keras-hub-nightly 0.19.0.dev202412190352__py3-none-any.whl → 0.19.0.dev202412210344__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/src/models/efficientnet/efficientnet_presets.py +7 -7
- keras_hub/src/models/flux/flux_presets.py +1 -13
- keras_hub/src/models/mit/mit_presets.py +3 -3
- keras_hub/src/models/pali_gemma/pali_gemma_presets.py +4 -4
- keras_hub/src/models/phi3/phi3_presets.py +2 -2
- keras_hub/src/models/resnet/resnet_presets.py +10 -10
- keras_hub/src/utils/preset_utils.py +17 -16
- keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.19.0.dev202412190352.dist-info → keras_hub_nightly-0.19.0.dev202412210344.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.19.0.dev202412190352.dist-info → keras_hub_nightly-0.19.0.dev202412210344.dist-info}/RECORD +12 -12
- {keras_hub_nightly-0.19.0.dev202412190352.dist-info → keras_hub_nightly-0.19.0.dev202412210344.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.19.0.dev202412190352.dist-info → keras_hub_nightly-0.19.0.dev202412210344.dist-info}/top_level.txt +0 -0
@@ -116,7 +116,7 @@ backbone_presets = {
|
|
116
116
|
"params": 10589712,
|
117
117
|
"path": "efficientnet",
|
118
118
|
},
|
119
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet",
|
119
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet/1",
|
120
120
|
},
|
121
121
|
"efficientnet_em_ra2_imagenet": {
|
122
122
|
"metadata": {
|
@@ -127,7 +127,7 @@ backbone_presets = {
|
|
127
127
|
"params": 6899496,
|
128
128
|
"path": "efficientnet",
|
129
129
|
},
|
130
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet",
|
130
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet/1",
|
131
131
|
},
|
132
132
|
"efficientnet_es_ra_imagenet": {
|
133
133
|
"metadata": {
|
@@ -138,7 +138,7 @@ backbone_presets = {
|
|
138
138
|
"params": 5438392,
|
139
139
|
"path": "efficientnet",
|
140
140
|
},
|
141
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet",
|
141
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet/1",
|
142
142
|
},
|
143
143
|
"efficientnet2_rw_m_agc_imagenet": {
|
144
144
|
"metadata": {
|
@@ -151,7 +151,7 @@ backbone_presets = {
|
|
151
151
|
"path": "efficientnet",
|
152
152
|
"model_card": "https://arxiv.org/abs/2104.00298",
|
153
153
|
},
|
154
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_m_agc_imagenet",
|
154
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_m_agc_imagenet/1",
|
155
155
|
},
|
156
156
|
"efficientnet2_rw_s_ra2_imagenet": {
|
157
157
|
"metadata": {
|
@@ -164,7 +164,7 @@ backbone_presets = {
|
|
164
164
|
"path": "efficientnet",
|
165
165
|
"model_card": "https://arxiv.org/abs/2104.00298",
|
166
166
|
},
|
167
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_s_ra2_imagenet",
|
167
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_s_ra2_imagenet/1",
|
168
168
|
},
|
169
169
|
"efficientnet2_rw_t_ra2_imagenet": {
|
170
170
|
"metadata": {
|
@@ -177,7 +177,7 @@ backbone_presets = {
|
|
177
177
|
"path": "efficientnet",
|
178
178
|
"model_card": "https://arxiv.org/abs/2104.00298",
|
179
179
|
},
|
180
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_t_ra2_imagenet",
|
180
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_t_ra2_imagenet/1",
|
181
181
|
},
|
182
182
|
"efficientnet_lite0_ra_imagenet": {
|
183
183
|
"metadata": {
|
@@ -188,6 +188,6 @@ backbone_presets = {
|
|
188
188
|
"params": 4652008,
|
189
189
|
"path": "efficientnet",
|
190
190
|
},
|
191
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_lite0_ra_imagenet",
|
191
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_lite0_ra_imagenet/1",
|
192
192
|
},
|
193
193
|
}
|
@@ -1,15 +1,3 @@
|
|
1
1
|
"""FLUX model preset configurations."""
