keras-hub-nightly 0.19.0.dev202412200346__py3-none-any.whl → 0.19.0.dev202412210344__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/src/models/efficientnet/efficientnet_presets.py +7 -7
- keras_hub/src/models/flux/flux_presets.py +1 -13
- keras_hub/src/models/mit/mit_presets.py +3 -3
- keras_hub/src/models/pali_gemma/pali_gemma_presets.py +4 -4
- keras_hub/src/models/phi3/phi3_presets.py +2 -2
- keras_hub/src/models/resnet/resnet_presets.py +10 -10
- keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.19.0.dev202412200346.dist-info → keras_hub_nightly-0.19.0.dev202412210344.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.19.0.dev202412200346.dist-info → keras_hub_nightly-0.19.0.dev202412210344.dist-info}/RECORD +11 -11
- {keras_hub_nightly-0.19.0.dev202412200346.dist-info → keras_hub_nightly-0.19.0.dev202412210344.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.19.0.dev202412200346.dist-info → keras_hub_nightly-0.19.0.dev202412210344.dist-info}/top_level.txt +0 -0
@@ -116,7 +116,7 @@ backbone_presets = {
|
|
116
116
|
"params": 10589712,
|
117
117
|
"path": "efficientnet",
|
118
118
|
},
|
119
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet",
|
119
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet/1",
|
120
120
|
},
|
121
121
|
"efficientnet_em_ra2_imagenet": {
|
122
122
|
"metadata": {
|
@@ -127,7 +127,7 @@ backbone_presets = {
|
|
127
127
|
"params": 6899496,
|
128
128
|
"path": "efficientnet",
|
129
129
|
},
|
130
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet",
|
130
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet/1",
|
131
131
|
},
|
132
132
|
"efficientnet_es_ra_imagenet": {
|
133
133
|
"metadata": {
|
@@ -138,7 +138,7 @@ backbone_presets = {
|
|
138
138
|
"params": 5438392,
|
139
139
|
"path": "efficientnet",
|
140
140
|
},
|
141
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet",
|
141
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet/1",
|
142
142
|
},
|
143
143
|
"efficientnet2_rw_m_agc_imagenet": {
|
144
144
|
"metadata": {
|
@@ -151,7 +151,7 @@ backbone_presets = {
|
|
151
151
|
"path": "efficientnet",
|
152
152
|
"model_card": "https://arxiv.org/abs/2104.00298",
|
153
153
|
},
|
154
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_m_agc_imagenet",
|
154
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_m_agc_imagenet/1",
|
155
155
|
},
|
156
156
|
"efficientnet2_rw_s_ra2_imagenet": {
|
157
157
|
"metadata": {
|
@@ -164,7 +164,7 @@ backbone_presets = {
|
|
164
164
|
"path": "efficientnet",
|
165
165
|
"model_card": "https://arxiv.org/abs/2104.00298",
|
166
166
|
},
|
167
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_s_ra2_imagenet",
|
167
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_s_ra2_imagenet/1",
|
168
168
|
},
|
169
169
|
"efficientnet2_rw_t_ra2_imagenet": {
|
170
170
|
"metadata": {
|
@@ -177,7 +177,7 @@ backbone_presets = {
|
|
177
177
|
"path": "efficientnet",
|
178
178
|
"model_card": "https://arxiv.org/abs/2104.00298",
|
179
179
|
},
|
180
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_t_ra2_imagenet",
|
180
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_t_ra2_imagenet/1",
|
181
181
|
},
|
182
182
|
"efficientnet_lite0_ra_imagenet": {
|
183
183
|
"metadata": {
|
@@ -188,6 +188,6 @@ backbone_presets = {
|
|
188
188
|
"params": 4652008,
|
189
189
|
"path": "efficientnet",
|
190
190
|
},
|
191
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_lite0_ra_imagenet",
|
191
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_lite0_ra_imagenet/1",
|
192
192
|
},
|
193
193
|
}
|
@@ -1,15 +1,3 @@
|
|
1
1
|
"""FLUX model preset configurations."""
