keras-hub-nightly 0.19.0.dev202412190352__py3-none-any.whl → 0.19.0.dev202412210344__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -116,7 +116,7 @@ backbone_presets = {
116
116
  "params": 10589712,
117
117
  "path": "efficientnet",
118
118
  },
119
- "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet",
119
+ "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet/1",
120
120
  },
121
121
  "efficientnet_em_ra2_imagenet": {
122
122
  "metadata": {
@@ -127,7 +127,7 @@ backbone_presets = {
127
127
  "params": 6899496,
128
128
  "path": "efficientnet",
129
129
  },
130
- "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet",
130
+ "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet/1",
131
131
  },
132
132
  "efficientnet_es_ra_imagenet": {
133
133
  "metadata": {
@@ -138,7 +138,7 @@ backbone_presets = {
138
138
  "params": 5438392,
139
139
  "path": "efficientnet",
140
140
  },
141
- "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet",
141
+ "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet/1",
142
142
  },
143
143
  "efficientnet2_rw_m_agc_imagenet": {
144
144
  "metadata": {
@@ -151,7 +151,7 @@ backbone_presets = {
151
151
  "path": "efficientnet",
152
152
  "model_card": "https://arxiv.org/abs/2104.00298",
153
153
  },
154
- "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_m_agc_imagenet",
154
+ "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_m_agc_imagenet/1",
155
155
  },
156
156
  "efficientnet2_rw_s_ra2_imagenet": {
157
157
  "metadata": {
@@ -164,7 +164,7 @@ backbone_presets = {
164
164
  "path": "efficientnet",
165
165
  "model_card": "https://arxiv.org/abs/2104.00298",
166
166
  },
167
- "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_s_ra2_imagenet",
167
+ "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_s_ra2_imagenet/1",
168
168
  },
169
169
  "efficientnet2_rw_t_ra2_imagenet": {
170
170
  "metadata": {
@@ -177,7 +177,7 @@ backbone_presets = {
177
177
  "path": "efficientnet",
178
178
  "model_card": "https://arxiv.org/abs/2104.00298",
179
179
  },
180
- "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_t_ra2_imagenet",
180
+ "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_t_ra2_imagenet/1",
181
181
  },
182
182
  "efficientnet_lite0_ra_imagenet": {
183
183
  "metadata": {
@@ -188,6 +188,6 @@ backbone_presets = {
188
188
  "params": 4652008,
189
189
  "path": "efficientnet",
190
190
  },
191
- "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_lite0_ra_imagenet",
191
+ "kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_lite0_ra_imagenet/1",
192
192
  },
193
193
  }
@@ -1,15 +1,3 @@
1
1
  """FLUX model preset configurations."""
2
2
 
3
- presets = {
4
- "schnell": {
5
- "metadata": {
6
- "description": (
7
- "A 12 billion parameter rectified flow transformer capable of "
8
- "generating images from text descriptions."