|
2
2
|
|
3
|
-
presets = {
|
4
|
-
"schnell": {
|
5
|
-
"metadata": {
|
6
|
-
"description": (
|
7
|
-
"A 12 billion parameter rectified flow transformer capable of "
|
8
|
-
"generating images from text descriptions."
|
9
|
-
),
|
10
|
-
"params": 124439808,
|
11
|
-
"path": "flux",
|
12
|
-
},
|
13
|
-
"kaggle_handle": "TBA",
|
14
|
-
},
|
15
|
-
}
|
3
|
+
presets = {}
|
@@ -20,7 +20,7 @@ backbone_presets_with_weights = {
|
|
20
20
|
"params": 3321962,
|
21
21
|
"path": "mit",
|
22
22
|
},
|
23
|
-
"kaggle_handle": "kaggle://keras/mit/keras/mit_b0_ade20k_512/
|
23
|
+
"kaggle_handle": "kaggle://keras/mit/keras/mit_b0_ade20k_512/3",
|
24
24
|
},
|
25
25
|
"mit_b1_ade20k_512": {
|
26
26
|
"metadata": {
|
@@ -30,7 +30,7 @@ backbone_presets_with_weights = {
|
|
30
30
|
"params": 13156554,
|
31
31
|
"path": "mit",
|
32
32
|
},
|
33
|
-
"kaggle_handle": "kaggle://keras/mit/keras/mit_b1_ade20k_512/
|
33
|
+
"kaggle_handle": "kaggle://keras/mit/keras/mit_b1_ade20k_512/3",
|
34
34
|
},
|
35
35
|
"mit_b2_ade20k_512": {
|
36
36
|
"metadata": {
|
@@ -40,7 +40,7 @@ backbone_presets_with_weights = {
|
|
40
40
|
"params": 24201418,
|
41
41
|
"path": "mit",
|
42
42
|
},
|
43
|
-
"kaggle_handle": "kaggle://keras/mit/keras/mit_b2_ade20k_512/
|
43
|
+
"kaggle_handle": "kaggle://keras/mit/keras/mit_b2_ade20k_512/3",
|
44
44
|
},
|
45
45
|
"mit_b3_ade20k_512": {
|
46
46
|
"metadata": {
|
@@ -53,7 +53,7 @@ backbone_presets = {
|
|
53
53
|
"kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_896/3",
|
54
54
|
},
|
55
55
|
# PaliGemma2
|
56
|
-
"
|
56
|
+
"pali_gemma_2_ft_docci_3b_448": {
|
57
57
|
"metadata": {
|
58
58
|
"description": (
|
59
59
|
"3 billion parameter, image size 448, 27-layer for "
|
@@ -66,9 +66,9 @@ backbone_presets = {
|
|
66
66
|
"path": "pali_gemma2",
|
67
67
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
68
68
|
},
|
69
|
-
"kaggle_handle": "kaggle://keras/paligemma2/keras/
|
69
|
+
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma_2_ft_docci_3b_448/1",
|
70
70
|
},
|
71
|
-
"
|
71
|
+
"pali_gemma2_ft_docci_10b_448": {
|
72
72
|
"metadata": {
|
73
73
|
"description": (
|
74
74
|
"10 billion parameter, 27-layer for SigLIP-So400m vision "
|
@@ -81,7 +81,7 @@ backbone_presets = {
|
|
81
81
|
"path": "pali_gemma2",
|
82
82
|
"model_card": "https://www.kaggle.com/models/google/paligemma-2",
|
83
83
|
},
|
84
|
-
"kaggle_handle": "kaggle://keras/paligemma2/keras/
|
84
|
+
"kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_ft_docci_10b_448/1",
|
85
85
|
},
|
86
86
|
"pali_gemma2_pt_3b_224": {
|
87
87
|
"metadata": {
|
@@ -14,7 +14,7 @@ backbone_presets = {
|
|
14
14
|
"params": 3821079552,
|
15
15
|
"path": "phi3",
|
16
16
|
},
|
17
|
-
"kaggle_handle": "kaggle://keras/phi3/keras/phi3_mini_4k_instruct_en",
|
17
|
+
"kaggle_handle": "kaggle://keras/phi3/keras/phi3_mini_4k_instruct_en/1",
|
18
18
|
},
|
19
19
|
"phi3_mini_128k_instruct_en": {
|
20
20
|
"metadata": {
|
@@ -28,6 +28,6 @@ backbone_presets = {
|
|
28
28
|
"params": 3821079552,
|
29
29
|
"path": "phi3",
|
30
30
|
},
|
31
|
-
"kaggle_handle": "kaggle://keras/phi3/keras/phi3_mini_128k_instruct_en",
|
31
|
+
"kaggle_handle": "kaggle://keras/phi3/keras/phi3_mini_128k_instruct_en/1",
|
32
32
|
},
|
33
33
|
}
|
@@ -77,7 +77,7 @@ backbone_presets = {
|
|
77
