, axis=1)
|
225
|
+
attention_mask = ops.cast(attention_mask, dtype="bool")
|
226
|
+
attention_output = ops.dot_product_attention(
|
227
|
+
query,
|
228
|
+
key,
|
229
|
+
value,
|
230
|
+
mask=attention_mask,
|
231
|
+
scale=self._inv_norm_factor,
|
232
|
+
)
|
233
|
+
return attention_output
|
234
|
+
|
217
235
|
attention_scores = ops.einsum("bquh,bkuh->buqk", query, key)
|
218
|
-
attention_scores =
|
236
|
+
attention_scores = ops.multiply(
|
237
|
+
attention_scores,
|
238
|
+
ops.cast(self._inv_norm_factor, self.compute_dtype),
|
239
|
+
)
|
219
240
|
attention_scores = self._masked_softmax(
|
220
241
|
attention_scores, attention_mask
|
221
242
|
)
|
@@ -7,6 +7,7 @@ from keras import ops
|
|
7
7
|
from keras_hub.src.layers.modeling.position_embedding import PositionEmbedding
|
8
8
|
from keras_hub.src.models.backbone import Backbone
|
9
9
|
from keras_hub.src.utils.keras_utils import gelu_approximate
|
10
|
+
from keras_hub.src.utils.keras_utils import has_flash_attention_support
|
10
11
|
from keras_hub.src.utils.keras_utils import standardize_data_format
|
11
12
|
|
12
13
|
|
@@ -770,17 +771,14 @@ class MMDiTBlock(layers.Layer):
|
|
770
771
|
def _compute_attention(self, query, key, value):
|
771
772
|
batch_size = ops.shape(query)[0]
|
772
773
|
|
773
|
-
|
774
|
-
|
775
|
-
|
776
|
-
keras.config, "is_flash_attention_enabled"
|
777
|
-
):
|
774
|
+
if has_flash_attention_support():
|
775
|
+
# Use `dot_product_attention` with Flash Attention support if
|
776
|
+
# available.
|
778
777
|
encoded = ops.dot_product_attention(
|
779
778
|
query,
|
780
779
|
key,
|
781
780
|
value,
|
782
781
|
scale=self._inverse_sqrt_key_dim,
|
783
|
-
flash_attention=keras.config.is_flash_attention_enabled(),
|
784
782
|
)
|
785
783
|
return ops.reshape(
|
786
784
|
encoded, (batch_size, -1, self.num_heads * self.head_dim)
|
@@ -793,10 +791,9 @@ class MMDiTBlock(layers.Layer):
|
|
793
791
|
probs = self.softmax(logits)
|
794
792
|
probs = ops.cast(probs, self.compute_dtype)
|
795
793
|
encoded = ops.einsum("BNTS,BSNH->BTNH", probs, value)
|
796
|
-
|
794
|
+
return ops.reshape(
|
797
795
|
encoded, (batch_size, -1, self.num_heads * self.head_dim)
|
798
796
|
)
|
799
|
-
return encoded
|
800
797
|
|
801
798
|
def call(self, inputs, context, timestep_embedding, training=None):
|
802
799
|
# Compute pre-attention.
|
@@ -240,7 +240,7 @@ def tf_copy_gfile_to_cache(preset, path):
|
|
240
240
|
try:
|
241
241
|
import tensorflow as tf
|
242
242
|
|
243
|
-
os.
|
243
|
+
os.makedirs(os.path.dirname(local_path), exist_ok=True)
|
244
244
|
tf.io.gfile.copy(url, local_path)
|
245
245
|
except Exception as e:
|
246
246
|
# gfile.copy will leave an empty file after an error.
|
keras_hub/src/version_utils.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: keras-hub-nightly
|
3
|
-
Version: 0.19.0.