9
- ),
10
- "params": 124439808,
11
- "path": "flux",
12
- },
13
- "kaggle_handle": "TBA",
14
- },
15
- }
3
+ presets = {}
@@ -20,7 +20,7 @@ backbone_presets_with_weights = {
20
20
  "params": 3321962,
21
21
  "path": "mit",
22
22
  },
23
- "kaggle_handle": "kaggle://keras/mit/keras/mit_b0_ade20k_512/2",
23
+ "kaggle_handle": "kaggle://keras/mit/keras/mit_b0_ade20k_512/3",
24
24
  },
25
25
  "mit_b1_ade20k_512": {
26
26
  "metadata": {
@@ -30,7 +30,7 @@ backbone_presets_with_weights = {
30
30
  "params": 13156554,
31
31
  "path": "mit",
32
32
  },
33
- "kaggle_handle": "kaggle://keras/mit/keras/mit_b1_ade20k_512/2",
33
+ "kaggle_handle": "kaggle://keras/mit/keras/mit_b1_ade20k_512/3",
34
34
  },
35
35
  "mit_b2_ade20k_512": {
36
36
  "metadata": {
@@ -40,7 +40,7 @@ backbone_presets_with_weights = {
40
40
  "params": 24201418,
41
41
  "path": "mit",
42
42
  },
43
- "kaggle_handle": "kaggle://keras/mit/keras/mit_b2_ade20k_512/2",
43
+ "kaggle_handle": "kaggle://keras/mit/keras/mit_b2_ade20k_512/3",
44
44
  },
45
45
  "mit_b3_ade20k_512": {
46
46
  "metadata": {
@@ -53,7 +53,7 @@ backbone_presets = {
53
53
  "kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_896/3",
54
54
  },
55
55
  # PaliGemma2
56
- "pali_gemma2_3b_ft_docci_448": {
56
+ "pali_gemma_2_ft_docci_3b_448": {
57
57
  "metadata": {
58
58
  "description": (
59
59
  "3 billion parameter, image size 448, 27-layer for "
@@ -66,9 +66,9 @@ backbone_presets = {
66
66
  "path": "pali_gemma2",
67
67
  "model_card": "https://www.kaggle.com/models/google/paligemma-2",
68
68
  },
69
- "kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_3b_ft_docci_448/1",
69
+ "kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma_2_ft_docci_3b_448/1",
70
70
  },
71
- "pali_gemma2_10b_ft_docci_448": {
71
+ "pali_gemma2_ft_docci_10b_448": {
72
72
  "metadata": {
73
73
  "description": (
74
74
  "10 billion parameter, 27-layer for SigLIP-So400m vision "
@@ -81,7 +81,7 @@ backbone_presets = {
81
81
  "path": "pali_gemma2",
82
82
  "model_card": "https://www.kaggle.com/models/google/paligemma-2",
83
83
  },
84
- "kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_10b_ft_docci_448/1",
84
+ "kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_ft_docci_10b_448/1",
85
85
  },
86
86
  "pali_gemma2_pt_3b_224": {
87
87
  "metadata": {
@@ -14,7 +14,7 @@ backbone_presets = {
14
14
  "params": 3821079552,
15
15
  "path": "phi3",
16
16
  },
17
- "kaggle_handle": "kaggle://keras/phi3/keras/phi3_mini_4k_instruct_en",
17
+ "kaggle_handle": "kaggle://keras/phi3/keras/phi3_mini_4k_instruct_en/1",
18
18
  },
19
19
  "phi3_mini_128k_instruct_en": {
20
20
  "metadata": {
@@ -28,6 +28,6 @@ backbone_presets = {
28
28
  "params": 3821079552,
29
29
  "path": "phi3",
30
30
  },
31
- "kaggle_handle": "kaggle://keras/phi3/keras/phi3_mini_128k_instruct_en",
31
+ "kaggle_handle": "kaggle://keras/phi3/keras/phi3_mini_128k_instruct_en/1",
32
32
  },
33
33
  }
@@ -77,7 +77,7 @@ backbone_presets = {
77
77
  "params": 11722824,
78
78
  "path": "resnet",
79
79
  },
80
- "kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_18_imagenet",
80
+ "kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_18_imagenet/1",
81
81
  },
82
82
  "resnet_vd_34_imagenet": {
83
83
  "metadata": {
@@ -89,7 +89,7 @@ backbone_presets = {
89
89