77
|
"params": 11722824,
|
78
78
|
"path": "resnet",
|
79
79
|
},
|
80
|
-
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_18_imagenet",
|
80
|
+
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_18_imagenet/1",
|
81
81
|
},
|
82
82
|
"resnet_vd_34_imagenet": {
|
83
83
|
"metadata": {
|
@@ -89,7 +89,7 @@ backbone_presets = {
|
|
89
89
|
"params": 21838408,
|
90
90
|
"path": "resnet",
|
91
91
|
},
|
92
|
-
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_34_imagenet",
|
92
|
+
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_34_imagenet/1",
|
93
93
|
},
|
94
94
|
"resnet_vd_50_imagenet": {
|
95
95
|
"metadata": {
|
@@ -101,7 +101,7 @@ backbone_presets = {
|
|
101
101
|
"params": 25629512,
|
102
102
|
"path": "resnet",
|
103
103
|
},
|
104
|
-
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_50_imagenet",
|
104
|
+
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_50_imagenet/1",
|
105
105
|
},
|
106
106
|
"resnet_vd_50_ssld_imagenet": {
|
107
107
|
"metadata": {
|
@@ -113,7 +113,7 @@ backbone_presets = {
|
|
113
113
|
"params": 25629512,
|
114
114
|
"path": "resnet",
|
115
115
|
},
|
116
|
-
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_50_ssld_imagenet",
|
116
|
+
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_50_ssld_imagenet/1",
|
117
117
|
},
|
118
118
|
"resnet_vd_50_ssld_v2_imagenet": {
|
119
119
|
"metadata": {
|
@@ -125,7 +125,7 @@ backbone_presets = {
|
|
125
125
|
"params": 25629512,
|
126
126
|
"path": "resnet",
|
127
127
|
},
|
128
|
-
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_50_ssld_v2_imagenet",
|
128
|
+
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_50_ssld_v2_imagenet/1",
|
129
129
|
},
|
130
130
|
"resnet_vd_50_ssld_v2_fix_imagenet": {
|
131
131
|
"metadata": {
|
@@ -138,7 +138,7 @@ backbone_presets = {
|
|
138
138
|
"params": 25629512,
|
139
139
|
"path": "resnet",
|
140
140
|
},
|
141
|
-
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_50_ssld_v2_fix_imagenet",
|
141
|
+
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_50_ssld_v2_fix_imagenet/1",
|
142
142
|
},
|
143
143
|
"resnet_vd_101_imagenet": {
|
144
144
|
"metadata": {
|
@@ -150,7 +150,7 @@ backbone_presets = {
|
|
150
150
|
"params": 44673864,
|
151
151
|
"path": "resnet",
|
152
152
|
},
|
153
|
-
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_101_imagenet",
|
153
|
+
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_101_imagenet/1",
|
154
154
|
},
|
155
155
|
"resnet_vd_101_ssld_imagenet": {
|
156
156
|
"metadata": {
|
@@ -162,7 +162,7 @@ backbone_presets = {
|
|
162
162
|
"params": 44673864,
|
163
163
|
"path": "resnet",
|
164
164
|
},
|
165
|
-
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_101_ssld_imagenet",
|
165
|
+
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_101_ssld_imagenet/1",
|
166
166
|
},
|
167
167
|
"resnet_vd_152_imagenet": {
|
168
168
|
"metadata": {
|
@@ -174,7 +174,7 @@ backbone_presets = {
|
|
174
174
|
"params": 60363592,
|
175
175
|
"path": "resnet",
|
176
176
|
},
|
177
|
-
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_152_imagenet",
|
177
|
+
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_152_imagenet/1",
|
178
178
|
},
|
179
179
|
"resnet_vd_200_imagenet": {
|
180
180
|
"metadata": {
|
@@ -186,6 +186,6 @@ backbone_presets = {
