keras-hub-nightly 0.19.0.dev202501090358__py3-none-any.whl → 0.19.0.dev202501160344__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/src/metrics/bleu.py +3 -2
- keras_hub/src/models/basnet/basnet_backbone.py +1 -1
- keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +3 -3
- keras_hub/src/models/densenet/densenet_backbone.py +3 -3
- keras_hub/src/models/flux/flux_text_to_image.py +1 -1
- keras_hub/src/models/pali_gemma/pali_gemma_presets.py +2 -2
- keras_hub/src/models/resnet/resnet_backbone.py +1 -1
- keras_hub/src/models/retinanet/feature_pyramid.py +5 -5
- keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +1 -2
- keras_hub/src/models/vit/vit_layers.py +1 -1
- keras_hub/src/tokenizers/byte_tokenizer.py +1 -2
- keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +3 -0
- keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +1 -2
- keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +3 -0
- keras_hub/src/utils/timm/convert_densenet.py +6 -4
- keras_hub/src/utils/timm/convert_efficientnet.py +1 -1
- keras_hub/src/utils/timm/convert_resnet.py +1 -1
- keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.19.0.dev202501090358.dist-info → keras_hub_nightly-0.19.0.dev202501160344.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.19.0.dev202501090358.dist-info → keras_hub_nightly-0.19.0.dev202501160344.dist-info}/RECORD +22 -22
- {keras_hub_nightly-0.19.0.dev202501090358.dist-info → keras_hub_nightly-0.19.0.dev202501160344.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.19.0.dev202501090358.dist-info → keras_hub_nightly-0.19.0.dev202501160344.dist-info}/top_level.txt +0 -0
keras_hub/src/metrics/bleu.py
CHANGED
@@ -329,8 +329,9 @@ class Bleu(keras.metrics.Metric):
|
|
329
329
|
return tf.squeeze(inputs, axis=-1)
|
330
330
|
else:
|
331
331
|
raise ValueError(
|
332
|
-
f"{tensor_name} must be of rank {base_rank},
|
333
|
-
f"or {base_rank+2}.
|
332
|
+
f"{tensor_name} must be of rank {base_rank}, "
|
333
|
+
f"{base_rank + 1}, or {base_rank + 2}. "
|
334
|
+
f"Found rank: {inputs.shape.rank}"
|
334
335
|
)
|
335
336
|
|
336
337
|
y_true = validate_and_fix_rank(y_true, "y_true", 1)
|
@@ -219,7 +219,7 @@ def get_resnet_block(_resnet, block_num):
|
|
219
219
|
else:
|
220
220
|
x = _resnet.pyramid_outputs[extractor_levels[block_num - 1]]
|
221
221
|
y = _resnet.get_layer(
|
222
|
-
f"stack{block_num}_block{num_blocks[block_num]-1}_add"
|
222
|
+
f"stack{block_num}_block{num_blocks[block_num] - 1}_add"
|
223
223
|
).output
|
224
224
|
return keras.models.Model(
|
225
225
|
inputs=x,
|
@@ -88,13 +88,13 @@ class SpatialPyramidPooling(keras.layers.Layer):
|
|
88
88
|
dilation_rate=dilation_rate,
|
89
89
|
use_bias=False,
|
90
90
|
data_format=self.data_format,
|
91
|
-
name=f"aspp_conv_{i+2}",
|
91
|
+
name=f"aspp_conv_{i + 2}",
|
92
92
|
),
|
93
93
|
keras.layers.BatchNormalization(
|
94
|
-
axis=self.channel_axis, name=f"aspp_bn_{i+2}"
|
94
|
+
axis=self.channel_axis, name=f"aspp_bn_{i + 2}"
|
95
95
|
),
|
96
96
|
keras.layers.Activation(
|
97
|
-
self.activation, name=f"aspp_activation_{i+2}"
|
97
|
+
self.activation, name=f"aspp_activation_{i + 2}"
|
98
98
|
),
|
99
99
|
]
|
100
100
|
)
|
@@ -81,14 +81,14 @@ class DenseNetBackbone(FeaturePyramidBackbone):
|
|
81
81
|
channel_axis,
|
82
82
|
stackwise_num_repeats[stack_index],
|
83
83
|
growth_rate,
|
84
|
-
name=f"stack{stack_index+1}",
|
84
|
+
name=f"stack{stack_index + 1}",
|
85
85
|
)
|
86
86
|
pyramid_outputs[f"P{index}"] = x
|
87
87
|
x = apply_transition_block(
|
88
88
|
x,
|
89
89
|
channel_axis,
|
90
90
|
compression_ratio,
|
91
|
-
name=f"transition{stack_index+1}",
|
91
|
+
name=f"transition{stack_index + 1}",
|
92
92
|
)
|
93
93
|
|
94
94
|
x = apply_dense_block(
|
@@ -140,7 +140,7 @@ def apply_dense_block(x, channel_axis, num_repeats, growth_rate, name=None):
|
|
140
140
|
|
141
141
|
for i in range(num_repeats):
|
142
142
|
x = apply_conv_block(
|
143
|
-
x, channel_axis, growth_rate, name=f"{name}_block{i+1}"
|
143
|
+
x, channel_axis, growth_rate, name=f"{name}_block{i + 1}"
|
144
144
|
)
|
145
145
|
return x
|
146
146
|
|
@@ -81,7 +81,7 @@ class FluxTextToImage(TextToImage):
|
|
81
81
|
|
82
82
|
def fit(self, *args, **kwargs):
|
83
83
|
raise NotImplementedError(
|
84
|
-
"Currently, `fit` is not supported for
|
84
|
+
"Currently, `fit` is not supported for `FluxTextToImage`."