|
2
2
|
|
3
|
-
presets = {
|
4
|
-
"schnell": {
|
5
|
-
"metadata": {
|
6
|
-
"description": (
|
7
|
-
"A 12 billion parameter rectified flow transformer capable of "
|
8
|
-
"generating images from text descriptions."
|
9
|
-
),
|
10
|
-
"params": 124439808,
|
11
|
-
"path": "flux",
|
12
|
-
},
|
13
|
-
"kaggle_handle": "TBA",
|
14
|
-
},
|
15
|
-
}
|
3
|
+
presets = {}
|
@@ -20,7 +20,7 @@ backbone_presets_with_weights = {
|
|
20
20
|
"params": 3321962,
|
21
21
|
"path": "mit",
|
22
22
|
},
|
23
|
-
"kaggle_handle": "kaggle://keras/mit/keras/mit_b0_ade20k_512/
|
23
|
+
"kaggle_handle": "kaggle://keras/mit/keras/mit_b0_ade20k_512/3",
|
24
24
|
},
|
25
25
|
"mit_b1_ade20k_512": {
|
26
26
|
"metadata": {
|
@@ -30,7 +30,7 @@ backbone_presets_with_weights = {
|
|
30
30
|
"params": 13156554,
|
31
31
|
"path": "mit",
|
32
32
|
},
|
33
|
-
"kaggle_handle": "kaggle://keras/mit/keras/mit_b1_ade20k_512/
|
33
|
+
"kaggle_handle": "kaggle://keras/mit/keras/mit_b1_ade20k_512/3",
|
34
34
|
},
|
35
35
|
"mit_b2_ade20k_512": {
|
36
36
|
"metadata": {
|
@@ -40,7 +40,7 @@ backbone_presets_with_weights = {
|
|
40
40
|
"params": 24201418,
|
41
41
|
"path": "mit",
|
42
42
|
},
|
43
|
-
"kaggle_handle": "kaggle://keras/mit/keras/mit_b2_ade20k_512/
|
43
|
+
"kaggle_handle": "kaggle://keras/mit/keras/mit_b2_ade20k_512/3",
|
44
44
|
},
|
45
45
|
"mit_b3_ade20k_512": {
|
46
46
|
"metadata": {
|
@@ -53,7 +53,7 @@ backbone_presets = {
|
|
53
53
|
"kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_896/3",
|
54
54
|
},
|
55
55
|
# PaliGemma2
|
56
|
-
"
|
56
|
+
"pali_gemma_2_ft_docci_3b_448": {
|
57
57
|
"metadata": {
|
58
58
|
"description": (
|
59
59
|
"3 billion parameter, image size 448, 27-layer for "
|
@@ -66,9 +66,9 @@ backbone_presets = {
|
|
66
66
|
"path": "pali_gemma2",
|
67
67
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
68
68
|
},
|
69
|
-
"kaggle_handle": "kaggle://keras/paligemma2/keras/
|
69
|
+
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma_2_ft_docci_3b_448/1",
|
70
70
|
},
|
71
|
-
"
|
71
|
+
"pali_gemma2_ft_docci_10b_448": {
|
72
72
|
"metadata": {
|
73
73
|
"description": (
|
74
74
|
"10 billion parameter, 27-layer for SigLIP-So400m vision "
|
@@ -81,7 +81,7 @@ backbone_presets = {
|
|
81
81
|
"path": "pali_gemma2",
|
82
82
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
83
83
|
},
|
84
|
-
"kaggle_handle": "kaggle://keras/paligemma2/keras/
|
84
|
+
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_ft_docci_10b_448/1",
|
85
85
|
},
|
86
86
|
"pali_gemma2_pt_3b_224": {
|
87
87
|
"metadata": {
|
@@ -14,7 +14,7 @@ backbone_presets = {
|
|
14
14
|
"params": 3821079552,
|
15
15
|
"path": "phi3",
|
16
16
|
},
|
17
|
-
"kaggle_handle": "kaggle://keras/phi3/keras/phi3_mini_4k_instruct_en",
|
17
|
+
"kaggle_handle": "kaggle://keras/phi3/keras/phi3_mini_4k_instruct_en/1",
|
18
18
|
},
|
19
19
|
"phi3_mini_128k_instruct_en": {
|
20
20
|
"metadata": {
|
@@ -28,6 +28,6 @@ backbone_presets = {
|
|
28
28
|
"params": 3821079552,
|
29
29
|
"path": "phi3",
|
30
30
|
},
|
31
|
-
"kaggle_handle": "kaggle://keras/phi3/keras/phi3_mini_128k_instruct_en",
|
31
|
+
"kaggle_handle": "kaggle://keras/phi3/keras/phi3_mini_128k_instruct_en/1",
|
32
32
|
},
|
33
33
|
}
|
@@ -77,7 +77,7 @@ backbone_presets = {
|
|
77
77
|
"params": 11722824,
|
78
78
|
"path": "resnet",
|
79
79
|
},
|
80
|
-
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_18_imagenet",
|
80
|
+
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_18_imagenet/1",