|
|
186
186
|
"params": 74933064,
|
187
187
|
"path": "resnet",
|
188
188
|
},
|
189
|
-
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_200_imagenet",
|
189
|
+
"kaggle_handle": "kaggle://keras/resnet_vd/keras/resnet_vd_200_imagenet/1",
|
190
190
|
},
|
191
191
|
}
|
@@ -454,16 +454,6 @@ def load_json(preset, config_file=CONFIG_FILE):
|
|
454
454
|
return config
|
455
455
|
|
456
456
|
|
457
|
-
def load_serialized_object(config, **kwargs):
|
458
|
-
# `dtype` in config might be a serialized `DTypePolicy` or `DTypePolicyMap`.
|
459
|
-
# Ensure that `dtype` is properly configured.
|
460
|
-
dtype = kwargs.pop("dtype", None)
|
461
|
-
config = set_dtype_in_config(config, dtype)
|
462
|
-
|
463
|
-
config["config"] = {**config["config"], **kwargs}
|
464
|
-
return keras.saving.deserialize_keras_object(config)
|
465
|
-
|
466
|
-
|
467
457
|
def check_config_class(config):
|
468
458
|
"""Validate a preset is being loaded on the correct class."""
|
469
459
|
registered_name = config["registered_name"]
|
@@ -631,7 +621,7 @@ class KerasPresetLoader(PresetLoader):
|
|
631
621
|
return check_config_class(self.config)
|
632
622
|
|
633
623
|
def load_backbone(self, cls, load_weights, **kwargs):
|
634
|
-
backbone =
|
624
|
+
backbone = self._load_serialized_object(self.config, **kwargs)
|
635
625
|
if load_weights:
|
636
626
|
jax_memory_cleanup(backbone)
|
637
627
|
backbone.load_weights(get_file(self.preset, MODEL_WEIGHTS_FILE))
|
@@ -639,18 +629,18 @@ class KerasPresetLoader(PresetLoader):
|
|
639
629
|
|
640
630
|
def load_tokenizer(self, cls, config_file=TOKENIZER_CONFIG_FILE, **kwargs):
|
641
631
|
tokenizer_config = load_json(self.preset, config_file)
|
642
|
-
tokenizer =
|
632
|
+
tokenizer = self._load_serialized_object(tokenizer_config, **kwargs)
|
643
633
|
if hasattr(tokenizer, "load_preset_assets"):
|
644
634
|
tokenizer.load_preset_assets(self.preset)
|
645
635
|
return tokenizer
|
646
636
|
|
647
637
|
def load_audio_converter(self, cls, **kwargs):
|
648
638
|
converter_config = load_json(self.preset, AUDIO_CONVERTER_CONFIG_FILE)
|
649
|
-
return
|
639
|
+
return self._load_serialized_object(converter_config, **kwargs)
|
650
640
|
|
651
641
|
def load_image_converter(self, cls, **kwargs):
|
652
642
|
converter_config = load_json(self.preset, IMAGE_CONVERTER_CONFIG_FILE)
|
653
|
-
return
|
643
|
+
return self._load_serialized_object(converter_config, **kwargs)
|
654
644
|
|
655
645
|
def load_task(self, cls, load_weights, load_task_weights, **kwargs):
|
656
646
|
# If there is no `task.json` or it's for the wrong class delegate to the
|
@@ -671,7 +661,7 @@ class KerasPresetLoader(PresetLoader):
|
|
671
661
|
backbone_config = task_config["config"]["backbone"]["config"]
|
672
662
|
backbone_config = {**backbone_config, **backbone_kwargs}
|
673
663
|
task_config["config"]["backbone"]["config"] = backbone_config
|
674
|
-
task =
|
664
|
+
task = self._load_serialized_object(task_config, **kwargs)
|
675
665
|
if task.preprocessor and hasattr(
|
676
666
|
task.preprocessor, "load_preset_assets"
|
677
667
|
):
|
@@ -699,11 +689,20 @@ class KerasPresetLoader(PresetLoader):
|
|
699
689
|
if not issubclass(check_config_class(preprocessor_json), cls):
|
700
690
|
return super().load_preprocessor(cls, **kwargs)