|
85
85
|
)
|
86
86
|
|
87
87
|
def generate_step(
|
@@ -5,7 +5,7 @@ backbone_presets = {
|
|
5
5
|
"pali_gemma_3b_mix_224": {
|
6
6
|
"metadata": {
|
7
7
|
"description": (
|
8
|
-
"image size 224, mix fine tuned, text sequence
|
8
|
+
"image size 224, mix fine tuned, text sequence length is 256"
|
9
9
|
),
|
10
10
|
"params": 2923335408,
|
11
11
|
"path": "pali_gemma",
|
@@ -45,7 +45,7 @@ backbone_presets = {
|
|
45
45
|
"pali_gemma_3b_896": {
|
46
46
|
"metadata": {
|
47
47
|
"description": (
|
48
|
-
"image size 896, pre trained, text sequence length
|
48
|
+
"image size 896, pre trained, text sequence length is 512"
|
49
49
|
),
|
50
50
|
"params": 2927759088,
|
51
51
|
"path": "pali_gemma",
|
@@ -209,9 +209,9 @@ class FeaturePyramid(keras.layers.Layer):
|
|
209
209
|
)
|
210
210
|
if i == backbone_max_level + 1 and self.use_p5:
|
211
211
|
self.output_conv_layers[level].build(
|
212
|
-
(None, None, None, input_shapes[f"P{i-1}"][-1])
|
212
|
+
(None, None, None, input_shapes[f"P{i - 1}"][-1])
|
213
213
|
if self.data_format == "channels_last"
|
214
|
-
else (None, input_shapes[f"P{i-1}"][1], None, None)
|
214
|
+
else (None, input_shapes[f"P{i - 1}"][1], None, None)
|
215
215
|
)
|
216
216
|
else:
|
217
217
|
self.output_conv_layers[level].build(
|
@@ -277,7 +277,7 @@ class FeaturePyramid(keras.layers.Layer):
|
|
277
277
|
if i < backbone_max_level:
|
278
278
|
# for the top most output, it doesn't need to merge with any
|
279
279
|
# upper stream outputs
|
280
|
-
upstream_output = self.top_down_op(output_features[f"P{i+1}"])
|
280
|
+
upstream_output = self.top_down_op(output_features[f"P{i + 1}"])
|
281
281
|
output = self.merge_op([output, upstream_output])
|
282
282
|
output_features[level] = (
|
283
283
|
self.lateral_batch_norm_layers[level](output)
|
@@ -296,9 +296,9 @@ class FeaturePyramid(keras.layers.Layer):
|
|
296
296
|
for i in range(backbone_max_level + 1, self.max_level + 1):
|
297
297
|
level = f"P{i}"
|
298
298
|
feats_in = (
|
299
|
-
inputs[f"P{i-1}"]
|
299
|
+
inputs[f"P{i - 1}"]
|
300
300
|
if i == backbone_max_level + 1 and self.use_p5
|
301
|
-
else output_features[f"P{i-1}"]
|
301
|
+
else output_features[f"P{i - 1}"]
|
302
302
|
)
|
303
303
|
if i > backbone_max_level + 1:
|
304
304
|
feats_in = self.activation(feats_in)
|
@@ -82,8 +82,7 @@ class StableDiffusion3Inpaint(Inpaint):
|
|
82
82
|
|
83
83
|
def fit(self, *args, **kwargs):
|
84
84
|
raise NotImplementedError(
|
85
|
-
"Currently, `fit` is not supported for "
|
86
|
-
"`StableDiffusion3Inpaint`."