|
81
81
|
},
|
82
82
|
"resnet_vd_34_imagenet": {
|
83
83
|
"metadata": {
|
@@ -89,7 +89,7 @@ backbone_presets = {
|
|
89
89
|
"params": 21838408,
|
90
90
|
"path": "resnet",
|
91
91
|
},
|
92
|
-
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_34_imagenet",
|
92
|
+
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_34_imagenet/1",
|
93
93
|
},
|
94
94
|
"resnet_vd_50_imagenet": {
|
95
95
|
"metadata": {
|
@@ -101,7 +101,7 @@ backbone_presets = {
|
|
101
101
|
"params": 25629512,
|
102
102
|
"path": "resnet",
|
103
103
|
},
|
104
|
-
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_50_imagenet",
|
104
|
+
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_50_imagenet/1",
|
105
105
|
},
|
106
106
|
"resnet_vd_50_ssld_imagenet": {
|
107
107
|
"metadata": {
|
@@ -113,7 +113,7 @@ backbone_presets = {
|
|
113
113
|
"params": 25629512,
|
114
114
|
"path": "resnet",
|
115
115
|
},
|
116
|
-
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_50_ssld_imagenet",
|
116
|
+
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_50_ssld_imagenet/1",
|
117
117
|
},
|
118
118
|
"resnet_vd_50_ssld_v2_imagenet": {
|
119
119
|
"metadata": {
|
@@ -125,7 +125,7 @@ backbone_presets = {
|
|
125
125
|
"params": 25629512,
|
126
126
|
"path": "resnet",
|
127
127
|
},
|
128
|
-
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_50_ssld_v2_imagenet",
|
128
|
+
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_50_ssld_v2_imagenet/1",
|
129
129
|
},
|
130
130
|
"resnet_vd_50_ssld_v2_fix_imagenet": {
|
131
131
|
"metadata": {
|
@@ -138,7 +138,7 @@ backbone_presets = {
|
|
138
138
|
"params": 25629512,
|
139
139
|
"path": "resnet",
|
140
140
|
},
|
141
|
-
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_50_ssld_v2_fix_imagenet",
|
141
|
+
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_50_ssld_v2_fix_imagenet/1",
|
142
142
|
},
|
143
143
|
"resnet_vd_101_imagenet": {
|
144
144
|
"metadata": {
|
@@ -150,7 +150,7 @@ backbone_presets = {
|
|
150
150
|
"params": 44673864,
|
151
151
|
"path": "resnet",
|
152
152
|
},
|
153
|
-
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_101_imagenet",
|
153
|
+
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_101_imagenet/1",
|
154
154
|
},
|
155
155
|
"resnet_vd_101_ssld_imagenet": {
|
156
156
|
"metadata": {
|
@@ -162,7 +162,7 @@ backbone_presets = {
|
|
162
162
|
"params": 44673864,
|
163
163
|
"path": "resnet",
|
164
164
|
},
|
165
|
-
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_101_ssld_imagenet",
|
165
|
+
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_101_ssld_imagenet/1",
|
166
166
|
},
|
167
167
|
"resnet_vd_152_imagenet": {
|
168
168
|
"metadata": {
|
@@ -174,7 +174,7 @@ backbone_presets = {
|
|
174
174
|
"params": 60363592,
|
175
175
|
"path": "resnet",
|
176
176
|
},
|
177
|
-
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_152_imagenet",
|
177
|
+
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_152_imagenet/1",
|
178
178
|
},
|
179
179
|
"resnet_vd_200_imagenet": {
|
180
180
|
"metadata": {
|
@@ -186,6 +186,6 @@ backbone_presets = {
|
|
186
186
|
"params": 74933064,
|
187
187
|
"path": "resnet",
|
188
188
|
},
|
189
|
-
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_200_imagenet",
|
189
|
+
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_200_imagenet/1",
|
190
190
|
},
|
191
191
|
}
|
keras_hub/src/version_utils.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: keras-hub-nightly
|
3
|
-
Version: 0.19.0.
