keras-hub-nightly 0.19.0.dev202412230348__py3-none-any.whl → 0.19.0.dev202412240347__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (43) hide show
  1. keras_hub/src/layers/modeling/reversible_embedding.py +3 -16
  2. keras_hub/src/models/albert/albert_presets.py +4 -4
  3. keras_hub/src/models/backbone.py +0 -5
  4. keras_hub/src/models/bart/bart_presets.py +3 -3
  5. keras_hub/src/models/bert/bert_presets.py +10 -10
  6. keras_hub/src/models/bloom/bloom_presets.py +8 -8
  7. keras_hub/src/models/clip/clip_presets.py +8 -8
  8. keras_hub/src/models/deberta_v3/deberta_v3_presets.py +5 -5
  9. keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +1 -1
  10. keras_hub/src/models/densenet/densenet_presets.py +3 -3
  11. keras_hub/src/models/distil_bert/distil_bert_presets.py +3 -3
  12. keras_hub/src/models/efficientnet/efficientnet_backbone.py +10 -6
  13. keras_hub/src/models/efficientnet/efficientnet_presets.py +16 -16
  14. keras_hub/src/models/electra/electra_presets.py +6 -6
  15. keras_hub/src/models/f_net/f_net_presets.py +2 -2
  16. keras_hub/src/models/falcon/falcon_presets.py +1 -1
  17. keras_hub/src/models/gemma/gemma_presets.py +20 -20
  18. keras_hub/src/models/gpt2/gpt2_presets.py +5 -5
  19. keras_hub/src/models/llama/llama_presets.py +5 -5
  20. keras_hub/src/models/llama3/llama3_presets.py +4 -4
  21. keras_hub/src/models/mistral/mistral_presets.py +3 -3
  22. keras_hub/src/models/mit/mit_presets.py +12 -12
  23. keras_hub/src/models/opt/opt_presets.py +4 -4
  24. keras_hub/src/models/pali_gemma/pali_gemma_presets.py +16 -16
  25. keras_hub/src/models/phi3/phi3_presets.py +2 -2
  26. keras_hub/src/models/resnet/resnet_presets.py +16 -16
  27. keras_hub/src/models/retinanet/retinanet_presets.py +1 -1
  28. keras_hub/src/models/roberta/roberta_presets.py +2 -2
  29. keras_hub/src/models/sam/sam_presets.py +3 -3
  30. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +3 -3
  31. keras_hub/src/models/t5/t5_presets.py +11 -11
  32. keras_hub/src/models/vgg/vgg_presets.py +4 -4
  33. keras_hub/src/models/vit/vit_presets.py +4 -4
  34. keras_hub/src/models/whisper/whisper_presets.py +10 -10
  35. keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +2 -2
  36. keras_hub/src/tests/test_case.py +1 -2
  37. keras_hub/src/utils/keras_utils.py +2 -13
  38. keras_hub/src/utils/preset_utils.py +34 -45
  39. keras_hub/src/version_utils.py +1 -1
  40. {keras_hub_nightly-0.19.0.dev202412230348.dist-info → keras_hub_nightly-0.19.0.dev202412240347.dist-info}/METADATA +3 -2
  41. {keras_hub_nightly-0.19.0.dev202412230348.dist-info → keras_hub_nightly-0.19.0.dev202412240347.dist-info}/RECORD +43 -43
  42. {keras_hub_nightly-0.19.0.dev202412230348.dist-info → keras_hub_nightly-0.19.0.dev202412240347.dist-info}/WHEEL +0 -0
  43. {keras_hub_nightly-0.19.0.dev202412230348.dist-info → keras_hub_nightly-0.19.0.dev202412240347.dist-info}/top_level.txt +0 -0
@@ -1,9 +1,7 @@
1
1
  import keras
2
2
  from keras import ops
3
- from packaging.version import parse
4
3
 
5
4
  from keras_hub.src.api_export import keras_hub_export
6
- from keras_hub.src.utils.keras_utils import assert_quantization_support
7
5
 
8
6
 
9
7
  @keras_hub_export("keras_hub.layers.ReversibleEmbedding")
@@ -145,10 +143,6 @@ class ReversibleEmbedding(keras.layers.Embedding):
145
143
  if not self.built:
146
144
  return
147
145
  super().save_own_variables(store)
148
- # Before Keras 3.2, the reverse weight is saved in the super() call.