|
85
|
+
"Currently, `fit` is not supported for `StableDiffusion3Inpaint`."
|
87
86
|
)
|
88
87
|
|
89
88
|
def generate_step(
|
@@ -351,7 +351,7 @@ class ViTEncoder(keras.layers.Layer):
|
|
351
351
|
attention_dropout=self.attention_dropout,
|
352
352
|
layer_norm_epsilon=self.layer_norm_epsilon,
|
353
353
|
dtype=self.dtype_policy,
|
354
|
-
name=f"tranformer_block_{i+1}",
|
354
|
+
name=f"tranformer_block_{i + 1}",
|
355
355
|
)
|
356
356
|
encoder_block.build((None, None, self.hidden_dim))
|
357
357
|
self.encoder_layers.append(encoder_block)
|
@@ -150,8 +150,7 @@ class ByteTokenizer(tokenizer.Tokenizer):
|
|
150
150
|
):
|
151
151
|
if not is_int_dtype(dtype):
|
152
152
|
raise ValueError(
|
153
|
-
"Output dtype must be an integer type. "
|
154
|
-
f"Received: dtype={dtype}"
|
153
|
+
f"Output dtype must be an integer type. Received: dtype={dtype}"
|
155
154
|
)
|
156
155
|
|
157
156
|
# Check normalization_form.
|
@@ -1,5 +1,7 @@
|
|
1
1
|
import io
|
2
2
|
|
3
|
+
from keras_hub.src.utils.tensor_utils import assert_tf_libs_installed
|
4
|
+
|
3
5
|
try:
|
4
6
|
import sentencepiece as spm
|
5
7
|
import tensorflow as tf
|
@@ -77,6 +79,7 @@ def compute_sentence_piece_proto(
|
|
77
79
|
tf.Tensor([ 4 8 12 5 9 14 5 6 13 4 7 10 11 6 13],
|
78
80
|
shape=(15,), dtype=int32)
|
79
81
|
"""
|
82
|
+
assert_tf_libs_installed("compute_sentence_piece_proto")
|
80
83
|
|
81
84
|
if spm is None:
|
82
85
|
raise ImportError(
|
@@ -203,8 +203,7 @@ class UnicodeCodepointTokenizer(tokenizer.Tokenizer):
|
|
203
203
|
) -> None:
|
204
204
|
if not is_int_dtype(dtype):
|
205
205
|
raise ValueError(
|
206
|
-
"Output dtype must be an integer type. "
|
207
|
-
f"Received: dtype={dtype}"
|
206
|
+
f"Output dtype must be an integer type. Received: dtype={dtype}"
|
208
207
|
)
|
209
208
|
|
210
209
|
# Check normalization_form.
|
@@ -1,5 +1,6 @@
|
|
1
1
|
from keras_hub.src.api_export import keras_hub_export
|
2
2
|
from keras_hub.src.tokenizers.word_piece_tokenizer import pretokenize
|
3
|
+
from keras_hub.src.utils.tensor_utils import assert_tf_libs_installed
|
3
4
|
|
4
5
|
try:
|
5
6
|
import tensorflow as tf
|
@@ -117,6 +118,8 @@ def compute_word_piece_vocabulary(
|
|
117
118
|
inputs.map(tokenizer.tokenize)
|
118
119
|
```
|
119
120
|
""" # noqa: E501
|
121
|
+
assert_tf_libs_installed("compute_word_piece_vocabulary")
|
122
|
+
|
120
123
|
# Read data files.
|
121
124
|
if not isinstance(data, (list, tf.data.Dataset)):
|
122
125
|
raise ValueError(
|
@@ -59,9 +59,11 @@ def convert_weights(backbone, loader, timm_config):
|
|
59
59
|
num_stacks = len(backbone.stackwise_num_repeats)
|
60
60
|
for stack_index in range(num_stacks):
|
61
61
|
for block_idx in range(backbone.stackwise_num_repeats[stack_index]):
|
62
|
-
keras_name = f"stack{stack_index+1}_block{block_idx+1}"
|
62
|
+
keras_name = f"stack{stack_index + 1}_block{block_idx + 1}"
|
63
63
|
hf_name = (
|
64
|
-
|
64
|
+
"features."