|
3
|
+
Version: 0.19.0.dev202412210344
|
4
4
|
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
5
|
Home-page: https://github.com/keras-team/keras-hub
|
6
6
|
Author: Keras team
|
@@ -9,7 +9,7 @@ keras_hub/api/tokenizers/__init__.py,sha256=mtJgQy1spfQnPAkeLoeinsT_W9iCWHlJXwzc
|
|
9
9
|
keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
|
10
10
|
keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
11
11
|
keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
|
12
|
-
keras_hub/src/version_utils.py,sha256=
|
12
|
+
keras_hub/src/version_utils.py,sha256=MCTcK_B2MSop0DMVomZ1f0ialBMYXejbuk0EVDUlSvU,222
|
13
13
|
keras_hub/src/bounding_box/__init__.py,sha256=7i6KnGupN4AVivR_dFjQyuuTbI0GkHy8d-aMXeqZdU8,95
|
14
14
|
keras_hub/src/bounding_box/converters.py,sha256=UUp1hwegpDZyIo8sh9TLNy1v6JjwmvwzL6wmHFMAtbk,21916
|
15
15
|
keras_hub/src/bounding_box/formats.py,sha256=YmskOz2BOSat7NaE__J9VfpSNGPJJR0znSzA4lp8MMI,3868
|
@@ -158,7 +158,7 @@ keras_hub/src/models/efficientnet/efficientnet_backbone.py,sha256=PJvBVvOUYZoeES
|
|
158
158
|
keras_hub/src/models/efficientnet/efficientnet_image_classifier.py,sha256=e37sWzxkQW0CuM78WOJozqHDErWiRLLmQbOV-uY7hI4,593
|
159
159
|
keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py,sha256=Njs8nGyz28Xngzrc7fQrIJH6ItDkDJUPEsBGKVlKgZs,612
|
160
160
|
keras_hub/src/models/efficientnet/efficientnet_image_converter.py,sha256=X9Io6IhjoUglywiyph48C0rt9Xp-3ZW4rsIzyt7zkmg,387
|
161
|
-
keras_hub/src/models/efficientnet/efficientnet_presets.py,sha256=
|
161
|
+
keras_hub/src/models/efficientnet/efficientnet_presets.py,sha256=yiXGMl5w5EE_2L42oYwkX28x-2lFxmgHT-HVneSxCbo,7610
|
162
162
|
keras_hub/src/models/efficientnet/fusedmbconv.py,sha256=7-3FzqCqjPC1WaYfYqluryegKpkqFlXZ32Y4y7VJ5G0,9503
|
163
163
|
keras_hub/src/models/efficientnet/mbconv.py,sha256=9tHiRWAO3KafgdqO5FYshdkGfXDx_zEkaiqA93ZiDbI,8942
|
164
164
|
keras_hub/src/models/electra/__init__.py,sha256=vaXl_uQx_oLeKZWxmc1NRgCJfHpYJ35JeF9as8U0q5M,263
|
@@ -185,7 +185,7 @@ keras_hub/src/models/flux/__init__.py,sha256=rBO-FNMbnfABw2QQazRmuWpIhhiVXwowaYQ
|
|
185
185
|
keras_hub/src/models/flux/flux_layers.py,sha256=wevcAEbayBD8bVm-21FBi2LQ13pZzB99-qlTq1il5tI,16355
|
186
186
|
keras_hub/src/models/flux/flux_maths.py,sha256=2pnHW8HW7V2JZ8HIrUwE-UU4klpFQaOkoAvG5nWVfyY,7502
|
187
187
|
keras_hub/src/models/flux/flux_model.py,sha256=K92PyeFHIp8SwXuxhv__XCEaQ2wqSW1jOb97I4S24Rw,8991
|
188
|
-
keras_hub/src/models/flux/flux_presets.py,sha256=
|
188
|
+
keras_hub/src/models/flux/flux_presets.py,sha256=z7C_FbI1_F5YETXuWpc7Yh_0w-5N0eBQy6Oks_X9W88,54
|
189
189
|
