keras-hub-nightly 0.16.1.dev202410200345__py3-none-any.whl → 0.19.0.dev202412070351__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (109) hide show
  1. keras_hub/api/layers/__init__.py +12 -0
  2. keras_hub/api/models/__init__.py +32 -0
  3. keras_hub/src/bounding_box/__init__.py +2 -0
  4. keras_hub/src/bounding_box/converters.py +102 -12
  5. keras_hub/src/layers/modeling/rms_normalization.py +34 -0
  6. keras_hub/src/layers/modeling/transformer_encoder.py +27 -7
  7. keras_hub/src/layers/preprocessing/image_converter.py +5 -0
  8. keras_hub/src/models/albert/albert_presets.py +0 -8
  9. keras_hub/src/models/bart/bart_presets.py +0 -6
  10. keras_hub/src/models/bert/bert_presets.py +0 -20
  11. keras_hub/src/models/bloom/bloom_presets.py +0 -16
  12. keras_hub/src/models/clip/__init__.py +5 -0
  13. keras_hub/src/models/clip/clip_backbone.py +286 -0
  14. keras_hub/src/models/clip/clip_encoder_block.py +19 -4
  15. keras_hub/src/models/clip/clip_image_converter.py +8 -0
  16. keras_hub/src/models/clip/clip_presets.py +93 -0
  17. keras_hub/src/models/clip/clip_text_encoder.py +4 -1
  18. keras_hub/src/models/clip/clip_tokenizer.py +18 -3
  19. keras_hub/src/models/clip/clip_vision_embedding.py +101 -0
  20. keras_hub/src/models/clip/clip_vision_encoder.py +159 -0
  21. keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -10
  22. keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +0 -2
  23. keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +5 -3
  24. keras_hub/src/models/densenet/densenet_backbone.py +1 -1
  25. keras_hub/src/models/densenet/densenet_presets.py +0 -6
  26. keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -6
  27. keras_hub/src/models/efficientnet/__init__.py +9 -0
  28. keras_hub/src/models/efficientnet/cba.py +141 -0
  29. keras_hub/src/models/efficientnet/efficientnet_backbone.py +139 -56
  30. keras_hub/src/models/efficientnet/efficientnet_image_classifier.py +14 -0
  31. keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py +16 -0
  32. keras_hub/src/models/efficientnet/efficientnet_image_converter.py +10 -0
  33. keras_hub/src/models/efficientnet/efficientnet_presets.py +192 -0
  34. keras_hub/src/models/efficientnet/fusedmbconv.py +81 -36
  35. keras_hub/src/models/efficientnet/mbconv.py +52 -21
  36. keras_hub/src/models/electra/electra_presets.py +0 -12
  37. keras_hub/src/models/f_net/f_net_presets.py +0 -4
  38. keras_hub/src/models/falcon/falcon_presets.py +0 -2
  39. keras_hub/src/models/flux/__init__.py +5 -0
  40. keras_hub/src/models/flux/flux_layers.py +494 -0
  41. keras_hub/src/models/flux/flux_maths.py +218 -0
  42. keras_hub/src/models/flux/flux_model.py +231 -0
  43. keras_hub/src/models/flux/flux_presets.py +14 -0
  44. keras_hub/src/models/flux/flux_text_to_image.py +142 -0
  45. keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +73 -0
  46. keras_hub/src/models/gemma/gemma_presets.py +0 -40
  47. keras_hub/src/models/gpt2/gpt2_presets.py +0 -9
  48. keras_hub/src/models/image_object_detector.py +87 -0
  49. keras_hub/src/models/image_object_detector_preprocessor.py +57 -0
  50. keras_hub/src/models/image_to_image.py +16 -10
  51. keras_hub/src/models/inpaint.py +20 -13
  52. keras_hub/src/models/llama/llama_backbone.py +1 -1
  53. keras_hub/src/models/llama/llama_presets.py +5 -15
  54. keras_hub/src/models/llama3/llama3_presets.py +0 -8
  55. keras_hub/src/models/mistral/mistral_presets.py +0 -6
  56. keras_hub/src/models/mit/mit_backbone.py +41 -27
  57. keras_hub/src/models/mit/mit_layers.py +9 -7
  58. keras_hub/src/models/mit/mit_presets.py +12 -24
  59. keras_hub/src/models/opt/opt_presets.py +0 -8
  60. keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +61 -11
  61. keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +21 -23
  62. keras_hub/src/models/pali_gemma/pali_gemma_presets.py +166 -10
  63. keras_hub/src/models/pali_gemma/pali_gemma_vit.py +12 -11
  64. keras_hub/src/models/phi3/phi3_presets.py +0 -4
  65. keras_hub/src/models/resnet/resnet_presets.py +10 -42
  66. keras_hub/src/models/retinanet/__init__.py +5 -0
  67. keras_hub/src/models/retinanet/anchor_generator.py +52 -53
  68. keras_hub/src/models/retinanet/feature_pyramid.py +99 -36
  69. keras_hub/src/models/retinanet/non_max_supression.py +1 -0
  70. keras_hub/src/models/retinanet/prediction_head.py +192 -0