|
65
|
+
f"denseblock{stack_index + 1}"
|
66
|
+
f".denselayer{block_idx + 1}"
|
65
67
|
)
|
66
68
|
port_batch_normalization(f"{keras_name}_1_bn", f"{hf_name}.norm1")
|
67
69
|
port_conv2d(f"{keras_name}_1_conv", f"{hf_name}.conv1")
|
@@ -69,8 +71,8 @@ def convert_weights(backbone, loader, timm_config):
|
|
69
71
|
port_conv2d(f"{keras_name}_2_conv", f"{hf_name}.conv2")
|
70
72
|
|
71
73
|
for stack_index in range(num_stacks - 1):
|
72
|
-
keras_transition_name = f"transition{stack_index+1}"
|
73
|
-
hf_transition_name = f"features.transition{stack_index+1}"
|
74
|
+
keras_transition_name = f"transition{stack_index + 1}"
|
75
|
+
hf_transition_name = f"features.transition{stack_index + 1}"
|
74
76
|
port_batch_normalization(
|
75
77
|
f"{keras_transition_name}_bn", f"{hf_transition_name}.norm"
|
76
78
|
)
|
@@ -268,7 +268,7 @@ def convert_weights(backbone, loader, timm_config):
|
|
268
268
|
# 97 is the start of the lowercase alphabet.
|
269
269
|
letter_identifier = chr(block_idx + 97)
|
270
270
|
|
271
|
-
keras_block_prefix = f"block{stack_index+1}{letter_identifier}_"
|
271
|
+
keras_block_prefix = f"block{stack_index + 1}{letter_identifier}_"
|
272
272
|
hf_block_prefix = f"blocks.{stack_index}.{block_idx}."
|
273
273
|
|
274
274
|
if block_type == "v1":
|
@@ -89,7 +89,7 @@ def convert_weights(backbone, loader, timm_config):
|
|
89
89
|
for block_idx in range(backbone.stackwise_num_blocks[stack_index]):
|
90
90
|
if version == "v1":
|
91
91
|
keras_name = f"stack{stack_index}_block{block_idx}"
|
92
|
-
hf_name = f"layer{stack_index+1}.{block_idx}"
|
92
|
+
hf_name = f"layer{stack_index + 1}.{block_idx}"
|
93
93
|
else:
|
94
94
|
keras_name = f"stack{stack_index}_block{block_idx}"
|
95
95
|
hf_name = f"stages.{stack_index}.blocks.{block_idx}"
|
keras_hub/src/version_utils.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: keras-hub-nightly
|
3
|
-
Version: 0.19.0.
|
3
|
+
Version: 0.19.0.dev202501160344
|
4
4
|
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
5
|
Home-page: https://github.com/keras-team/keras-hub
|
6
6
|
Author: Keras team
|
@@ -9,7 +9,7 @@ keras_hub/api/tokenizers/__init__.py,sha256=mtJgQy1spfQnPAkeLoeinsT_W9iCWHlJXwzc
|
|
9
9
|
keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
|
10
10
|
keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
11
11
|
keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
|
12
|
-
keras_hub/src/version_utils.py,sha256=
|
12
|
+
keras_hub/src/version_utils.py,sha256=szWMXW2vOEuiJYF0A-c9f8yErtuu6-8ttsj5fdhY5us,222
|
13
13
|
keras_hub/src/bounding_box/__init__.py,sha256=7i6KnGupN4AVivR_dFjQyuuTbI0GkHy8d-aMXeqZdU8,95
|
14
14
|
keras_hub/src/bounding_box/converters.py,sha256=UUp1hwegpDZyIo8sh9TLNy1v6JjwmvwzL6wmHFMAtbk,21916
|
15
15
|
keras_hub/src/bounding_box/formats.py,sha256=YmskOz2BOSat7NaE__J9VfpSNGPJJR0znSzA4lp8MMI,3868
|
@@ -43,7 +43,7 @@ keras_hub/src/layers/preprocessing/random_deletion.py,sha256=x23nRo0ir2J4Ps42i9X
|
|
43
43
|
keras_hub/src/layers/preprocessing/random_swap.py,sha256=w2z7yNQsII5g4sEFi4GXfgxIc1S6UUt3a8YWZew_f4U,9504
|
44
44
|
keras_hub/src/layers/preprocessing/start_end_packer.py,sha256=lY2K937z6JucxNe7VknynhhjrcUfFigU6mqIdv2gS-Y,7973
|
45
45
|