|
701
691
|
# We found a `preprocessing.json` with a complete config for our class.
|
702
|
-
preprocessor =
|
692
|
+
preprocessor = self._load_serialized_object(preprocessor_json, **kwargs)
|
703
693
|
if hasattr(preprocessor, "load_preset_assets"):
|
704
694
|
preprocessor.load_preset_assets(self.preset)
|
705
695
|
return preprocessor
|
706
696
|
|
697
|
+
def _load_serialized_object(self, config, **kwargs):
|
698
|
+
# `dtype` in config might be a serialized `DTypePolicy` or
|
699
|
+
# `DTypePolicyMap`. Ensure that `dtype` is properly configured.
|
700
|
+
dtype = kwargs.pop("dtype", None)
|
701
|
+
config = set_dtype_in_config(config, dtype)
|
702
|
+
|
703
|
+
config["config"] = {**config["config"], **kwargs}
|
704
|
+
return keras.saving.deserialize_keras_object(config)
|
705
|
+
|
707
706
|
|
708
707
|
class KerasPresetSaver:
|
709
708
|
def __init__(self, preset_dir):
|
@@ -787,6 +786,8 @@ class KerasPresetSaver:
|
|
787
786
|
tasks = list_subclasses(Task)
|
788
787
|
tasks = filter(lambda x: x.backbone_cls is type(layer), tasks)
|
789
788
|
tasks = [task.__base__.__name__ for task in tasks]
|
789
|
+
# Keep task list alphabetical.
|
790
|
+
tasks = sorted(tasks)
|
790
791
|
|
791
792
|
keras_version = keras.version() if hasattr(keras, "version") else None
|
792
793
|
metadata = {
|
keras_hub/src/version_utils.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: keras-hub-nightly
|
3
|
-
Version: 0.19.0.