  "params": 21838408,
90
90
  "path": "resnet",
91
91
  },
92
- "kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_34_imagenet",
92
+ "kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_34_imagenet/1",
93
93
  },
94
94
  "resnet_vd_50_imagenet": {
95
95
  "metadata": {
@@ -101,7 +101,7 @@ backbone_presets = {
101
101
  "params": 25629512,
102
102
  "path": "resnet",
103
103
  },
104
- "kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_50_imagenet",
104
+ "kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_50_imagenet/1",
105
105
  },
106
106
  "resnet_vd_50_ssld_imagenet": {
107
107
  "metadata": {
@@ -113,7 +113,7 @@ backbone_presets = {
113
113
  "params": 25629512,
114
114
  "path": "resnet",
115
115
  },
116
- "kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_50_ssld_imagenet",
116
+ "kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_50_ssld_imagenet/1",
117
117
  },
118
118
  "resnet_vd_50_ssld_v2_imagenet": {
119
119
  "metadata": {
@@ -125,7 +125,7 @@ backbone_presets = {
125
125
  "params": 25629512,
126
126
  "path": "resnet",
127
127
  },
128
- "kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_50_ssld_v2_imagenet",
128
+ "kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_50_ssld_v2_imagenet/1",
129
129
  },
130
130
  "resnet_vd_50_ssld_v2_fix_imagenet": {
131
131
  "metadata": {
@@ -138,7 +138,7 @@ backbone_presets = {
138
138
  "params": 25629512,
139
139
  "path": "resnet",
140
140
  },
141
- "kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_50_ssld_v2_fix_imagenet",
141
+ "kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_50_ssld_v2_fix_imagenet/1",
142
142
  },
143
143
  "resnet_vd_101_imagenet": {
144
144
  "metadata": {
@@ -150,7 +150,7 @@ backbone_presets = {
150
150
  "params": 44673864,
151
151
  "path": "resnet",
152
152
  },
153
- "kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_101_imagenet",
153
+ "kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_101_imagenet/1",
154
154
  },
155
155
  "resnet_vd_101_ssld_imagenet": {
156
156
  "metadata": {
@@ -162,7 +162,7 @@ backbone_presets = {
162
162
  "params": 44673864,
163
163
  "path": "resnet",
164
164
  },
165
- "kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_101_ssld_imagenet",
165
+ "kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_101_ssld_imagenet/1",
166
166
  },
167
167
  "resnet_vd_152_imagenet": {
168
168
  "metadata": {
@@ -174,7 +174,7 @@ backbone_presets = {
174
174
  "params": 60363592,
175
175
  "path": "resnet",
176
176
  },
177
- "kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_152_imagenet",
177
+ "kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_152_imagenet/1",
178
178
  },
179
179
  "resnet_vd_200_imagenet": {
180
180
  "metadata": {
@@ -186,6 +186,6 @@ backbone_presets = {
186
186
  "params": 74933064,
187
187
  "path": "resnet",
188
188
  },
189
- "kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_200_imagenet",
189
+ "kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_200_imagenet/1",
190
190
  },
191
191
  }
@@ -454,16 +454,6 @@ def load_json(preset, config_file=CONFIG_FILE):
454
454
  return config
455
455
 
456
456
 
457
- def load_serialized_object(config, **kwargs):
458
- # `dtype` in config might be a serialized `DTypePolicy` or `DTypePolicyMap`.
459