keras_hub/src/models/flux/flux_text_to_image.py,sha256=mI_QxOzjXl3b5s7Q1LZemceCdeboqPD5ilEPEEyer40,4169
|
190
190
|
keras_hub/src/models/flux/flux_text_to_image_preprocessor.py,sha256=Fs9jr97QtmRUbRRz1kITpkuhDM2GoV3n0XSFC-qQA14,2252
|
191
191
|
keras_hub/src/models/gemma/__init__.py,sha256=rVzOJMJ39bgVlT8UdC0t8PlN2c237GKTBmfHIsbPuOQ,251
|
@@ -241,7 +241,7 @@ keras_hub/src/models/mit/mit_image_classifier.py,sha256=HKj6u6AqPbxinGYPRsz_ZdW2
|
|
241
241
|
keras_hub/src/models/mit/mit_image_classifier_preprocessor.py,sha256=oNYs-pUK8VnzNEPcq5beYX0qfnnlbJcxY8o5s7bVQes,504
|
242
242
|
keras_hub/src/models/mit/mit_image_converter.py,sha256=Mw7nV-OzyBveGuZUNFsPPKyq9jXJVW2_cVH024CNkXM,311
|
243
243
|
keras_hub/src/models/mit/mit_layers.py,sha256=HUJO5uhJ6jgwANpwbQdPlEVwLRVb3BZQ-Ftjg3B9XvY,9734
|
244
|
-
keras_hub/src/models/mit/mit_presets.py,sha256=
|
244
|
+
keras_hub/src/models/mit/mit_presets.py,sha256=M2T9x7CgEW-t5kBtbNqelL63OpCDjt2-wWyRP66tJrc,4528
|
245
245
|
keras_hub/src/models/mobilenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
246
246
|
keras_hub/src/models/mobilenet/mobilenet_backbone.py,sha256=oIhNjPRWVtJvQbjaWxXzgIQwtRV10-dIWVR7LJM4Ev0,18192
|
247
247
|
keras_hub/src/models/mobilenet/mobilenet_image_classifier.py,sha256=l5jo99I0fLlbwLub5jHw07CjC-NnmuV-ySJwXGI20Ek,351
|
@@ -257,7 +257,7 @@ keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py,sha256=AViEs6YltUqWnIVo7
|
|
257
257
|
keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py,sha256=F57y0fZ0wYYxfGIjfrJc1W9uQpViYFx5bvFjj5CqUbI,4814
|
258
258
|
keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py,sha256=24ABQ1vGlppV-KfWh0YqJjzM_Lu2GIwvyJ4X2XXie_A,5616
|
259
259
|
keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=5yM_jUtrFsWIieiwfFBoP7mtPmQAwywkeLKbd7fhmzk,371
|
260
|
-
keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=
|
260
|
+
keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=Sk39FWJq2p-XHFejdm9i5X0hsoUnlHMK86qcr29_fPQ,8985
|
261
261
|
keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=ljTiADHo0Ok88q-jVzwJIle2C8xcxnudLTsBLzIySaM,2415
|
262
262
|
keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=ViPKfGksbxBGJ3iS3M_KWxRc8Ie4LF7rWWUKDiqECJE,18285
|
263
263
|
keras_hub/src/models/phi3/__init__.py,sha256=zIbf1MU-ks91mEkjTRJAsk51N3BBnXDF2JM1vO-13PQ,245
|
@@ -267,7 +267,7 @@ keras_hub/src/models/phi3/phi3_causal_lm.py,sha256=kMMq7fQ8hlb_mLO_nU1lGVqILayul
|
|
267
267
|
keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py,sha256=gNx1k-n7d0XDwpNbcZiO9yLkwdXYCvwGyA3b0QCnPAE,3043
|
268
268
|