|
3
|
+
Version: 0.19.0.dev202501290343
|
4
4
|
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
5
|
Home-page: https://github.com/keras-team/keras-hub
|
6
6
|
Author: Keras team
|
@@ -9,7 +9,7 @@ keras_hub/api/tokenizers/__init__.py,sha256=mtJgQy1spfQnPAkeLoeinsT_W9iCWHlJXwzc
|
|
9
9
|
keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
|
10
10
|
keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
11
11
|
keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
|
12
|
-
keras_hub/src/version_utils.py,sha256=
|
12
|
+
keras_hub/src/version_utils.py,sha256=I_PEW1lDeDRalBs5L1P1JM6o85YjT0_X-wZPbsOS_iI,222
|
13
13
|
keras_hub/src/bounding_box/__init__.py,sha256=7i6KnGupN4AVivR_dFjQyuuTbI0GkHy8d-aMXeqZdU8,95
|
14
14
|
keras_hub/src/bounding_box/converters.py,sha256=UUp1hwegpDZyIo8sh9TLNy1v6JjwmvwzL6wmHFMAtbk,21916
|
15
15
|
keras_hub/src/bounding_box/formats.py,sha256=YmskOz2BOSat7NaE__J9VfpSNGPJJR0znSzA4lp8MMI,3868
|
@@ -35,7 +35,7 @@ keras_hub/src/layers/modeling/transformer_encoder.py,sha256=Qe19_aR6w4PTFbzvBmSP
|
|
35
35
|
keras_hub/src/layers/modeling/transformer_layer_utils.py,sha256=FuznrW33iG50B-VDN8R1RjuA5JG72yNMJ1TBgWLxR0E,3487
|
36
36
|
keras_hub/src/layers/preprocessing/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
37
37
|
keras_hub/src/layers/preprocessing/audio_converter.py,sha256=YGh_kQw65a1Z6S5zzSNVP-ChyLYHq3-eOYpOS53xIN8,4156
|
38
|
-
keras_hub/src/layers/preprocessing/image_converter.py,sha256=
|
38
|
+
keras_hub/src/layers/preprocessing/image_converter.py,sha256=XwqgHYWj0Z14UMGQw5E4pOm3MmgbuvQpBcKl36e-nvo,10962
|
39
39
|
keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py,sha256=itxWq3FHYlR0I7jKarQlSKbSmRLl9ut_UTSP3ZDwP0A,8162
|
40
40
|
keras_hub/src/layers/preprocessing/multi_segment_packer.py,sha256=ZNqnUFnc9Af122Q7T6YyUoXgIdU9AgIJfsvR1UrCjFU,12068
|
41
41
|
keras_hub/src/layers/preprocessing/preprocessing_layer.py,sha256=WyX41b9Ev_YJ5uVQVOAqD0PQasMOPDoyDjl_PkzkAkE,687
|
@@ -174,7 +174,7 @@ keras_hub/src/models/f_net/f_net_text_classifier.py,sha256=YoWq08mcn-oOsdiajxLy2
|
|
174
174
|
keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py,sha256=UUa7RKylLt41Z0wRxGzhSgWTaJjNAcgqkVeC-ZzJbfo,4822
|
175
175
|
keras_hub/src/models/f_net/f_net_tokenizer.py,sha256=ZRTaSfgZnYLTVXgM51303LpryRsSL5GaC2Cl_D7g27A,2285
|
176
176
|
keras_hub/src/models/falcon/__init__.py,sha256=IVwPgPbw0l8XJRPQETmeQNvpdn_SneXhe_3oRMOvdx8,257
|
177
|
-
keras_hub/src/models/falcon/falcon_attention.py,sha256=
|
177
|
+
keras_hub/src/models/falcon/falcon_attention.py,sha256=fRHuK_y_w64hrqq0XYfcsycs3KD1_3RmeKP7j8LEjGU,4559
|
178
178
|
keras_hub/src/models/falcon/falcon_backbone.py,sha256=nGJcHnbqncZRTPERRi4ZuYGcODpkH2Mu0-Db59vH5io,5451
|
179
179
|
keras_hub/src/models/falcon/falcon_causal_lm.py,sha256=2UEIeju5Tg-FstVuusejJ-MbHZ6vsNfsSJzzBM89fnU,10908
|
180
180
|
keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py,sha256=nI9E8N9enx5DppDHpLwGslb65rqGorL2sEz1jzet4gA,3033
|
@@ -205,14 +205,14 @@ keras_hub/src/models/gpt2/gpt2_preprocessor.py,sha256=eYMIXw8Oebsr14GhqBh1CEhbLb
|
|
205
205
|
keras_hub/src/models/gpt2/gpt2_presets.py,sha256=1mflR1dVuEwFfNe3Fkra6vt7DrjmkAckjyP-LclNLFc,1897
|
206
206
|
keras_hub/src/models/gpt2/gpt2_tokenizer.py,sha256=-wA7ZTiRZDVdEKAskyQiXB5GLYuj9TkuADtyyYpoBuA,2615
|
207
207