- # Ensure that `dtype` is properly configured.
460
- dtype = kwargs.pop("dtype", None)
461
- config = set_dtype_in_config(config, dtype)
462
-
463
- config["config"] = {**config["config"], **kwargs}
464
- return keras.saving.deserialize_keras_object(config)
465
-
466
-
467
457
  def check_config_class(config):
468
458
  """Validate a preset is being loaded on the correct class."""
469
459
  registered_name = config["registered_name"]
@@ -631,7 +621,7 @@ class KerasPresetLoader(PresetLoader):
631
621
  return check_config_class(self.config)
632
622
 
633
623
  def load_backbone(self, cls, load_weights, **kwargs):
634
- backbone = load_serialized_object(self.config, **kwargs)
624
+ backbone = self._load_serialized_object(self.config, **kwargs)
635
625
  if load_weights:
636
626
  jax_memory_cleanup(backbone)
637
627
  backbone.load_weights(get_file(self.preset, MODEL_WEIGHTS_FILE))
@@ -639,18 +629,18 @@ class KerasPresetLoader(PresetLoader):
639
629
 
640
630
  def load_tokenizer(self, cls, config_file=TOKENIZER_CONFIG_FILE, **kwargs):
641
631
  tokenizer_config = load_json(self.preset, config_file)
642
- tokenizer = load_serialized_object(tokenizer_config, **kwargs)
632
+ tokenizer = self._load_serialized_object(tokenizer_config, **kwargs)
643
633
  if hasattr(tokenizer, "load_preset_assets"):
644
634
  tokenizer.load_preset_assets(self.preset)
645
635
  return tokenizer
646
636
 
647
637
  def load_audio_converter(self, cls, **kwargs):
648
638
  converter_config = load_json(self.preset, AUDIO_CONVERTER_CONFIG_FILE)
649
- return load_serialized_object(converter_config, **kwargs)
639
+ return self._load_serialized_object(converter_config, **kwargs)
650
640
 
651
641
  def load_image_converter(self, cls, **kwargs):
652
642
  converter_config = load_json(self.preset, IMAGE_CONVERTER_CONFIG_FILE)
653
- return load_serialized_object(converter_config, **kwargs)
643
+ return self._load_serialized_object(converter_config, **kwargs)
654
644
 
655
645
  def load_task(self, cls, load_weights, load_task_weights, **kwargs):
656
646
  # If there is no `task.json` or it's for the wrong class delegate to the
@@ -671,7 +661,7 @@ class KerasPresetLoader(PresetLoader):
671
661
  backbone_config = task_config["config"]["backbone"]["config"]
672
662
  backbone_config = {**backbone_config, **backbone_kwargs}
673
663
  task_config["config"]["backbone"]["config"] = backbone_config
674
- task = load_serialized_object(task_config, **kwargs)
664
+ task = self._load_serialized_object(task_config, **kwargs)
675
665
  if task.preprocessor and hasattr(
676
666
  task.preprocessor, "load_preset_assets"
677
667
  ):
@@ -699,11 +689,20 @@ class KerasPresetLoader(PresetLoader):
699
689
  if not issubclass(check_config_class(preprocessor_json), cls):
700
690
  return super().load_preprocessor(cls, **kwargs)
701
691
  # We found a `preprocessing.json` with a complete config for our class.
702
- preprocessor = load_serialized_object(preprocessor_json, **kwargs)
692
+ preprocessor = self._load_serialized_object(preprocessor_json, **kwargs)
703
693
  if hasattr(preprocessor, "load_preset_assets"):
704
694
  preprocessor.load_preset_assets(self.preset)
705
695
  return preprocessor
706
696
 
697
+ def _load_serialized_object(self, config, **kwargs):
698