  71. keras_hub/src/models/retinanet/retinanet_backbone.py +146 -0
  72. keras_hub/src/models/retinanet/retinanet_image_converter.py +53 -0
  73. keras_hub/src/models/retinanet/retinanet_label_encoder.py +49 -51
  74. keras_hub/src/models/retinanet/retinanet_object_detector.py +382 -0
  75. keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py +14 -0
  76. keras_hub/src/models/retinanet/retinanet_presets.py +15 -0
  77. keras_hub/src/models/roberta/roberta_presets.py +0 -4
  78. keras_hub/src/models/sam/sam_backbone.py +0 -1
  79. keras_hub/src/models/sam/sam_image_segmenter.py +9 -10
  80. keras_hub/src/models/sam/sam_presets.py +0 -6
  81. keras_hub/src/models/segformer/__init__.py +8 -0
  82. keras_hub/src/models/segformer/segformer_backbone.py +163 -0
  83. keras_hub/src/models/segformer/segformer_image_converter.py +8 -0
  84. keras_hub/src/models/segformer/segformer_image_segmenter.py +171 -0
  85. keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +31 -0
  86. keras_hub/src/models/segformer/segformer_presets.py +124 -0
  87. keras_hub/src/models/stable_diffusion_3/mmdit.py +41 -0
  88. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +38 -21
  89. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +3 -3
  90. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +3 -3
  91. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +28 -4
  92. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +1 -1
  93. keras_hub/src/models/t5/t5_backbone.py +5 -4
  94. keras_hub/src/models/t5/t5_presets.py +41 -13
  95. keras_hub/src/models/text_to_image.py +13 -5
  96. keras_hub/src/models/vgg/vgg_backbone.py +1 -1
  97. keras_hub/src/models/vgg/vgg_presets.py +0 -8
  98. keras_hub/src/models/whisper/whisper_audio_converter.py +1 -1
  99. keras_hub/src/models/whisper/whisper_presets.py +0 -20
  100. keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -4
  101. keras_hub/src/tests/test_case.py +25 -0
  102. keras_hub/src/utils/preset_utils.py +17 -4
  103. keras_hub/src/utils/timm/convert_efficientnet.py +449 -0
  104. keras_hub/src/utils/timm/preset_loader.py +3 -0
  105. keras_hub/src/version_utils.py +1 -1
  106. {keras_hub_nightly-0.16.1.dev202410200345.dist-info → keras_hub_nightly-0.19.0.dev202412070351.dist-info}/METADATA +15 -26
  107. {keras_hub_nightly-0.16.1.dev202410200345.dist-info → keras_hub_nightly-0.19.0.dev202412070351.dist-info}/RECORD +109 -76
  108. {keras_hub_nightly-0.16.1.dev202410200345.dist-info → keras_hub_nightly-0.19.0.dev202412070351.dist-info}/WHEEL +1 -1
  109. {keras_hub_nightly-0.16.1.dev202410200345.dist-info → keras_hub_nightly-0.19.0.dev202412070351.dist-info}/top_level.txt +0 -0
@@ -4,6 +4,7 @@ from keras_hub.src.models.image_classifier import ImageClassifier
4
4
  from keras_hub.src.utils.preset_utils import PresetLoader
5
5
  from keras_hub.src.utils.preset_utils import jax_memory_cleanup
6
6
  from keras_hub.src.utils.timm import convert_densenet
7
+ from keras_hub.src.utils.timm import convert_efficientnet
7
8
  from keras_hub.src.utils.timm import convert_resnet
8
9
  from keras_hub.src.utils.timm import convert_vgg
9
10
  from keras_hub.src.utils.transformers.safetensor_utils import SafetensorLoader
@@ -19,6 +20,8 @@ class TimmPresetLoader(PresetLoader):
19
20
  self.converter = convert_densenet
20
21
  elif "vgg" in architecture:
21
22
  self.converter = convert_vgg
23
+ elif "efficientnet" in architecture:
24
+ self.converter = convert_efficientnet
22
25
  else:
23
26
  raise ValueError(
24
27
  "KerasHub has no converter for timm models "
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.16.1.dev202410200345"
4
+ __version__ = "0.19.0.dev202412070351"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: keras-hub-nightly
3
- Version: 0.16.1.dev202410200345
3
+ Version: 0.19.0.dev202412070351
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -26,10 +26,10 @@ Requires-Dist: packaging
26
26
  Requires-Dist: regex
27
27
  Requires-Dist: rich
28
28
  Requires-Dist: kagglehub
29
- Requires-Dist: tensorflow-text ; platform_system != "Darwin"
29
+ Requires-Dist: tensorflow-text; platform_system != "Darwin"
30
30
  Provides-Extra: extras
31
- Requires-Dist: rouge-score ; extra == 'extras'
32
- Requires-Dist: sentencepiece ; extra == 'extras'
31
+ Requires-Dist: rouge-score; extra == "extras"
32
+ Requires-Dist: sentencepiece; extra == "extras"
33
33
 
