keras-hub-nightly 0.19.0.dev202412190352__py3-none-any.whl → 0.19.0.dev202412200346__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -454,16 +454,6 @@ def load_json(preset, config_file=CONFIG_FILE):
454
454
  return config
455
455
 
456
456
 
457
- def load_serialized_object(config, **kwargs):
458
- # `dtype` in config might be a serialized `DTypePolicy` or `DTypePolicyMap`.
459
- # Ensure that `dtype` is properly configured.
460
- dtype = kwargs.pop("dtype", None)
461
- config = set_dtype_in_config(config, dtype)
462
-
463
- config["config"] = {**config["config"], **kwargs}
464
- return keras.saving.deserialize_keras_object(config)
465
-
466
-
467
457
  def check_config_class(config):
468
458
  """Validate a preset is being loaded on the correct class."""
469
459
  registered_name = config["registered_name"]
@@ -631,7 +621,7 @@ class KerasPresetLoader(PresetLoader):
631
621
  return check_config_class(self.config)
632
622
 
633
623
  def load_backbone(self, cls, load_weights, **kwargs):
634
- backbone = load_serialized_object(self.config, **kwargs)
624
+ backbone = self._load_serialized_object(self.config, **kwargs)
635
625
  if load_weights:
636
626
  jax_memory_cleanup(backbone)
637
627
  backbone.load_weights(get_file(self.preset, MODEL_WEIGHTS_FILE))
@@ -639,18 +629,18 @@ class KerasPresetLoader(PresetLoader):
639
629
 
640
630
  def load_tokenizer(self, cls, config_file=TOKENIZER_CONFIG_FILE, **kwargs):
641
631
  tokenizer_config = load_json(self.preset, config_file)
642
- tokenizer = load_serialized_object(tokenizer_config, **kwargs)
632
+ tokenizer = self._load_serialized_object(tokenizer_config, **kwargs)
643
633
  if hasattr(tokenizer, "load_preset_assets"):
644
634
  tokenizer.load_preset_assets(self.preset)
645
635
  return tokenizer
646
636
 
647
637
  def load_audio_converter(self, cls, **kwargs):
648
638
  converter_config = load_json(self.preset, AUDIO_CONVERTER_CONFIG_FILE)
649
- return load_serialized_object(converter_config, **kwargs)
639
+ return self._load_serialized_object(converter_config, **kwargs)
650
640
 
651
641
  def load_image_converter(self, cls, **kwargs):
652
642
  converter_config = load_json(self.preset, IMAGE_CONVERTER_CONFIG_FILE)
653
- return load_serialized_object(converter_config, **kwargs)
643
+ return self._load_serialized_object(converter_config, **kwargs)
654
644
 
655
645
  def load_task(self, cls, load_weights, load_task_weights, **kwargs):
656
646
  # If there is no `task.json` or it's for the wrong class delegate to the
@@ -671,7 +661,7 @@ class KerasPresetLoader(PresetLoader):
671
661
  backbone_config = task_config["config"]["backbone"]["config"]
672
662
  backbone_config = {**backbone_config, **backbone_kwargs}
673
663
  task_config["config"]["backbone"]["config"] = backbone_config
674
- task = load_serialized_object(task_config, **kwargs)
664
+ task = self._load_serialized_object(task_config, **kwargs)
675
665
  if task.preprocessor and hasattr(
676
666
  task.preprocessor, "load_preset_assets"
677
667
  ):
@@ -699,11 +689,20 @@ class KerasPresetLoader(PresetLoader):
699
689
  if not issubclass(check_config_class(preprocessor_json), cls):
700
690
  return super().load_preprocessor(cls, **kwargs)
701
691
  # We found a `preprocessing.json` with a complete config for our class.
702
- preprocessor = load_serialized_object(preprocessor_json, **kwargs)
692
+ preprocessor = self._load_serialized_object(preprocessor_json, **kwargs)
703
693
  if hasattr(preprocessor, "load_preset_assets"):
704
694
  preprocessor.load_preset_assets(self.preset)
705
695
  return preprocessor
706
696
 
697
+ def _load_serialized_object(self, config, **kwargs):
698
+ # `dtype` in config might be a serialized `DTypePolicy` or
699
+ # `DTypePolicyMap`. Ensure that `dtype` is properly configured.
700
+ dtype = kwargs.pop("dtype", None)
701
+ config = set_dtype_in_config(config, dtype)
702
+
703
+ config["config"] = {**config["config"], **kwargs}
704
+ return keras.saving.deserialize_keras_object(config)
705
+
707
706
 