149
- # After Keras 3.2, the reverse weight must be saved manually.
150
- if parse(keras.version()) < parse("3.2.0"):
151
- return
152
146
  target_variables = []
153
147
  if not self.tie_weights:
154
148
  # Store the reverse embedding weights as the last weights.
@@ -239,9 +233,7 @@ class ReversibleEmbedding(keras.layers.Embedding):
239
233
 
240
234
  def quantize(self, mode, type_check=True):
241
235
  import gc
242
- import inspect
243
236
 
244
- assert_quantization_support()
245
237
  if type_check and type(self) is not ReversibleEmbedding:
246
238
  raise NotImplementedError(
247
239
  f"Layer {self.__class__.__name__} does not have a `quantize()` "
@@ -250,14 +242,9 @@ class ReversibleEmbedding(keras.layers.Embedding):
250
242
  self._check_quantize_args(mode, self.compute_dtype)
251
243
 
252
244
  def abs_max_quantize(inputs, axis):
253
- sig = inspect.signature(keras.quantizers.abs_max_quantize)
254
- if "to_numpy" in sig.parameters:
255
- return keras.quantizers.abs_max_quantize(
256
- inputs, axis=axis, to_numpy=True
257
- )
258
- else:
259
- # `keras<=3.4.1` doesn't support `to_numpy`
260
- return keras.quantizers.abs_max_quantize(inputs, axis=axis)
245
+ return keras.quantizers.abs_max_quantize(
246
+ inputs, axis=axis, to_numpy=True
247
+ )
261
248
 
262
249
  self._tracker.unlock()
263
250
  if mode == "int8":
@@ -10,7 +10,7 @@ backbone_presets = {
10
10
  "params": 11683584,
11
11
  "path": "albert",
12
12
  },
13
- "kaggle_handle": "kaggle://keras/albert/keras/albert_base_en_uncased/2",
13
+ "kaggle_handle": "kaggle://keras/albert/keras/albert_base_en_uncased/5",
14
14
  },
15
15
  "albert_large_en_uncased": {
16
16
  "metadata": {
@@ -21,7 +21,7 @@ backbone_presets = {
21
21
  "params": 17683968,
22
22
  "path": "albert",
23
23
  },
24
- "kaggle_handle": "kaggle://keras/albert/keras/albert_large_en_uncased/2",
24
+ "kaggle_handle": "kaggle://keras/albert/keras/albert_large_en_uncased/3",
25
25
  },
26
26
  "albert_extra_large_en_uncased": {
27
27
  "metadata": {
@@ -32,7 +32,7 @@ backbone_presets = {
32
32
  "params": 58724864,
33
33
  "path": "albert",
34
34
  },
35
- "kaggle_handle": "kaggle://keras/albert/keras/albert_extra_large_en_uncased/2",
35
+ "kaggle_handle": "kaggle://keras/albert/keras/albert_extra_large_en_uncased/3",
36
36
  },
37
37
  "albert_extra_extra_large_en_uncased": {
38
38
  "metadata": {
@@ -43,6 +43,6 @@ backbone_presets = {
43
43
  "params": 222595584,
44
44
  "path": "albert",
45
45
  },
46
- "kaggle_handle": "kaggle://keras/albert/keras/albert_extra_extra_large_en_uncased/2",
46
+ "kaggle_handle": "kaggle://keras/albert/keras/albert_extra_extra_large_en_uncased/3",
47
47
  },
48
48
  }
@@ -1,7 +1,6 @@
1
1
  import keras
2
2
 
3
3
  from keras_hub.src.api_export import keras_hub_export
4
- from keras_hub.src.utils.keras_utils import assert_quantization_support
5
4
  from keras_hub.src.utils.preset_utils import builtin_presets
6
5
  from keras_hub.src.utils.preset_utils import get_preset_loader
7
6
  from keras_hub.src.utils.preset_utils import get_preset_saver
@@ -83,10 +82,6 @@ class Backbone(keras.Model):
83
82
  def token_embedding(self, value):
84
83
  self._token_embedding = value
85
84
 
86
- def quantize(self, mode, **kwargs):
87
- assert_quantization_support()
88
- return super().quantize(mode, **kwargs)
89
-
90
85
  def get_config(self):