|
3
|
+
Version: 0.19.0.dev202412210344
|
4
4
|
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
5
|
Home-page: https://github.com/keras-team/keras-hub
|
6
6
|
Author: Keras team
|
@@ -9,7 +9,7 @@ keras_hub/api/tokenizers/__init__.py,sha256=mtJgQy1spfQnPAkeLoeinsT_W9iCWHlJXwzc
|
|
9
9
|
keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
|
10
10
|
keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
11
11
|
keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
|
12
|
-
keras_hub/src/version_utils.py,sha256=
|
12
|
+
keras_hub/src/version_utils.py,sha256=MCTcK_B2MSop0DMVomZ1f0ialBMYXejbuk0EVDUlSvU,222
|
13
13
|
keras_hub/src/bounding_box/__init__.py,sha256=7i6KnGupN4AVivR_dFjQyuuTbI0GkHy8d-aMXeqZdU8,95
|
14
14
|
keras_hub/src/bounding_box/converters.py,sha256=UUp1hwegpDZyIo8sh9TLNy1v6JjwmvwzL6wmHFMAtbk,21916
|
15
15
|
keras_hub/src/bounding_box/formats.py,sha256=YmskOz2BOSat7NaE__J9VfpSNGPJJR0znSzA4lp8MMI,3868
|
@@ -158,7 +158,7 @@ keras_hub/src/models/efficientnet/efficientnet_backbone.py,sha256=PJvBVvOUYZoeES
|
|
158
158
|
keras_hub/src/models/efficientnet/efficientnet_image_classifier.py,sha256=e37sWzxkQW0CuM78WOJozqHDErWiRLLmQbOV-uY7hI4,593
|
159
159
|
keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py,sha256=Njs8nGyz28Xngzrc7fQrIJH6ItDkDJUPEsBGKVlKgZs,612
|
160
160
|
keras_hub/src/models/efficientnet/efficientnet_image_converter.py,sha256=X9Io6IhjoUglywiyph48C0rt9Xp-3ZW4rsIzyt7zkmg,387
|
161
|
-
keras_hub/src/models/efficientnet/efficientnet_presets.py,sha256=
|
161
|
+
keras_hub/src/models/efficientnet/efficientnet_presets.py,sha256=yiXGMl5w5EE_2L42oYwkX28x-2lFxmgHT-HVneSxCbo,7610
|
162
162
|
keras_hub/src/models/efficientnet/fusedmbconv.py,sha256=7-3FzqCqjPC1WaYfYqluryegKpkqFlXZ32Y4y7VJ5G0,9503
|
163
163
|
keras_hub/src/models/efficientnet/mbconv.py,sha256=9tHiRWAO3KafgdqO5FYshdkGfXDx_zEkaiqA93ZiDbI,8942
|
164
164
|
keras_hub/src/models/electra/__init__.py,sha256=vaXl_uQx_oLeKZWxmc1NRgCJfHpYJ35JeF9as8U0q5M,263
|
@@ -185,7 +185,7 @@ keras_hub/src/models/flux/__init__.py,sha256=rBO-FNMbnfABw2QQazRmuWpIhhiVXwowaYQ
|
|
185
185
|
keras_hub/src/models/flux/flux_layers.py,sha256=wevcAEbayBD8bVm-21FBi2LQ13pZzB99-qlTq1il5tI,16355
|
186
186
|
keras_hub/src/models/flux/flux_maths.py,sha256=2pnHW8HW7V2JZ8HIrUwE-UU4klpFQaOkoAvG5nWVfyY,7502
|
187
187
|
keras_hub/src/models/flux/flux_model.py,sha256=K92PyeFHIp8SwXuxhv__XCEaQ2wqSW1jOb97I4S24Rw,8991
|
188
|
-
keras_hub/src/models/flux/flux_presets.py,sha256=
|
188
|
+
keras_hub/src/models/flux/flux_presets.py,sha256=z7C_FbI1_F5YETXuWpc7Yh_0w-5N0eBQy6Oks_X9W88,54
|
189
189
|
keras_hub/src/models/flux/flux_text_to_image.py,sha256=mI_QxOzjXl3b5s7Q1LZemceCdeboqPD5ilEPEEyer40,4169
|
190
190
|
keras_hub/src/models/flux/flux_text_to_image_preprocessor.py,sha256=Fs9jr97QtmRUbRRz1kITpkuhDM2GoV3n0XSFC-qQA14,2252
|
191
191
|