34
34
  # KerasHub: Multi-framework Models
35
35
  [![](https://github.com/keras-team/keras-hub/workflows/Tests/badge.svg?branch=master)](https://github.com/keras-team/keras-hub/actions?query=workflow%3ATests+branch%3Amaster)
@@ -37,11 +37,8 @@ Requires-Dist: sentencepiece ; extra == 'extras'
37
37
  [![contributions welcome](https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat)](https://github.com/keras-team/keras-hub/issues)
38
38
 
39
39
  > [!IMPORTANT]
40
- > 📢 KerasNLP is becoming KerasHub! 📢 Read
40
+ > 📢 KerasNLP is now KerasHub! 📢 Read
41
41
  > [the announcement](https://github.com/keras-team/keras-hub/issues/1831).
42
- >
43
- > We have renamed the repo to KerasHub in preparation for the release, but have not yet
44
- > released the new package. Follow the announcement for news.
45
42
 
46
43
  KerasHub is a library that supports natural language processing, computer
47
44
  vision, audio, and multimodal backbones and task models, working natively with
@@ -59,7 +56,7 @@ All models support JAX, TensorFlow, and PyTorch from a single model
59
56
  definition and can be fine-tuned on GPUs and TPUs out of the box. Models can
60
57
  be trained on individual accelerators with built-in PEFT techniques, or
61
58
  fine-tuned at scale with model and data parallel training. See our
62
- [Getting Started guide](https://keras.io/guides/keras_nlp/getting_started)
59
+ [Getting Started guide](https://keras.io/guides/keras_hub/getting_started)
63
60
  to start learning our API. Browse our models on
64
61
  [Kaggle](https://www.kaggle.com/organizations/keras/models).
65
62
  We welcome contributions.
@@ -68,9 +65,9 @@ We welcome contributions.
68
65
 
69
66
  ### For everyone
70
67
 
71
- - [Home Page](https://keras.io/keras_nlp)
72
- - [Developer Guides](https://keras.io/guides/keras_nlp)
73
- - [API Reference](https://keras.io/api/keras_nlp)
68
+ - [Home Page](https://keras.io/keras_hub)
69
+ - [Developer Guides](https://keras.io/guides/keras_hub)
70
+ - [API Reference](https://keras.io/api/keras_hub)
74
71
  - [Pre-trained Models](https://www.kaggle.com/organizations/keras/models)
75
72
 
76
73
  ### For contributors
@@ -89,7 +86,7 @@ Fine-tune a BERT classifier on IMDb movie reviews:
89
86
  import os
90
87
  os.environ["KERAS_BACKEND"] = "jax" # Or "tensorflow" or "torch"!
91
88
 