91
86
  # Don't chain to super here. `get_config()` for functional models is
92
87
  # a nested layer config and cannot be passed to Backbone constructors.
@@ -10,7 +10,7 @@ backbone_presets = {
10
10
  "params": 139417344,
11
11
  "path": "bart",
12
12
  },
13
- "kaggle_handle": "kaggle://keras/bart/keras/bart_base_en/2",
13
+ "kaggle_handle": "kaggle://keras/bart/keras/bart_base_en/3",
14
14
  },
15
15
  "bart_large_en": {
16
16
  "metadata": {
@@ -30,7 +30,7 @@ backbone_presets = {
30
30
  "dropout": 0.1,
31
31
  "max_sequence_length": 1024,
32
32
  },
33
- "kaggle_handle": "kaggle://keras/bart/keras/bart_large_en/2",
33
+ "kaggle_handle": "kaggle://keras/bart/keras/bart_large_en/3",
34
34
  },
35
35
  "bart_large_en_cnn": {
36
36
  "metadata": {
@@ -50,6 +50,6 @@ backbone_presets = {
50
50
  "dropout": 0.1,
51
51
  "max_sequence_length": 1024,
52
52
  },
53
- "kaggle_handle": "kaggle://keras/bart/keras/bart_large_en_cnn/2",
53
+ "kaggle_handle": "kaggle://keras/bart/keras/bart_large_en_cnn/3",
54
54
  },
55
55
  }
@@ -10,7 +10,7 @@ backbone_presets = {
10
10
  "params": 4385920,
11
11
  "path": "bert",
12
12
  },
13
- "kaggle_handle": "kaggle://keras/bert/keras/bert_tiny_en_uncased/2",
13
+ "kaggle_handle": "kaggle://keras/bert/keras/bert_tiny_en_uncased/3",
14
14
  },
15
15
  "bert_small_en_uncased": {
16
16
  "metadata": {
@@ -21,7 +21,7 @@ backbone_presets = {
21
21
  "params": 28763648,
22
22
  "path": "bert",
23
23
  },
24
- "kaggle_handle": "kaggle://keras/bert/keras/bert_small_en_uncased/2",
24
+ "kaggle_handle": "kaggle://keras/bert/keras/bert_small_en_uncased/3",
25
25
  },
26
26
  "bert_medium_en_uncased": {
27
27
  "metadata": {
@@ -32,7 +32,7 @@ backbone_presets = {
32
32
  "params": 41373184,
33
33
  "path": "bert",
34
34
  },
35
- "kaggle_handle": "kaggle://keras/bert/keras/bert_medium_en_uncased/2",
35
+ "kaggle_handle": "kaggle://keras/bert/keras/bert_medium_en_uncased/3",
36
36
  },
37
37
  "bert_base_en_uncased": {
38
38
  "metadata": {
@@ -43,7 +43,7 @@ backbone_presets = {
43
43
  "params": 109482240,
44
44
  "path": "bert",
45
45
  },
46
- "kaggle_handle": "kaggle://keras/bert/keras/bert_base_en_uncased/2",
46
+ "kaggle_handle": "kaggle://keras/bert/keras/bert_base_en_uncased/3",
47
47
  },
48
48
  "bert_base_en": {
49
49
  "metadata": {
@@ -54,7 +54,7 @@ backbone_presets = {
54
54
  "params": 108310272,
55
55
  "path": "bert",
56
56
  },
57
- "kaggle_handle": "kaggle://keras/bert/keras/bert_base_en/2",
57
+ "kaggle_handle": "kaggle://keras/bert/keras/bert_base_en/3",
58
58
  },
59
59
  "bert_base_zh": {
60
60
  "metadata": {
@@ -64,7 +64,7 @@ backbone_presets = {
64
64
  "params": 102267648,
65
65
  "path": "bert",
66
66
  },
67
- "kaggle_handle": "kaggle://keras/bert/keras/bert_base_zh/2",
67
+ "kaggle_handle": "kaggle://keras/bert/keras/bert_base_zh/3",
68
68
  },
69
69
  "bert_base_multi": {
70
70
  "metadata": {
@@ -75,7 +75,7 @@ backbone_presets = {
75
75
  "params": 177853440,
76
76
  "path": "bert",
77
77
  },
78
- "kaggle_handle": "kaggle://keras/bert/keras/bert_base_multi/2",
78
+ "kaggle_handle": "kaggle://keras/bert/keras/bert_base_multi/3",
79
79
  },
80
80
  "bert_large_en_uncased": {
81
81
  "metadata": {
@@ -86,7 +86,7 @@ backbone_presets = {
86
86
  "params": 335141888,
87
87
  "path": "bert",