keras_hub/src/models/gemma/__init__.py,sha256=rVzOJMJ39bgVlT8UdC0t8PlN2c237GKTBmfHIsbPuOQ,251
|
@@ -241,7 +241,7 @@ keras_hub/src/models/mit/mit_image_classifier.py,sha256=HKj6u6AqPbxinGYPRsz_ZdW2
|
|
241
241
|
keras_hub/src/models/mit/mit_image_classifier_preprocessor.py,sha256=oNYs-pUK8VnzNEPcq5beYX0qfnnlbJcxY8o5s7bVQes,504
|
242
242
|
keras_hub/src/models/mit/mit_image_converter.py,sha256=Mw7nV-OzyBveGuZUNFsPPKyq9jXJVW2_cVH024CNkXM,311
|
243
243
|
keras_hub/src/models/mit/mit_layers.py,sha256=HUJO5uhJ6jgwANpwbQdPlEVwLRVb3BZQ-Ftjg3B9XvY,9734
|
244
|
-
keras_hub/src/models/mit/mit_presets.py,sha256=
|
244
|
+
keras_hub/src/models/mit/mit_presets.py,sha256=M2T9x7CgEW-t5kBtbNqelL63OpCDjt2-wWyRP66tJrc,4528
|
245
245
|
keras_hub/src/models/mobilenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
246
246
|
keras_hub/src/models/mobilenet/mobilenet_backbone.py,sha256=oIhNjPRWVtJvQbjaWxXzgIQwtRV10-dIWVR7LJM4Ev0,18192
|
247
247
|
keras_hub/src/models/mobilenet/mobilenet_image_classifier.py,sha256=l5jo99I0fLlbwLub5jHw07CjC-NnmuV-ySJwXGI20Ek,351
|
@@ -257,7 +257,7 @@ keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py,sha256=AViEs6YltUqWnIVo7
|
|
257
257
|
keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py,sha256=F57y0fZ0wYYxfGIjfrJc1W9uQpViYFx5bvFjj5CqUbI,4814
|
258
258
|
keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py,sha256=24ABQ1vGlppV-KfWh0YqJjzM_Lu2GIwvyJ4X2XXie_A,5616
|
259
259
|
keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=5yM_jUtrFsWIieiwfFBoP7mtPmQAwywkeLKbd7fhmzk,371
|
260
|
-
keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=
|
260
|
+
keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=Sk39FWJq2p-XHFejdm9i5X0hsoUnlHMK86qcr29_fPQ,8985
|
261
261
|
keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=ljTiADHo0Ok88q-jVzwJIle2C8xcxnudLTsBLzIySaM,2415
|
262
262
|
keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=ViPKfGksbxBGJ3iS3M_KWxRc8Ie4LF7rWWUKDiqECJE,18285
|
263
263
|
keras_hub/src/models/phi3/__init__.py,sha256=zIbf1MU-ks91mEkjTRJAsk51N3BBnXDF2JM1vO-13PQ,245
|
@@ -267,7 +267,7 @@ keras_hub/src/models/phi3/phi3_causal_lm.py,sha256=kMMq7fQ8hlb_mLO_nU1lGVqILayul
|
|
267
267
|
keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py,sha256=gNx1k-n7d0XDwpNbcZiO9yLkwdXYCvwGyA3b0QCnPAE,3043
|
268
268
|
keras_hub/src/models/phi3/phi3_decoder.py,sha256=gTRqn-Wu9dz0u9VKrsdjkSs2mHvpKl2bCjOBLlJc9lg,9586
|
269
269
|
keras_hub/src/models/phi3/phi3_layernorm.py,sha256=Oqu81tGd97Lzx3kG1QEtZ0S6gbfn3GLgRzY8UWGJRBo,1049
|
270
|
-
keras_hub/src/models/phi3/phi3_presets.py,sha256=
|
270
|
+
keras_hub/src/models/phi3/phi3_presets.py,sha256=4brTcMrm5KLBb0gl18F5oCRciap3rDxdfLIkKZkB0S0,1366
|
271
271
|
keras_hub/src/models/phi3/phi3_rotary_embedding.py,sha256=wqiRn8nETNcLc5Vsm_d_8s11Ro6ibWZbWvODdLqIOo4,5013
|
272
272
|
keras_hub/src/models/phi3/phi3_tokenizer.py,sha256=bOPH14wTVVHJHq8mgzXLjsgvKMNhfO8eayevAPpjYVA,1992