keras_hub/src/metrics/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
46
|
-
keras_hub/src/metrics/bleu.py,sha256=
|
46
|
+
keras_hub/src/metrics/bleu.py,sha256=pnid5azpAxO6vKEfUtAby3nH29OGbwYKgVGOGeoaA3I,13694
|
47
47
|
keras_hub/src/metrics/edit_distance.py,sha256=kjhe8uNjvv8aN49RyrKAbNi7a8_OlB8fMza0J_CfNQg,6353
|
48
48
|
keras_hub/src/metrics/perplexity.py,sha256=dDUQcfE5JbAruG3spEkgue6IjHcynqgmGpJAqWg22Tw,6139
|
49
49
|
keras_hub/src/metrics/rouge_base.py,sha256=Pt2DUznhTTeR-fX1nQ_wSbPtmuTgxQTvrGpu8LRVapE,6264
|
@@ -87,7 +87,7 @@ keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py,sha256=3_e-ULIcm_3DK
|
|
87
87
|
keras_hub/src/models/bart/bart_tokenizer.py,sha256=Q7IXmIwXzhPSN427oQRyF9ufoExQGS184Yo_4boaOZo,2811
|
88
88
|
keras_hub/src/models/basnet/__init__.py,sha256=4N6XvIUYYJl5xtoaL3_9fawUX_qP3WmTYNEEU7tn8Gw,253
|
89
89
|
keras_hub/src/models/basnet/basnet.py,sha256=JA58Q9lmygdSOm5MUaPAlaL6B8XnmqCcRaGrk9c8P3Q,4287
|
90
|
-
keras_hub/src/models/basnet/basnet_backbone.py,sha256=
|
90
|
+
keras_hub/src/models/basnet/basnet_backbone.py,sha256=P-jogkYIu9j7_28fl2RFQRMl87BXz1wcY_LtIrxBy1E,13505
|
91
91
|
keras_hub/src/models/basnet/basnet_image_converter.py,sha256=DwzAwtZeggYw_qyRQ-Abnnm885Wobv3wClxRzOTscI0,342
|
92
92
|
keras_hub/src/models/basnet/basnet_preprocessor.py,sha256=uM504utaXODSqR5zpKnopRuaV_l84zCg06RkNoNSKIs,510
|
93
93
|
keras_hub/src/models/basnet/basnet_presets.py,sha256=z6tR2q_EvYnUmGfsWIWYfmR_8gvWYPH3QmtpAu_T8f8,63
|
@@ -135,11 +135,11 @@ keras_hub/src/models/deeplab_v3/__init__.py,sha256=FHAUPM4a1DJj4EsNTbYEd1riNq__u
|
|
135
135
|
keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py,sha256=dH7HHu_NAnE-HP6ivOL7fFLQZHt_MWmehlMccLljhPc,7764
|
136
136
|
keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py,sha256=mRkH3HdhpV0fCcQcVXEvIX7SNk-bAMb3SAHzgK-FD5c,371
|
137
137
|
keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py,sha256=hR9S6lNYamY0EBDBo3e1qTCiwtftmLXrN-UYuzfw5Io,581
|
138
|
-
keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py,sha256=
|
138
|
+
keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py,sha256=mz9nG55gdXSTDE96AXgeTCwUFB95DIpTuqrvWIt5Lco,7840
|
139
139
|
keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py,sha256=ZKYY8A7mV2QvwXwjDUd9xAbVHo58-Hgj_IqNUbuyCIU,625
|
140
140
|
keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py,sha256=pubi30sPJKLOpz9fRQff2FZt_53KBvwf2uyaJ5YL7J8,3726
|
141
141
|
keras_hub/src/models/densenet/__init__.py,sha256=r7StyamnWeeZxOk9r4ZYNbS_YVhu9YGPyXhNxljvdPg,269
|
142
|
-
keras_hub/src/models/densenet/densenet_backbone.py,sha256=
|
142
|
+
keras_hub/src/models/densenet/densenet_backbone.py,sha256=f2nfsXyXQert2aYHq-L-JZtp8inq1fs1K47rzZQ9nTI,6744
|
143
143
|
keras_hub/src/models/densenet/densenet_image_classifier.py,sha256=ye-Ix3oU42pfsDoh-h1PG4di1kzldO0ZO7Nj304p_X4,544
|
144
144
|
keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py,sha256=xDZbTw_h6pjLDzf8QmbDyMnMsFzgh-dPX1ldg9kddhg,563
|
145
145
|
keras_hub/src/models/densenet/densenet_image_converter.py,sha256=DoxYlJVZ9uaabFhVjWOmzvhONoc8KNcQj2vQ6Z1AUpU,354
|
@@ -186,7 +186,7 @@ keras_hub/src/models/flux/flux_layers.py,sha256=wevcAEbayBD8bVm-21FBi2LQ13pZzB99
|
|
186
186
|
keras_hub/src/models/flux/flux_maths.py,sha256=2pnHW8HW7V2JZ8HIrUwE-UU4klpFQaOkoAvG5nWVfyY,7502