88
88
  },
89
- "kaggle_handle": "kaggle://keras/bert/keras/bert_large_en_uncased/2",
89
+ "kaggle_handle": "kaggle://keras/bert/keras/bert_large_en_uncased/3",
90
90
  },
91
91
  "bert_large_en": {
92
92
  "metadata": {
@@ -97,7 +97,7 @@ backbone_presets = {
97
97
  "params": 333579264,
98
98
  "path": "bert",
99
99
  },
100
- "kaggle_handle": "kaggle://keras/bert/keras/bert_large_en/2",
100
+ "kaggle_handle": "kaggle://keras/bert/keras/bert_large_en/3",
101
101
  },
102
102
  "bert_tiny_en_uncased_sst2": {
103
103
  "metadata": {
@@ -108,6 +108,6 @@ backbone_presets = {
108
108
  "params": 4385920,
109
109
  "path": "bert",
110
110
  },
111
- "kaggle_handle": "kaggle://keras/bert/keras/bert_tiny_en_uncased_sst2/4",
111
+ "kaggle_handle": "kaggle://keras/bert/keras/bert_tiny_en_uncased_sst2/5",
112
112
  },
113
113
  }
@@ -10,7 +10,7 @@ backbone_presets = {
10
10
  "params": 559214592,
11
11
  "path": "bloom",
12
12
  },
13
- "kaggle_handle": "kaggle://keras/bloom/keras/bloom_560m_multi/3",
13
+ "kaggle_handle": "kaggle://keras/bloom/keras/bloom_560m_multi/4",
14
14
  },
15
15
  "bloom_1.1b_multi": {
16
16
  "metadata": {
@@ -21,7 +21,7 @@ backbone_presets = {
21
21
  "params": 1065314304,
22
22
  "path": "bloom",
23
23
  },
24
- "kaggle_handle": "kaggle://keras/bloom/keras/bloom_1.1b_multi/1",
24
+ "kaggle_handle": "kaggle://keras/bloom/keras/bloom_1.1b_multi/2",
25
25
  },
26
26
  "bloom_1.7b_multi": {
27
27
  "metadata": {
@@ -32,7 +32,7 @@ backbone_presets = {
32
32
  "params": 1722408960,
33
33
  "path": "bloom",
34
34
  },
35
- "kaggle_handle": "kaggle://keras/bloom/keras/bloom_1.7b_multi/1",
35
+ "kaggle_handle": "kaggle://keras/bloom/keras/bloom_1.7b_multi/2",
36
36
  },
37
37
  "bloom_3b_multi": {
38
38
  "metadata": {
@@ -43,7 +43,7 @@ backbone_presets = {
43
43
  "params": 3002557440,
44
44
  "path": "bloom",
45
45
  },
46
- "kaggle_handle": "kaggle://keras/bloom/keras/bloom_3b_multi/1",
46
+ "kaggle_handle": "kaggle://keras/bloom/keras/bloom_3b_multi/2",
47
47
  },
48
48
  "bloomz_560m_multi": {
49
49
  "metadata": {
@@ -54,7 +54,7 @@ backbone_presets = {
54
54
  "params": 559214592,
55
55
  "path": "bloom",
56
56
  },
57
- "kaggle_handle": "kaggle://keras/bloom/keras/bloomz_560m_multi/1",
57
+ "kaggle_handle": "kaggle://keras/bloom/keras/bloomz_560m_multi/2",
58
58
  },
59
59
  "bloomz_1.1b_multi": {
60
60
  "metadata": {
@@ -65,7 +65,7 @@ backbone_presets = {
65
65
  "params": 1065314304,
66
66
  "path": "bloom",
67
67
  },
68
- "kaggle_handle": "kaggle://keras/bloom/keras/bloomz_1.1b_multi/1",
68
+ "kaggle_handle": "kaggle://keras/bloom/keras/bloomz_1.1b_multi/2",
69
69
  },
70
70
  "bloomz_1.7b_multi": {
71
71
  "metadata": {
@@ -76,7 +76,7 @@ backbone_presets = {
76
76
  "params": 1722408960,
77
77
  "path": "bloom",
78
78
  },
79
- "kaggle_handle": "kaggle://keras/bloom/keras/bloomz_1.7b_multi/1",
79
+ "kaggle_handle": "kaggle://keras/bloom/keras/bloomz_1.7b_multi/2",
80
80
  },
81
81
  "bloomz_3b_multi": {
82
82
  "metadata": {
@@ -87,6 +87,6 @@ backbone_presets = {
87
87
  "params": 3002557440,
88
88
  "path": "bloom",
89
89
  },
90
- "kaggle_handle": "kaggle://keras/bloom/keras/bloomz_3b_multi/1",
90
+ "kaggle_handle": "kaggle://keras/bloom/keras/bloomz_3b_multi/2",
91
91
  },
92
92
  }
@@ -11,7 +11,7 @@ backbone_presets = {