|
273
273
|
keras_hub/src/models/resnet/__init__.py,sha256=C5UqlQ6apm8WSp1bnrxB6Bi3BGaknxRQs-r3b2wpaGA,257
|
@@ -275,7 +275,7 @@ keras_hub/src/models/resnet/resnet_backbone.py,sha256=3acTjdWbnos8l_TPxYLgoV3Y4V
|
|
275
275
|
keras_hub/src/models/resnet/resnet_image_classifier.py,sha256=nf35EKDzvBkfhHsK-s6Ks0nbhvKO7HEOYZm94YckyWE,510
|
276
276
|
keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py,sha256=fM7gyQ0qB-RRuI4USJkRD6q9-HVfuC71e-BLTo-UhHQ,543
|
277
277
|
keras_hub/src/models/resnet/resnet_image_converter.py,sha256=fgTxihJznGFss-y3Z-jp0JE3X1gaaB2y-f2KMwrT8Pk,342
|
278
|
-
keras_hub/src/models/resnet/resnet_presets.py,sha256=
|
278
|
+
keras_hub/src/models/resnet/resnet_presets.py,sha256=88o1gF2rWkFfzNYqvBKhSoQTxbZmxR5Ex2amodyv4zU,6947
|
279
279
|
keras_hub/src/models/retinanet/__init__.py,sha256=veWIFvMN6151M69l7FvTcI-IIEe_8dLmNO5NLOszQ1c,275
|
280
280
|
keras_hub/src/models/retinanet/anchor_generator.py,sha256=0OgKSW3OKmbc0cOPHF6FYTAzn7fcHklg665PGSwAaDM,6504
|
281
281
|
keras_hub/src/models/retinanet/box_matcher.py,sha256=l820r1R-ByqiyVgmZ0YFjjz0njchDda-wItzLn1X84o,10834
|
@@ -393,7 +393,7 @@ keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=Zz1SGgArykxBVWnS
|
|
393
393
|
keras_hub/src/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
394
394
|
keras_hub/src/utils/keras_utils.py,sha256=lrZuC8HL2lmQfbHaS_t1JUyJann_ji2iTYE0Fzos8PU,1969
|
395
395
|
keras_hub/src/utils/pipeline_model.py,sha256=jgzB6NQPSl0KOu08N-TazfOnXnUJbZjH2EXXhx25Ftg,9084
|
396
|
-
keras_hub/src/utils/preset_utils.py,sha256=
|
396
|
+
keras_hub/src/utils/preset_utils.py,sha256=MFQqOIIWvfYToiUHfpPX0lERmgCkz09bM9L67E44H3s,31115
|
397
397
|
keras_hub/src/utils/python_utils.py,sha256=N8nWeO3san4YnGkffRXG3Ix7VEIMTKSN21FX5TuL7G8,202
|
398
398
|
keras_hub/src/utils/tensor_utils.py,sha256=YVJesN91bk-OzJXY1mOKBppuY8noBU7zhPQNXPxZVGc,14646
|
399
399
|
keras_hub/src/utils/imagenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -417,7 +417,7 @@ keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYum
|
|
417
417
|
keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
|
418
418
|
keras_hub/src/utils/transformers/preset_loader.py,sha256=DgGJXbTSB9Na8FIR-YWWVqQPOFxHwWrGm41EwcS_EFs,3797
|
419
419
|
keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
|
420
|
-
keras_hub_nightly-0.19.0.
|
421
|
-
keras_hub_nightly-0.19.0.
|
422
|
-
keras_hub_nightly-0.19.0.
|
423
|
-
keras_hub_nightly-0.19.0.
|
420
|
+
keras_hub_nightly-0.19.0.dev202412210344.dist-info/METADATA,sha256=M-NE8Cesul1Q2hYvqq1Iu8qlCW-rJXGB2tc-nabBIy0,7263
|
421
|
+
keras_hub_nightly-0.19.0.dev202412210344.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
|
422
|
+
keras_hub_nightly-0.19.0.dev202412210344.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
423
|
+
keras_hub_nightly-0.19.0.dev202412210344.dist-info/RECORD,,
|
File without changes
|