+ # `dtype` in config might be a serialized `DTypePolicy` or
699
+ # `DTypePolicyMap`. Ensure that `dtype` is properly configured.
700
+ dtype = kwargs.pop("dtype", None)
701
+ config = set_dtype_in_config(config, dtype)
702
+
703
+ config["config"] = {**config["config"], **kwargs}
704
+ return keras.saving.deserialize_keras_object(config)
705
+
707
706
 
708
707
  class KerasPresetSaver:
709
708
  def __init__(self, preset_dir):
@@ -787,6 +786,8 @@ class KerasPresetSaver:
787
786
  tasks = list_subclasses(Task)
788
787
  tasks = filter(lambda x: x.backbone_cls is type(layer), tasks)
789
788
  tasks = [task.__base__.__name__ for task in tasks]
789
+ # Keep task list alphabetical.
790
+ tasks = sorted(tasks)
790
791
 
791
792
  keras_version = keras.version() if hasattr(keras, "version") else None
792
793
  metadata = {
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.19.0.dev202412190352"
4
+ __version__ = "0.19.0.dev202412210344"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: keras-hub-nightly
3
- Version: 0.19.0.dev202412190352
3
+ Version: 0.19.0.dev202412210344
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -9,7 +9,7 @@ keras_hub/api/tokenizers/__init__.py,sha256=mtJgQy1spfQnPAkeLoeinsT_W9iCWHlJXwzc
9
9
  keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
10
10
  keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
11
  keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
12
- keras_hub/src/version_utils.py,sha256=mkSaU8Ln1tI0_K9qOrQhUYjd2Esml96pAUrGt42ls1Q,222
12
+ keras_hub/src/version_utils.py,sha256=MCTcK_B2MSop0DMVomZ1f0ialBMYXejbuk0EVDUlSvU,222
13
13
  keras_hub/src/bounding_box/__init__.py,sha256=7i6KnGupN4AVivR_dFjQyuuTbI0GkHy8d-aMXeqZdU8,95
14
14
  keras_hub/src/bounding_box/converters.py,sha256=UUp1hwegpDZyIo8sh9TLNy1v6JjwmvwzL6wmHFMAtbk,21916
15
15
  keras_hub/src/bounding_box/formats.py,sha256=YmskOz2BOSat7NaE__J9VfpSNGPJJR0znSzA4lp8MMI,3868
@@ -158,7 +158,7 @@ keras_hub/src/models/efficientnet/efficientnet_backbone.py,sha256=PJvBVvOUYZoeES
158
158
  keras_hub/src/models/efficientnet/efficientnet_image_classifier.py,sha256=e37sWzxkQW0CuM78WOJozqHDErWiRLLmQbOV-uY7hI4,593
159
159
  keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py,sha256=Njs8nGyz28Xngzrc7fQrIJH6ItDkDJUPEsBGKVlKgZs,612
160
160
  keras_hub/src/models/efficientnet/efficientnet_image_converter.py,sha256=X9Io6IhjoUglywiyph48C0rt9Xp-3ZW4rsIzyt7zkmg,387
161
- keras_hub/src/models/efficientnet/efficientnet_presets.py,sha256=3WBFETkRepJNOc2NKSA7ogOJmSD1y27vxXdhGZo4iVw,7596
161
+ keras_hub/src/models/efficientnet/efficientnet_presets.py,sha256=yiXGMl5w5EE_2L42oYwkX28x-2lFxmgHT-HVneSxCbo,7610
162
162
  keras_hub/src/models/efficientnet/fusedmbconv.py,sha256=7-3FzqCqjPC1WaYfYqluryegKpkqFlXZ32Y4y7VJ5G0,9503
163
163
  keras_hub/src/models/efficientnet/mbconv.py,sha256=9tHiRWAO3KafgdqO5FYshdkGfXDx_zEkaiqA93ZiDbI,8942
164
164
  keras_hub/src/models/electra/__init__.py,sha256=vaXl_uQx_oLeKZWxmc1NRgCJfHpYJ35JeF9as8U0q5M,263
@@ -185,7 +185,7 @@ keras_hub/src/models/flux/__init__.py,sha256=rBO-FNMbnfABw2QQazRmuWpIhhiVXwowaYQ
185
185
  keras_hub/src/models/flux/flux_layers.py,sha256=wevcAEbayBD8bVm-21FBi2LQ13pZzB99-qlTq1il5tI,16355
186
186
  keras_hub/src/models/flux/flux_maths.py,sha256=2pnHW8HW7V2JZ8HIrUwE-UU4klpFQaOkoAvG5nWVfyY,7502
187
187