11
11
  "params": 149620934,
12
12
  "path": "clip",
13
13
  },
14
- "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_base_patch16/1",
14
+ "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_base_patch16/2",
15
15
  },
16
16
  "clip_vit_base_patch32": {
17
17
  "metadata": {
@@ -22,7 +22,7 @@ backbone_presets = {
22
22
  "params": 151277363,
23
23
  "path": "clip",
24
24
  },
25
- "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_base_patch32/1",
25
+ "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_base_patch32/2",
26
26
  },
27
27
  "clip_vit_large_patch14": {
28
28
  "metadata": {
@@ -33,7 +33,7 @@ backbone_presets = {
33
33
  "params": 427616770,
34
34
  "path": "clip",
35
35
  },
36
- "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_large_patch14/1",
36
+ "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_large_patch14/2",
37
37
  },
38
38
  "clip_vit_large_patch14_336": {
39
39
  "metadata": {
@@ -44,7 +44,7 @@ backbone_presets = {
44
44
  "params": 427944770,
45
45
  "path": "clip",
46
46
  },
47
- "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_large_patch14_336/1",
47
+ "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_large_patch14_336/2",
48
48
  },
49
49
  "clip_vit_b_32_laion2b_s34b_b79k": {
50
50
  "metadata": {
@@ -55,7 +55,7 @@ backbone_presets = {
55
55
  "params": 151277363,
56
56
  "path": "clip",
57
57
  },
58
- "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_b_32_laion2b_s34b_b79k/1",
58
+ "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_b_32_laion2b_s34b_b79k/2",
59
59
  },
60
60
  "clip_vit_h_14_laion2b_s32b_b79k": {
61
61
  "metadata": {
@@ -66,7 +66,7 @@ backbone_presets = {
66
66
  "params": 986109698,
67
67
  "path": "clip",
68
68
  },
69
- "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_h_14_laion2b_s32b_b79k/1",
69
+ "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_h_14_laion2b_s32b_b79k/2",
70
70
  },
71
71
  "clip_vit_g_14_laion2b_s12b_b42k": {
72
72
  "metadata": {
@@ -77,7 +77,7 @@ backbone_presets = {
77
77
  "params": 1366678530,
78
78
  "path": "clip",
79
79
  },
80
- "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_g_14_laion2b_s12b_b42k/1",
80
+ "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_g_14_laion2b_s12b_b42k/2",
81
81
  },
82
82
  "clip_vit_bigg_14_laion2b_39b_b160k": {
83
83
  "metadata": {
@@ -88,6 +88,6 @@ backbone_presets = {
88
88
  "params": 2539567362,
89
89
  "path": "clip",
90
90
  },
91
- "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_bigg_14_laion2b_39b_b160k/1",
91
+ "kaggle_handle": "kaggle://keras/clip/keras/clip_vit_bigg_14_laion2b_39b_b160k/2",
92
92
  },
93
93
  }
@@ -10,7 +10,7 @@ backbone_presets = {
10
10
  "params": 70682112,
11
11
  "path": "deberta_v3",
12
12
  },
13
- "kaggle_handle": "kaggle://keras/deberta_v3/keras/deberta_v3_extra_small_en/2",
13
+ "kaggle_handle": "kaggle://keras/deberta_v3/keras/deberta_v3_extra_small_en/3",
14
14
  },
15
15
  "deberta_v3_small_en": {
16
16
  "metadata": {
@@ -21,7 +21,7 @@ backbone_presets = {
21
21
  "params": 141304320,
22
22
  "path": "deberta_v3",
23
23
  },
24
- "kaggle_handle": "kaggle://keras/deberta_v3/keras/deberta_v3_small_en/2",
24
+ "kaggle_handle": "kaggle://keras/deberta_v3/keras/deberta_v3_small_en/3",
25
25
  },
26