|
keras_hub/src/models/gpt_neo_x/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
208
|
-
keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py,sha256=
|
208
|
+
keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py,sha256=IwfmmAlndr8W1VfXXMK9lkncBxo-AHYqzLo_3hS-k_s,9285
|
209
209
|
keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py,sha256=yov92B8j9lXz-9ZOpLa_PLT7WgcRKWG8fwB824Z_1hw,6508
|
210
210
|
keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py,sha256=HriMXNVjGlFTjCIgfLRR3AvsOPbjGToDM_XY-bdger0,7690
|
211
211
|
keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py,sha256=YiVz9qBHjQlwKgtUVrgBTFitHcX5pbmhhfHwaulyRxY,1957
|
212
212
|
keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py,sha256=hmB81V0SuI6bEsxEuFkYgq58wbcrv1YLvmXGin5T3E0,9732
|
213
213
|
keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py,sha256=aKso-8yGrynn3tZ5xm2egcXIBQo3__sWZDBtjmS3ZgU,1991
|
214
214
|
keras_hub/src/models/llama/__init__.py,sha256=svVZjGi71R3lVbq0AdbqlXj909mr3Rp9EPXdiO0w0G0,251
|
215
|
-
keras_hub/src/models/llama/llama_attention.py,sha256=
|
215
|
+
keras_hub/src/models/llama/llama_attention.py,sha256=i2OHkBAuC7iKDZmZF9eRUilxTKjbmLYXXyO2vbSLT8A,7929
|
216
216
|
keras_hub/src/models/llama/llama_backbone.py,sha256=tjNEIKIL9ncoEL5KNFE5i0oTUkysjmJmh3mHmCz4RCw,11861
|
217
217
|
keras_hub/src/models/llama/llama_causal_lm.py,sha256=9bP4-XDCMgsZuH1ILIMzmwq2Fyy6vkk1Vsht-lMGCNo,13258
|
218
218
|
keras_hub/src/models/llama/llama_causal_lm_preprocessor.py,sha256=VTboOMiRBoxHrwP343upLUTsv3AG65r2H8h_PNPVphE,3047
|
@@ -227,7 +227,7 @@ keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py,sha256=twbXel9hsQgG
|
|
227
227
|
keras_hub/src/models/llama3/llama3_presets.py,sha256=PWEW_hLMCD9SIYm3QLhRVIcwjrPuqv-KDebXACXRNbM,1579
|
228
228
|
keras_hub/src/models/llama3/llama3_tokenizer.py,sha256=J-KxRc08vGs4olFw_4mtJs0W_dTeUyj_XxMycazBmxI,1934
|
229
229
|
keras_hub/src/models/mistral/__init__.py,sha256=vjBlzcrIsFSwJKnfwfTNMKstIEKGFTE3kVcdAdfwlnE,263
|
230
|
-
keras_hub/src/models/mistral/mistral_attention.py,sha256=
|
230
|
+
keras_hub/src/models/mistral/mistral_attention.py,sha256=00_bwlkBkxZoCuqhy4aMV6o-8kc4Ek06_m-ZeyPlsE8,8607
|
231
231
|
keras_hub/src/models/mistral/mistral_backbone.py,sha256=oatoqSX0z-xjKfXeSveL4P0Dcr84kd0o0pK_kuTbJtY,7257
|
232
232
|
keras_hub/src/models/mistral/mistral_causal_lm.py,sha256=ujCKfsbuYzr8VusqPYcnTH6rTb0MRfzsinEraVhQksc,13234
|
233
233
|
keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py,sha256=_4qq-uKktfIg_i081ZWjZGEIYZpedBwtBGpchQQ-qEk,3079
|
@@ -261,7 +261,7 @@ keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=Ka1ChUUSKw-yY2th3Qt
|
|
261
261
|
keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=ljTiADHo0Ok88q-jVzwJIle2C8xcxnudLTsBLzIySaM,2415
|
262
262
|
keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=ViPKfGksbxBGJ3iS3M_KWxRc8Ie4LF7rWWUKDiqECJE,18285
|
263
263
|
keras_hub/src/models/phi3/__init__.py,sha256=zIbf1MU-ks91mEkjTRJAsk51N3BBnXDF2JM1vO-13PQ,245
|
264
|
-
keras_hub/src/models/phi3/phi3_attention.py,sha256=
|
264
|
+
keras_hub/src/models/phi3/phi3_attention.py,sha256=7eeEP3za6arfqzyLtrJV6desV2_9b6bR5LkupeURrHs,9978
|
265
265
|
keras_hub/src/models/phi3/phi3_backbone.py,sha256=fY-OY2ZrqxDHglYjTM0OCacBdEQHwj-XNmU0MnXL7iU,8885
|
266
266
|