  keras_hub/src/models/flux/flux_model.py,sha256=K92PyeFHIp8SwXuxhv__XCEaQ2wqSW1jOb97I4S24Rw,8991
188
- keras_hub/src/models/flux/flux_presets.py,sha256=Jw7Eg7krZTzLrZwoDv9nO1CRuaIWQKzRaffdZYSWUTI,389
188
+ keras_hub/src/models/flux/flux_presets.py,sha256=z7C_FbI1_F5YETXuWpc7Yh_0w-5N0eBQy6Oks_X9W88,54
189
189
  keras_hub/src/models/flux/flux_text_to_image.py,sha256=mI_QxOzjXl3b5s7Q1LZemceCdeboqPD5ilEPEEyer40,4169
190
190
  keras_hub/src/models/flux/flux_text_to_image_preprocessor.py,sha256=Fs9jr97QtmRUbRRz1kITpkuhDM2GoV3n0XSFC-qQA14,2252
191
191
  keras_hub/src/models/gemma/__init__.py,sha256=rVzOJMJ39bgVlT8UdC0t8PlN2c237GKTBmfHIsbPuOQ,251
@@ -241,7 +241,7 @@ keras_hub/src/models/mit/mit_image_classifier.py,sha256=HKj6u6AqPbxinGYPRsz_ZdW2
241
241
  keras_hub/src/models/mit/mit_image_classifier_preprocessor.py,sha256=oNYs-pUK8VnzNEPcq5beYX0qfnnlbJcxY8o5s7bVQes,504
242
242
  keras_hub/src/models/mit/mit_image_converter.py,sha256=Mw7nV-OzyBveGuZUNFsPPKyq9jXJVW2_cVH024CNkXM,311
243
243
  keras_hub/src/models/mit/mit_layers.py,sha256=HUJO5uhJ6jgwANpwbQdPlEVwLRVb3BZQ-Ftjg3B9XvY,9734
244
- keras_hub/src/models/mit/mit_presets.py,sha256=Njf4A6vvOvdc6xElsspmwgBf10BtueXMWH7_DXVFk4Q,4528
244
+ keras_hub/src/models/mit/mit_presets.py,sha256=M2T9x7CgEW-t5kBtbNqelL63OpCDjt2-wWyRP66tJrc,4528
245
245
  keras_hub/src/models/mobilenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
246
246
  keras_hub/src/models/mobilenet/mobilenet_backbone.py,sha256=oIhNjPRWVtJvQbjaWxXzgIQwtRV10-dIWVR7LJM4Ev0,18192
247
247
  keras_hub/src/models/mobilenet/mobilenet_image_classifier.py,sha256=l5jo99I0fLlbwLub5jHw07CjC-NnmuV-ySJwXGI20Ek,351
@@ -257,7 +257,7 @@ keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py,sha256=AViEs6YltUqWnIVo7
257
257
  keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py,sha256=F57y0fZ0wYYxfGIjfrJc1W9uQpViYFx5bvFjj5CqUbI,4814
258
258
  keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py,sha256=24ABQ1vGlppV-KfWh0YqJjzM_Lu2GIwvyJ4X2XXie_A,5616
259
259
  keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=5yM_jUtrFsWIieiwfFBoP7mtPmQAwywkeLKbd7fhmzk,371
260
- keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=FJLwJc43M0AuWvCd_CE9PNRaZVsveE3uQ0kNEXlLPaE,8983
260
+ keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=Sk39FWJq2p-XHFejdm9i5X0hsoUnlHMK86qcr29_fPQ,8985
261
261
  keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=ljTiADHo0Ok88q-jVzwJIle2C8xcxnudLTsBLzIySaM,2415
262
262
  keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=ViPKfGksbxBGJ3iS3M_KWxRc8Ie4LF7rWWUKDiqECJE,18285
263
263
  keras_hub/src/models/phi3/__init__.py,sha256=zIbf1MU-ks91mEkjTRJAsk51N3BBnXDF2JM1vO-13PQ,245
@@ -267,7 +267,7 @@ keras_hub/src/models/phi3/phi3_causal_lm.py,sha256=kMMq7fQ8hlb_mLO_nU1lGVqILayul
267
267
  keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py,sha256=gNx1k-n7d0XDwpNbcZiO9yLkwdXYCvwGyA3b0QCnPAE,3043
268
268
  keras_hub/src/models/phi3/phi3_decoder.py,sha256=gTRqn-Wu9dz0u9VKrsdjkSs2mHvpKl2bCjOBLlJc9lg,9586
269
269
  keras_hub/src/models/phi3/phi3_layernorm.py,sha256=Oqu81tGd97Lzx3kG1QEtZ0S6gbfn3GLgRzY8UWGJRBo,1049
270
- keras_hub/src/models/phi3/phi3_presets.py,sha256=hFGdBn9rtilV7N16rjfnPepVmG6XjAlvwQmsPorPg80,1362
270
+ keras_hub/src/models/phi3/phi3_presets.py,sha256=4brTcMrm5KLBb0gl18F5oCRciap3rDxdfLIkKZkB0S0,1366
271
271