26
  "deberta_v3_base_en": {
27
27
  "metadata": {
@@ -32,7 +32,7 @@ backbone_presets = {
32
32
  "params": 183831552,
33
33
  "path": "deberta_v3",
34
34
  },
35
- "kaggle_handle": "kaggle://keras/deberta_v3/keras/deberta_v3_base_en/2",
35
+ "kaggle_handle": "kaggle://keras/deberta_v3/keras/deberta_v3_base_en/3",
36
36
  },
37
37
  "deberta_v3_large_en": {
38
38
  "metadata": {
@@ -43,7 +43,7 @@ backbone_presets = {
43
43
  "params": 434012160,
44
44
  "path": "deberta_v3",
45
45
  },
46
- "kaggle_handle": "kaggle://keras/deberta_v3/keras/deberta_v3_large_en/2",
46
+ "kaggle_handle": "kaggle://keras/deberta_v3/keras/deberta_v3_large_en/3",
47
47
  },
48
48
  "deberta_v3_base_multi": {
49
49
  "metadata": {
@@ -54,6 +54,6 @@ backbone_presets = {
54
54
  "params": 278218752,
55
55
  "path": "deberta_v3",
56
56
  },
57
- "kaggle_handle": "kaggle://keras/deberta_v3/keras/deberta_v3_base_multi/2",
57
+ "kaggle_handle": "kaggle://keras/deberta_v3/keras/deberta_v3_base_multi/3",
58
58
  },
59
59
  }
@@ -12,6 +12,6 @@ backbone_presets = {
12
12
  "params": 39190656,
13
13
  "path": "deeplab_v3",
14
14
  },
15
- "kaggle_handle": "kaggle://keras/deeplabv3plus/keras/deeplab_v3_plus_resnet50_pascalvoc/3",
15
+ "kaggle_handle": "kaggle://keras/deeplabv3plus/keras/deeplab_v3_plus_resnet50_pascalvoc/4",
16
16
  },
17
17
  }
@@ -10,7 +10,7 @@ backbone_presets = {
10
10
  "params": 7037504,
11
11
  "path": "densenet",
12
12
  },
13
- "kaggle_handle": "kaggle://keras/densenet/keras/densenet_121_imagenet/2",
13
+ "kaggle_handle": "kaggle://keras/densenet/keras/densenet_121_imagenet/3",
14
14
  },
15
15
  "densenet_169_imagenet": {
16
16
  "metadata": {
@@ -21,7 +21,7 @@ backbone_presets = {
21
21
  "params": 12642880,
22
22
  "path": "densenet",
23
23
  },
24
- "kaggle_handle": "kaggle://keras/densenet/keras/densenet_169_imagenet/2",
24
+ "kaggle_handle": "kaggle://keras/densenet/keras/densenet_169_imagenet/3",
25
25
  },
26
26
  "densenet_201_imagenet": {
27
27
  "metadata": {
@@ -32,6 +32,6 @@ backbone_presets = {
32
32
  "params": 18321984,
33
33
  "path": "densenet",
34
34
  },
35
- "kaggle_handle": "kaggle://keras/densenet/keras/densenet_201_imagenet/2",
35
+ "kaggle_handle": "kaggle://keras/densenet/keras/densenet_201_imagenet/3",
36
36
  },
37
37
  }
@@ -11,7 +11,7 @@ backbone_presets = {
11
11
  "params": 66362880,
12
12
  "path": "distil_bert",
13
13
  },
14
- "kaggle_handle": "kaggle://keras/distil_bert/keras/distil_bert_base_en_uncased/2",
14
+ "kaggle_handle": "kaggle://keras/distil_bert/keras/distil_bert_base_en_uncased/3",
15
15
  },
16
16
  "distil_bert_base_en": {
17
17
  "metadata": {
@@ -23,7 +23,7 @@ backbone_presets = {
23
23
  "params": 65190912,
24
24
  "path": "distil_bert",
25
25
  },
26
- "kaggle_handle": "kaggle://keras/distil_bert/keras/distil_bert_base_en/2",
26
+ "kaggle_handle": "kaggle://keras/distil_bert/keras/distil_bert_base_en/3",
27
27
  },
28
28
  "distil_bert_base_multi": {
29
29
  "metadata": {
@@ -34,6 +34,6 @@ backbone_presets = {
34
34
  "params": 134734080,
35
35
  "path": "distil_bert",
36
36
  },
37
- "kaggle_handle": "kaggle://keras/distil_bert/keras/distil_bert_base_multi/2",
37
+ "kaggle_handle": "kaggle://keras/distil_bert/keras/distil_bert_base_multi/3",
38
38
  },
39
39
  }