keras_hub/src/models/phi3/phi3_causal_lm.py,sha256=kMMq7fQ8hlb_mLO_nU1lGVqILayulVvzzZgl2EvY9_k,8389
|
267
267
|
keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py,sha256=gNx1k-n7d0XDwpNbcZiO9yLkwdXYCvwGyA3b0QCnPAE,3043
|
@@ -314,7 +314,7 @@ keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py,sha256=
|
|
314
314
|
keras_hub/src/models/segformer/segformer_presets.py,sha256=ET39ospixkTaCsjoMLdJrr3wlGvTAQu5prleVC5lMZI,4793
|
315
315
|
keras_hub/src/models/stable_diffusion_3/__init__.py,sha256=ZKYQuaRObyhKq8GVAHmoRvlXp6FpU8ChvutVCHyXKuc,343
|
316
316
|
keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py,sha256=vtVhieAv277mAiZj7Kvvqg_Ba7klfQxZVk4PPxNNQ0s,3062
|
317
|
-
keras_hub/src/models/stable_diffusion_3/mmdit.py,sha256=
|
317
|
+
keras_hub/src/models/stable_diffusion_3/mmdit.py,sha256=ls0DCsyAP2VMdaKSZ4xm_LaWkvxokCMFWgQCKVWJRLQ,40857
|
318
318
|
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py,sha256=w8lsMampk34M9xQi96mEnXmkaKQqFQtoFTW8zP7ilEA,24078
|
319
319
|
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py,sha256=oQcVCWOwrdUTrr_JNekoMqdSlKYMGz5tG6v8uD25lTc,5479
|
320
320
|
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py,sha256=t4uw920Jn1k80air3WRGimKf71aMVu6q73oWFH348vk,6384
|
@@ -391,9 +391,9 @@ keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py,sha256=hRv_XxoPIPDpHfO0Z
|
|
391
391
|
keras_hub/src/tokenizers/word_piece_tokenizer.py,sha256=vP6AZgbzsRiuPCt3W_n94nsF7XiERnagWcH_rqJHtVU,19943
|
392
392
|
keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=cylrs02ZrYQ1TuZr9oyS3NrVbDwGctA3VXbIh1pFJMQ,6743
|
393
393
|
keras_hub/src/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
394
|
-
keras_hub/src/utils/keras_utils.py,sha256=
|
394
|
+
keras_hub/src/utils/keras_utils.py,sha256=ZULqIQylAQen-_pNC96htvLaxSJbfAenNoCo3ZSvY5g,1843
|
395
395
|
keras_hub/src/utils/pipeline_model.py,sha256=jgzB6NQPSl0KOu08N-TazfOnXnUJbZjH2EXXhx25Ftg,9084
|
396
|
-
keras_hub/src/utils/preset_utils.py,sha256=
|
396
|
+
keras_hub/src/utils/preset_utils.py,sha256=cRsviMUs-Xskg5KefJ-bQCL9y30yJFyVg3RtvmVCo8o,30504
|
397
397
|
keras_hub/src/utils/python_utils.py,sha256=N8nWeO3san4YnGkffRXG3Ix7VEIMTKSN21FX5TuL7G8,202
|
398
398
|
keras_hub/src/utils/tensor_utils.py,sha256=YVJesN91bk-OzJXY1mOKBppuY8noBU7zhPQNXPxZVGc,14646
|
399
399
|
keras_hub/src/utils/imagenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -417,7 +417,7 @@ keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYum
|
|
417
417
|
keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
|
418
418
|
keras_hub/src/utils/transformers/preset_loader.py,sha256=DgGJXbTSB9Na8FIR-YWWVqQPOFxHwWrGm41EwcS_EFs,3797
|
419
419
|
keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
|
420
|
-
keras_hub_nightly-0.19.0.
|
421
|
-
keras_hub_nightly-0.19.0.
|
422
|
-
keras_hub_nightly-0.19.0.
|
423
|
-
keras_hub_nightly-0.19.0.
|
420
|
+
keras_hub_nightly-0.19.0.dev202501290343.dist-info/METADATA,sha256=oJJlEUSh0UxqwuSrTzCcAswHdqKxHDKg6NYVe0HoSGk,7498
|
421
|
+
keras_hub_nightly-0.19.0.dev202501290343.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
422
|
+
keras_hub_nightly-0.19.0.dev202501290343.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
423
|
+
keras_hub_nightly-0.19.0.dev202501290343.dist-info/RECORD,,
|
File without changes
|