keras_hub/src/models/phi3/phi3_decoder.py,sha256=gTRqn-Wu9dz0u9VKrsdjkSs2mHvpKl2bCjOBLlJc9lg,9586
|
269
269
|
keras_hub/src/models/phi3/phi3_layernorm.py,sha256=Oqu81tGd97Lzx3kG1QEtZ0S6gbfn3GLgRzY8UWGJRBo,1049
|
270
|
-
keras_hub/src/models/phi3/phi3_presets.py,sha256=
|
270
|
+
keras_hub/src/models/phi3/phi3_presets.py,sha256=4brTcMrm5KLBb0gl18F5oCRciap3rDxdfLIkKZkB0S0,1366
|
271
271
|
keras_hub/src/models/phi3/phi3_rotary_embedding.py,sha256=wqiRn8nETNcLc5Vsm_d_8s11Ro6ibWZbWvODdLqIOo4,5013
|
272
272
|
keras_hub/src/models/phi3/phi3_tokenizer.py,sha256=bOPH14wTVVHJHq8mgzXLjsgvKMNhfO8eayevAPpjYVA,1992
|
273
273
|
keras_hub/src/models/resnet/__init__.py,sha256=C5UqlQ6apm8WSp1bnrxB6Bi3BGaknxRQs-r3b2wpaGA,257
|
@@ -275,7 +275,7 @@ keras_hub/src/models/resnet/resnet_backbone.py,sha256=3acTjdWbnos8l_TPxYLgoV3Y4V
|
|
275
275
|
keras_hub/src/models/resnet/resnet_image_classifier.py,sha256=nf35EKDzvBkfhHsK-s6Ks0nbhvKO7HEOYZm94YckyWE,510
|
276
276
|
keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py,sha256=fM7gyQ0qB-RRuI4USJkRD6q9-HVfuC71e-BLTo-UhHQ,543
|
277
277
|
keras_hub/src/models/resnet/resnet_image_converter.py,sha256=fgTxihJznGFss-y3Z-jp0JE3X1gaaB2y-f2KMwrT8Pk,342
|
278
|
-
keras_hub/src/models/resnet/resnet_presets.py,sha256=
|
278
|
+
keras_hub/src/models/resnet/resnet_presets.py,sha256=88o1gF2rWkFfzNYqvBKhSoQTxbZmxR5Ex2amodyv4zU,6947
|
279
279
|
keras_hub/src/models/retinanet/__init__.py,sha256=veWIFvMN6151M69l7FvTcI-IIEe_8dLmNO5NLOszQ1c,275
|
280
280
|
keras_hub/src/models/retinanet/anchor_generator.py,sha256=0OgKSW3OKmbc0cOPHF6FYTAzn7fcHklg665PGSwAaDM,6504
|
281
281
|
keras_hub/src/models/retinanet/box_matcher.py,sha256=l820r1R-ByqiyVgmZ0YFjjz0njchDda-wItzLn1X84o,10834
|
@@ -417,7 +417,7 @@ keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYum
|
|
417
417
|
keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
|
418
418
|
keras_hub/src/utils/transformers/preset_loader.py,sha256=DgGJXbTSB9Na8FIR-YWWVqQPOFxHwWrGm41EwcS_EFs,3797
|
419
419
|
keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
|
420
|
-
keras_hub_nightly-0.19.0.
|
421
|
-
keras_hub_nightly-0.19.0.
|
422
|
-
keras_hub_nightly-0.19.0.
|
423
|
-
keras_hub_nightly-0.19.0.
|
420
|
+
keras_hub_nightly-0.19.0.dev202412210344.dist-info/METADATA,sha256=M-NE8Cesul1Q2hYvqq1Iu8qlCW-rJXGB2tc-nabBIy0,7263
|
421
|
+
keras_hub_nightly-0.19.0.dev202412210344.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
|
422
|
+
keras_hub_nightly-0.19.0.dev202412210344.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
423
|
+
keras_hub_nightly-0.19.0.dev202412210344.dist-info/RECORD,,
|
File without changes
|