@@ -136,13 +136,17 @@ class EfficientNetBackbone(FeaturePyramidBackbone):
136
136
  ):
137
137
  num_stacks = len(stackwise_kernel_sizes)
138
138
  if "depth_coefficient" in kwargs:
139
- stackwise_depth_coefficients = [
140
- kwargs.pop("depth_coefficient")
141
- ] * num_stacks
139
+ depth_coefficient = kwargs.pop("depth_coefficient")
140
+ if not isinstance(depth_coefficient, (list, tuple)):
141
+ stackwise_depth_coefficients = [depth_coefficient] * num_stacks
142
+ else:
143
+ stackwise_depth_coefficients = depth_coefficient
142
144
  if "width_coefficient" in kwargs:
143
- stackwise_width_coefficients = [
144
- kwargs.pop("width_coefficient")
145
- ] * num_stacks
145
+ width_coefficient = kwargs.pop("width_coefficient")
146
+ if not isinstance(width_coefficient, (list, tuple)):
147
+ stackwise_width_coefficients = [width_coefficient] * num_stacks
148
+ else:
149
+ stackwise_width_coefficients = width_coefficient
146
150
 
147
151
  image_input = keras.layers.Input(shape=input_shape)
148
152
 
@@ -10,7 +10,7 @@ backbone_presets = {
10
10
  "params": 5288548,
11
11
  "path": "efficientnet",
12
12
  },
13
- "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b0_ra_imagenet/1",
13
+ "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b0_ra_imagenet/2",
14
14
  },
15
15
  "efficientnet_b0_ra4_e3600_r224_imagenet": {
16
16
  "metadata": {
@@ -23,7 +23,7 @@ backbone_presets = {
23
23
  "params": 5288548,
24
24
  "path": "efficientnet",
25
25
  },
26
- "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b0_ra4_e3600_r224_imagenet/1",
26
+ "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b0_ra4_e3600_r224_imagenet/2",
27
27
  },
28
28
  "efficientnet_b1_ft_imagenet": {
29
29
  "metadata": {
@@ -33,7 +33,7 @@ backbone_presets = {
33
33
  "params": 7794184,
34
34
  "path": "efficientnet",
35
35
  },
36
- "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet/1",
36
+ "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet/5",
37
37
  },
38
38
  "efficientnet_b1_ra4_e3600_r240_imagenet": {
39
39
  "metadata": {
@@ -46,7 +46,7 @@ backbone_presets = {
46
46
  "params": 7794184,
47
47
  "path": "efficientnet",
48
48
  },
49
- "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ra4_e3600_r240_imagenet/1",
49
+ "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ra4_e3600_r240_imagenet/2",
50
50
  },
51
51
  "efficientnet_b2_ra_imagenet": {
52
52
  "metadata": {
@@ -57,7 +57,7 @@ backbone_presets = {
57
57
  "params": 9109994,
58
58
  "path": "efficientnet",
59
59
  },
60
- "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b2_ra_imagenet/1",
60
+ "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b2_ra_imagenet/2",
61
61
  },
62
62
  "efficientnet_b3_ra2_imagenet": {
63
63
  "metadata": {
@@ -68,7 +68,7 @@ backbone_presets = {
68
68
  "params": 12233232,
69
69
  "path": "efficientnet",
70
70
  },
71
- "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b3_ra2_imagenet/1",
71
+ "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b3_ra2_imagenet/2",
72
72
  },
73
73
  "efficientnet_b4_ra2_imagenet": {
74
74
  "metadata": {
@@ -79,7 +79,7 @@ backbone_presets = {
79
79
  "params": 19341616,
80
80
  "path": "efficientnet",
81
81
  },
82
- "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b4_ra2_imagenet/1",
82
+ "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b4_ra2_imagenet/2",