|
187
187
|
keras_hub/src/models/flux/flux_model.py,sha256=K92PyeFHIp8SwXuxhv__XCEaQ2wqSW1jOb97I4S24Rw,8991
|
188
188
|
keras_hub/src/models/flux/flux_presets.py,sha256=z7C_FbI1_F5YETXuWpc7Yh_0w-5N0eBQy6Oks_X9W88,54
|
189
|
-
keras_hub/src/models/flux/flux_text_to_image.py,sha256=
|
189
|
+
keras_hub/src/models/flux/flux_text_to_image.py,sha256=Rf5dD2EhG0bE8Gyg9sqaA8YEexS1kdraofIkxiZDjvc,4166
|
190
190
|
keras_hub/src/models/flux/flux_text_to_image_preprocessor.py,sha256=Fs9jr97QtmRUbRRz1kITpkuhDM2GoV3n0XSFC-qQA14,2252
|
191
191
|
keras_hub/src/models/gemma/__init__.py,sha256=rVzOJMJ39bgVlT8UdC0t8PlN2c237GKTBmfHIsbPuOQ,251
|
192
192
|
keras_hub/src/models/gemma/gemma_attention.py,sha256=1CVN5z9GKoU8TuNMih2_MweDkpd98xSqdic9F8xIBE8,8317
|
@@ -257,7 +257,7 @@ keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py,sha256=AViEs6YltUqWnIVo7
|
|
257
257
|
keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py,sha256=F57y0fZ0wYYxfGIjfrJc1W9uQpViYFx5bvFjj5CqUbI,4814
|
258
258
|
keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py,sha256=24ABQ1vGlppV-KfWh0YqJjzM_Lu2GIwvyJ4X2XXie_A,5616
|
259
259
|
keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=5yM_jUtrFsWIieiwfFBoP7mtPmQAwywkeLKbd7fhmzk,371
|
260
|
-
keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=
|
260
|
+
keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=Ka1ChUUSKw-yY2th3QtmNtkeXt0krYfwhkHrScioMls,8979
|
261
261
|
keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=ljTiADHo0Ok88q-jVzwJIle2C8xcxnudLTsBLzIySaM,2415
|
262
262
|
keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=ViPKfGksbxBGJ3iS3M_KWxRc8Ie4LF7rWWUKDiqECJE,18285
|
263
263
|
keras_hub/src/models/phi3/__init__.py,sha256=zIbf1MU-ks91mEkjTRJAsk51N3BBnXDF2JM1vO-13PQ,245
|
@@ -271,7 +271,7 @@ keras_hub/src/models/phi3/phi3_presets.py,sha256=sb2ce7Gq1OikFEf2KIYG69rFKHYKj8q
|
|
271
271
|
keras_hub/src/models/phi3/phi3_rotary_embedding.py,sha256=wqiRn8nETNcLc5Vsm_d_8s11Ro6ibWZbWvODdLqIOo4,5013
|
272
272
|
keras_hub/src/models/phi3/phi3_tokenizer.py,sha256=bOPH14wTVVHJHq8mgzXLjsgvKMNhfO8eayevAPpjYVA,1992
|
273
273
|
keras_hub/src/models/resnet/__init__.py,sha256=C5UqlQ6apm8WSp1bnrxB6Bi3BGaknxRQs-r3b2wpaGA,257
|
274
|
-
keras_hub/src/models/resnet/resnet_backbone.py,sha256=
|
274
|
+
keras_hub/src/models/resnet/resnet_backbone.py,sha256=Q7nlqcTXZzjqd0e-DsjHC4ok58yOX7qxseotym3uZpM,31276
|
275
275
|
keras_hub/src/models/resnet/resnet_image_classifier.py,sha256=nf35EKDzvBkfhHsK-s6Ks0nbhvKO7HEOYZm94YckyWE,510
|
276
276
|
keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py,sha256=fM7gyQ0qB-RRuI4USJkRD6q9-HVfuC71e-BLTo-UhHQ,543
|
277
277
|
keras_hub/src/models/resnet/resnet_image_converter.py,sha256=fgTxihJznGFss-y3Z-jp0JE3X1gaaB2y-f2KMwrT8Pk,342
|
@@ -279,7 +279,7 @@ keras_hub/src/models/resnet/resnet_presets.py,sha256=cryfXlC_FSEN_jrexKIh5aVbzp8
|
|
279
279
|
keras_hub/src/models/retinanet/__init__.py,sha256=veWIFvMN6151M69l7FvTcI-IIEe_8dLmNO5NLOszQ1c,275
|
280
280
|
keras_hub/src/models/retinanet/anchor_generator.py,sha256=0OgKSW3OKmbc0cOPHF6FYTAzn7fcHklg665PGSwAaDM,6504
|
281
281
|
keras_hub/src/models/retinanet/box_matcher.py,sha256=l820r1R-ByqiyVgmZ0YFjjz0njchDda-wItzLn1X84o,10834
|