708
707
  class KerasPresetSaver:
709
708
  def __init__(self, preset_dir):
@@ -787,6 +786,8 @@ class KerasPresetSaver:
787
786
  tasks = list_subclasses(Task)
788
787
  tasks = filter(lambda x: x.backbone_cls is type(layer), tasks)
789
788
  tasks = [task.__base__.__name__ for task in tasks]
789
+ # Keep task list alphabetical.
790
+ tasks = sorted(tasks)
790
791
 
791
792
  keras_version = keras.version() if hasattr(keras, "version") else None
792
793
  metadata = {
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.19.0.dev202412190352"
4
+ __version__ = "0.19.0.dev202412200346"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: keras-hub-nightly
3
- Version: 0.19.0.dev202412190352
3
+ Version: 0.19.0.dev202412200346
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -9,7 +9,7 @@ keras_hub/api/tokenizers/__init__.py,sha256=mtJgQy1spfQnPAkeLoeinsT_W9iCWHlJXwzc
9
9
  keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
10
10
  keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
11
  keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
12
- keras_hub/src/version_utils.py,sha256=mkSaU8Ln1tI0_K9qOrQhUYjd2Esml96pAUrGt42ls1Q,222
12
+ keras_hub/src/version_utils.py,sha256=Tk7iPoppgJnEhbF7HzURDrFGXD3R74NzoSPr_MJo9yY,222
13
13
  keras_hub/src/bounding_box/__init__.py,sha256=7i6KnGupN4AVivR_dFjQyuuTbI0GkHy8d-aMXeqZdU8,95
14
14
  keras_hub/src/bounding_box/converters.py,sha256=UUp1hwegpDZyIo8sh9TLNy1v6JjwmvwzL6wmHFMAtbk,21916
15
15
  keras_hub/src/bounding_box/formats.py,sha256=YmskOz2BOSat7NaE__J9VfpSNGPJJR0znSzA4lp8MMI,3868
@@ -393,7 +393,7 @@ keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=Zz1SGgArykxBVWnS
393
393
  keras_hub/src/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
394
394
  keras_hub/src/utils/keras_utils.py,sha256=lrZuC8HL2lmQfbHaS_t1JUyJann_ji2iTYE0Fzos8PU,1969
395
395
  keras_hub/src/utils/pipeline_model.py,sha256=jgzB6NQPSl0KOu08N-TazfOnXnUJbZjH2EXXhx25Ftg,9084
396
- keras_hub/src/utils/preset_utils.py,sha256=P3vqzVb3M-gJmPJDGOe1k0KLmHrhgi4ULeg-L_n5jhM,30976
396
+ keras_hub/src/utils/preset_utils.py,sha256=MFQqOIIWvfYToiUHfpPX0lERmgCkz09bM9L67E44H3s,31115
397
397
  keras_hub/src/utils/python_utils.py,sha256=N8nWeO3san4YnGkffRXG3Ix7VEIMTKSN21FX5TuL7G8,202
398
398
  keras_hub/src/utils/tensor_utils.py,sha256=YVJesN91bk-OzJXY1mOKBppuY8noBU7zhPQNXPxZVGc,14646
399
399
  keras_hub/src/utils/imagenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -417,7 +417,7 @@ keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYum
417
417
  keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
418
418
  keras_hub/src/utils/transformers/preset_loader.py,sha256=DgGJXbTSB9Na8FIR-YWWVqQPOFxHwWrGm41EwcS_EFs,3797
419
419
  keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
420
- keras_hub_nightly-0.19.0.dev202412190352.dist-info/METADATA,sha256=4ggUncw0HlT-6YiKGo6xR7EWBavcvzwzTovgZ4hRwF8,7263
421
- keras_hub_nightly-0.19.0.dev202412190352.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
422
- keras_hub_nightly-0.19.0.dev202412190352.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
423
- keras_hub_nightly-0.19.0.dev202412190352.dist-info/RECORD,,
420
+ keras_hub_nightly-0.19.0.dev202412200346.dist-info/METADATA,sha256=gnzV7FHJ7Cx0ZFRZ-1WimsdR_QeM-z_8z8ycCRAC808,7263
421
+ keras_hub_nightly-0.19.0.dev202412200346.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
422
+ keras_hub_nightly-0.19.0.dev202412200346.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
423
+ keras_hub_nightly-0.19.0.dev202412200346.dist-info/RECORD,,