83
83
  },
84
84
  "efficientnet_b5_sw_imagenet": {
85
85
  "metadata": {
@@ -92,7 +92,7 @@ backbone_presets = {
92
92
  "params": 30389784,
93
93
  "path": "efficientnet",
94
94
  },
95
- "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b5_sw_imagenet/1",
95
+ "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b5_sw_imagenet/2",
96
96
  },
97
97
  "efficientnet_b5_sw_ft_imagenet": {
98
98
  "metadata": {
@@ -105,7 +105,7 @@ backbone_presets = {
105
105
  "params": 30389784,
106
106
  "path": "efficientnet",
107
107
  },
108
- "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b5_sw_ft_imagenet/1",
108
+ "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b5_sw_ft_imagenet/2",
109
109
  },
110
110
  "efficientnet_el_ra_imagenet": {
111
111
  "metadata": {
@@ -116,7 +116,7 @@ backbone_presets = {
116
116
  "params": 10589712,
117
117
  "path": "efficientnet",
118
118
  },
119
- "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet/1",
119
+ "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet/5",
120
120
  },
121
121
  "efficientnet_em_ra2_imagenet": {
122
122
  "metadata": {
@@ -127,7 +127,7 @@ backbone_presets = {
127
127
  "params": 6899496,
128
128
  "path": "efficientnet",
129
129
  },
130
- "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet/1",
130
+ "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet/5",
131
131
  },
132
132
  "efficientnet_es_ra_imagenet": {
133
133
  "metadata": {
@@ -138,7 +138,7 @@ backbone_presets = {
138
138
  "params": 5438392,
139
139
  "path": "efficientnet",
140
140
  },
141
- "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet/1",
141
+ "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet/5",
142
142
  },
143
143
  "efficientnet2_rw_m_agc_imagenet": {
144
144
  "metadata": {
@@ -151,7 +151,7 @@ backbone_presets = {
151
151
  "path": "efficientnet",
152
152
  "model_card": "https://arxiv.org/abs/2104.00298",
153
153
  },
154
- "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_m_agc_imagenet/1",
154
+ "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_m_agc_imagenet/2",
155
155
  },
156
156
  "efficientnet2_rw_s_ra2_imagenet": {
157
157
  "metadata": {
@@ -164,7 +164,7 @@ backbone_presets = {
164
164
  "path": "efficientnet",
165
165
  "model_card": "https://arxiv.org/abs/2104.00298",
166
166
  },
167
- "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_s_ra2_imagenet/1",
167
+ "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_s_ra2_imagenet/2",
168
168
  },
169
169
  "efficientnet2_rw_t_ra2_imagenet": {
170
170
  "metadata": {
@@ -177,7 +177,7 @@ backbone_presets = {
177
177
  "path": "efficientnet",
178
178
  "model_card": "https://arxiv.org/abs/2104.00298",
179
179
  },
180
- "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_t_ra2_imagenet/1",
180
+ "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_t_ra2_imagenet/2",
181
181
  },
182
182
  "efficientnet_lite0_ra_imagenet": {
183
183
  "metadata": {
@@ -188,6 +188,6 @@ backbone_presets = {
188
188
  "params": 4652008,
189
189
  "path": "efficientnet",
190
190
  },
191
- "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_lite0_ra_imagenet/1",
191
+ "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_lite0_ra_imagenet/2",
192
192
  },
193
193
  }