  keras_hub/src/models/phi3/phi3_rotary_embedding.py,sha256=wqiRn8nETNcLc5Vsm_d_8s11Ro6ibWZbWvODdLqIOo4,5013
272
272
  keras_hub/src/models/phi3/phi3_tokenizer.py,sha256=bOPH14wTVVHJHq8mgzXLjsgvKMNhfO8eayevAPpjYVA,1992
273
273
  keras_hub/src/models/resnet/__init__.py,sha256=C5UqlQ6apm8WSp1bnrxB6Bi3BGaknxRQs-r3b2wpaGA,257
@@ -275,7 +275,7 @@ keras_hub/src/models/resnet/resnet_backbone.py,sha256=3acTjdWbnos8l_TPxYLgoV3Y4V
275
275
  keras_hub/src/models/resnet/resnet_image_classifier.py,sha256=nf35EKDzvBkfhHsK-s6Ks0nbhvKO7HEOYZm94YckyWE,510
276
276
  keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py,sha256=fM7gyQ0qB-RRuI4USJkRD6q9-HVfuC71e-BLTo-UhHQ,543
277
277
  keras_hub/src/models/resnet/resnet_image_converter.py,sha256=fgTxihJznGFss-y3Z-jp0JE3X1gaaB2y-f2KMwrT8Pk,342
278
- keras_hub/src/models/resnet/resnet_presets.py,sha256=OOHGP87Se_BwEBZWH5sQ9E2PcBQd4a5Uys92IIMhAGQ,6927
278
+ keras_hub/src/models/resnet/resnet_presets.py,sha256=88o1gF2rWkFfzNYqvBKhSoQTxbZmxR5Ex2amodyv4zU,6947
279
279
  keras_hub/src/models/retinanet/__init__.py,sha256=veWIFvMN6151M69l7FvTcI-IIEe_8dLmNO5NLOszQ1c,275
280
280
  keras_hub/src/models/retinanet/anchor_generator.py,sha256=0OgKSW3OKmbc0cOPHF6FYTAzn7fcHklg665PGSwAaDM,6504
281
281
  keras_hub/src/models/retinanet/box_matcher.py,sha256=l820r1R-ByqiyVgmZ0YFjjz0njchDda-wItzLn1X84o,10834
@@ -393,7 +393,7 @@ keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=Zz1SGgArykxBVWnS
393
393
  keras_hub/src/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
394
394
  keras_hub/src/utils/keras_utils.py,sha256=lrZuC8HL2lmQfbHaS_t1JUyJann_ji2iTYE0Fzos8PU,1969
395
395
  keras_hub/src/utils/pipeline_model.py,sha256=jgzB6NQPSl0KOu08N-TazfOnXnUJbZjH2EXXhx25Ftg,9084
396
- keras_hub/src/utils/preset_utils.py,sha256=P3vqzVb3M-gJmPJDGOe1k0KLmHrhgi4ULeg-L_n5jhM,30976
396
+ keras_hub/src/utils/preset_utils.py,sha256=MFQqOIIWvfYToiUHfpPX0lERmgCkz09bM9L67E44H3s,31115
397
397
  keras_hub/src/utils/python_utils.py,sha256=N8nWeO3san4YnGkffRXG3Ix7VEIMTKSN21FX5TuL7G8,202
398
398
  keras_hub/src/utils/tensor_utils.py,sha256=YVJesN91bk-OzJXY1mOKBppuY8noBU7zhPQNXPxZVGc,14646
399
399
  keras_hub/src/utils/imagenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -417,7 +417,7 @@ keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYum
417
417
  keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
418
418
  keras_hub/src/utils/transformers/preset_loader.py,sha256=DgGJXbTSB9Na8FIR-YWWVqQPOFxHwWrGm41EwcS_EFs,3797
419
419
  keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
420
- keras_hub_nightly-0.19.0.dev202412190352.dist-info/METADATA,sha256=4ggUncw0HlT-6YiKGo6xR7EWBavcvzwzTovgZ4hRwF8,7263
421
- keras_hub_nightly-0.19.0.dev202412190352.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
422
- keras_hub_nightly-0.19.0.dev202412190352.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
423
- keras_hub_nightly-0.19.0.dev202412190352.dist-info/RECORD,,
420
+ keras_hub_nightly-0.19.0.dev202412210344.dist-info/METADATA,sha256=M-NE8Cesul1Q2hYvqq1Iu8qlCW-rJXGB2tc-nabBIy0,7263
421
+ keras_hub_nightly-0.19.0.dev202412210344.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
422
+ keras_hub_nightly-0.19.0.dev202412210344.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
423
+ keras_hub_nightly-0.19.0.dev202412210344.dist-info/RECORD,,