282
|
-
keras_hub/src/models/retinanet/feature_pyramid.py,sha256=
|
282
|
+
keras_hub/src/models/retinanet/feature_pyramid.py,sha256=hbdrj6X-D2SlwOp2h1WcBlTdSAlLmFK43X7OrkJRoMA,17614
|
283
283
|
keras_hub/src/models/retinanet/non_max_supression.py,sha256=PMOLlRw-EnyEmhlUhJjEbHf1xXiplN95pUxQbiJQbN4,20996
|
284
284
|
keras_hub/src/models/retinanet/prediction_head.py,sha256=xWHt21-SS2t7vCmTONlR1lSbJXhml5jx68V8MGbGybg,7863
|
285
285
|
keras_hub/src/models/retinanet/retinanet_backbone.py,sha256=BJBPJLxpOCOU0Br7b4JsgCZBHQHLAhxLqo9BHNIsl1g,5659
|
@@ -317,7 +317,7 @@ keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py,s
|
|
317
317
|
keras_hub/src/models/stable_diffusion_3/mmdit.py,sha256=0gq2tcIqcbiGKKDDj3vrRsF67U3qE9g706XPs2BfCOY,40979
|
318
318
|
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py,sha256=w8lsMampk34M9xQi96mEnXmkaKQqFQtoFTW8zP7ilEA,24078
|
319
319
|
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py,sha256=oQcVCWOwrdUTrr_JNekoMqdSlKYMGz5tG6v8uD25lTc,5479
|
320
|
-
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py,sha256=
|
320
|
+
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py,sha256=t4uw920Jn1k80air3WRGimKf71aMVu6q73oWFH348vk,6384
|
321
321
|
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py,sha256=x7Ez4L955MJE4ABtBy-63YpU9XpR0Ro8QWPzYYJs1yE,2167
|
322
322
|
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py,sha256=Yt-UIatVKANjjKFCFEj1rIHhOrt8hqefKKQJIAWcTLc,4567
|
323
323
|
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py,sha256=m5PdVSgTcYuqd7jOQ8wD4PAnMa7wY2WdhwpK3hdydhM,2756
|
@@ -344,7 +344,7 @@ keras_hub/src/models/vit/vit_backbone.py,sha256=kGmRZO4u-1q4PBcbhJbiWVIEVYAcp2H4
|
|
344
344
|
keras_hub/src/models/vit/vit_image_classifier.py,sha256=lMVxiD1_6drx7XQ7P7YzlqnFP7kT1zlMe84f-T3SDQI,6332
|
345
345
|
keras_hub/src/models/vit/vit_image_classifier_preprocessor.py,sha256=wu6YcBlXMWB9sKCPvmNdGBZKTLQt_HyHWS6P9nyDwsk,504
|
346
346
|
keras_hub/src/models/vit/vit_image_converter.py,sha256=5xVF04BzMcdTDc6aErAYj3_BuGmVd3zoJMcH1ho4T0g,2561
|
347
|
-
keras_hub/src/models/vit/vit_layers.py,sha256=
|
347
|
+
keras_hub/src/models/vit/vit_layers.py,sha256=Zsz-ARPY49S1nXLUtpFwtPfw31D-vCtKesEo_2JIKPA,13240
|
348
348
|
keras_hub/src/models/vit/vit_presets.py,sha256=zZhxUleOom1ie3gn0Mi-_xhhdFEEsnqSQyKADV2L38k,4479
|
349
349
|
keras_hub/src/models/vit_det/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
350
350
|
keras_hub/src/models/vit_det/vit_det_backbone.py,sha256=DOZ5J7c1t5PAZ6y0pMmBoQTMOUup7UoUrYVfCs69ltY,7697
|
@@ -383,13 +383,13 @@ keras_hub/src/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSu
|
|
383
383
|
keras_hub/src/tests/test_case.py,sha256=oGWoUhlKgjVMNIjvUVnQR-k5iKvodztHsFMOs669Trw,27402
|
384
384
|
keras_hub/src/tokenizers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
385
385
|
keras_hub/src/tokenizers/byte_pair_tokenizer.py,sha256=WeUlHMAf5y_MUjFIfVhEcFoOZu-z4kkSj-Dq-pegM9w,24052
|
386
|
-
keras_hub/src/tokenizers/byte_tokenizer.py,sha256=
|
386
|
+
keras_hub/src/tokenizers/byte_tokenizer.py,sha256=GPIKaddXugbfckfhodADsBpaYb72DgFMs_xfXHnK4qU,10418
|
387
387
|
keras_hub/src/tokenizers/sentence_piece_tokenizer.py,sha256=nOqkpa2nHitITpdowPHdwxiN87e8huLW8Dt2gozVnhI,9350
|
388
|
-
keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py,sha256=
|
388
|
+
keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py,sha256=caqgV9N4lH97zBviFPdpwo_O95AaJBEJLQv6Icq3Hs8,4774
|
389
389
|
keras_hub/src/tokenizers/tokenizer.py,sha256=v0Ka5ayrBwpsGBlkIadXK-b4RsMTbhV6BZrvKullbxY,9722
|
390
|
-
keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py,sha256=
|
390
|
+
keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py,sha256=hRv_XxoPIPDpHfO0ZttSOv_M89sMaFpvmllojvKz_ac,13553
|
391
391
|
keras_hub/src/tokenizers/word_piece_tokenizer.py,sha256=vP6AZgbzsRiuPCt3W_n94nsF7XiERnagWcH_rqJHtVU,19943
|
392
|
-
keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=
|
392
|
+
keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=cylrs02ZrYQ1TuZr9oyS3NrVbDwGctA3VXbIh1pFJMQ,6743
|
393
393
|
keras_hub/src/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
394
394
|
keras_hub/src/utils/keras_utils.py,sha256=0yKIfFuO_IqAH8vHbG3ncRmCVKg__xRGfQtLYWZ8YuA,1695
|
395
395
|
keras_hub/src/utils/pipeline_model.py,sha256=jgzB6NQPSl0KOu08N-TazfOnXnUJbZjH2EXXhx25Ftg,9084
|
@@ -399,9 +399,9 @@ keras_hub/src/utils/tensor_utils.py,sha256=YVJesN91bk-OzJXY1mOKBppuY8noBU7zhPQNX
|
|
399
399
|
keras_hub/src/utils/imagenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
400
400
|
keras_hub/src/utils/imagenet/imagenet_utils.py,sha256=MvIvv1WJo51ZXBxy4S7t_DsN3ZMtJWlC4cmRvKM2kIA,39304
|
401
401
|
keras_hub/src/utils/timm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
402
|
-
keras_hub/src/utils/timm/convert_densenet.py,sha256=
|
403
|
-
keras_hub/src/utils/timm/convert_efficientnet.py,sha256=
|
404
|
-
keras_hub/src/utils/timm/convert_resnet.py,sha256=
|
402
|
+
keras_hub/src/utils/timm/convert_densenet.py,sha256=fu8HBIQis5o3ib2tyI2qnmYScVrVIQySok8vTfa1qJ8,3393
|
403
|
+
keras_hub/src/utils/timm/convert_efficientnet.py,sha256=SgEIlyyinS04qoQpEgh3WazHq544zNUCCpfmWh3EjSs,17100
|
404
|
+
keras_hub/src/utils/timm/convert_resnet.py,sha256=8JFkVtdpy5z9h83LJ97rD-a8FRejXPZvMNksNuStqjM,5834
|
405
405
|
keras_hub/src/utils/timm/convert_vgg.py,sha256=MT5jGnLrzenPpe66Af_Lp1IdR9KGtsSrcmn6_UPqHvQ,2419
|
406
406
|
keras_hub/src/utils/timm/preset_loader.py,sha256=cdZDjthZdTD2myMOenQar4ACyi7VTuIzNRg24LuqS-4,3374
|
407
407
|
keras_hub/src/utils/transformers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -417,7 +417,7 @@ keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYum
|
|
417
417
|
keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
|
418
418
|
keras_hub/src/utils/transformers/preset_loader.py,sha256=DgGJXbTSB9Na8FIR-YWWVqQPOFxHwWrGm41EwcS_EFs,3797
|
419
419
|
keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
|
420
|
-
keras_hub_nightly-0.19.0.
|
421
|
-
keras_hub_nightly-0.19.0.
|
422
|
-
keras_hub_nightly-0.19.0.
|
423
|
-
keras_hub_nightly-0.19.0.
|
420
|
+
keras_hub_nightly-0.19.0.dev202501160344.dist-info/METADATA,sha256=TlKC0GhCaLnhV3c8xXrQNs70o_JHsrj3MWxTFrzYg5Q,7498
|
421
|
+
keras_hub_nightly-0.19.0.dev202501160344.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
422
|
+
keras_hub_nightly-0.19.0.dev202501160344.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
423
|
+
keras_hub_nightly-0.19.0.dev202501160344.dist-info/RECORD,,
|
File without changes
|