92
- import keras_nlp
89
+ import keras_hub
93
90
  import tensorflow_datasets as tfds
94
91
 
95
92
  imdb_train, imdb_test = tfds.load(
@@ -100,7 +97,7 @@ imdb_train, imdb_test = tfds.load(
100
97
  )
101
98
 
102
99
  # Load a BERT model.
103
- classifier = keras_nlp.models.Classifier.from_preset(
100
+ classifier = keras_hub.models.Classifier.from_preset(
104
101
  "bert_base_en",
105
102
  num_classes=2,
106
103
  activation="softmax",
@@ -112,25 +109,17 @@ classifier.fit(imdb_train, validation_data=imdb_test)
112
109
  classifier.predict(["What an amazing movie!", "A total waste of my time."])
113
110
  ```
114
111
 
115
- Try it out [in a colab](https://colab.research.google.com/gist/mattdangerw/e457e42d5ea827110c8d5cb4eb9d9a07/kerasnlp-quickstart.ipynb).
112
+ Try it out [in a colab](https://colab.research.google.com/drive/1gSWkh3yOLwmKAaNh2dQQ6kQIlnGte7P2?usp=sharing).
116
113
  For more in depth guides and examples, visit
117
- [keras.io/keras_nlp](https://keras.io/keras_nlp/).
114
+ [keras.io/keras_hub](https://keras.io/keras_hub/).
118
115
 
119
116
  ## Installation
120
117
 
121
- KerasHub is currently in pre-release. Note that pre-release versions may
122
- introduce breaking changes to the API in future versions. For a stable and
123
- supported experience, we recommend installing `keras-nlp` version 0.15.1:
124
-
125
- ```bash
126
- pip install keras-nlp==0.15.1
127
- ```
128
-
129
- To try out the latest pre-release version of KerasHub, you can use
118
+ To try out the latest version of KerasHub, you can use
130
119
  our nightly package:
131
120
 
132
121
  ```bash
133
- pip install keras-hub-nightly
122
+ pip install keras-hub
134
123
  ```
135
124
 
136
125
  KerasHub currently requires TensorFlow to be installed for use of the
@@ -1,17 +1,17 @@
1
1
  keras_hub/__init__.py,sha256=QGdXyHgYt6cMUAP1ebxwc6oR86dE0dkMxNy2eOCQtFo,855
2
2
  keras_hub/api/__init__.py,sha256=spMxsgqzjpeuC8rY4WP-2kAZ2qwwKRSbFwddXgUjqQE,524
3
3
  keras_hub/api/bounding_box/__init__.py,sha256=T8R_X7BPm0et1xaZq8565uJmid7dylsSFSj4V-rGuFQ,1097
4
- keras_hub/api/layers/__init__.py,sha256=OpXnXktkkpTjlufy1u2hLPqV0cidG2B40x30jQGiy9U,2481
4
+ keras_hub/api/layers/__init__.py,sha256=DfLj9BOYb5jpa4oTA87Vb-j8mO-31a5RTEmcRm9YDpw,3027
5
5
  keras_hub/api/metrics/__init__.py,sha256=So8Ec-lOcTzn_UUMmAdzDm8RKkPu2dbRUm2px8gpUEI,381
6
- keras_hub/api/models/__init__.py,sha256=5EfZDUOnHStK8UE6f6ih7cQZo2ZyFeUO15T45TC1uNA,14819
6
+ keras_hub/api/models/__init__.py,sha256=vfATT7lif44sFf4wqfCrPyZHboL8r_PzIViOywpkp4I,16327
7
7
  keras_hub/api/samplers/__init__.py,sha256=n-_SEXxr2LNUzK2FqVFN7alsrkx1P_HOVTeLZKeGCdE,730
8
8
  keras_hub/api/tokenizers/__init__.py,sha256=_f-r_cyUM2fjBB7iO84ThOdqqsAxHNIewJ2EBDlM0cA,2524
9
9
  keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
10
10
  keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
11
  keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
12
- keras_hub/src/version_utils.py,sha256=vhdVfxhBYNF9KstNciGcRjXgFBojRjbm2hO-HcHlQ0E,222
13
- keras_hub/src/bounding_box/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
14
- keras_hub/src/bounding_box/converters.py,sha256=a5po8DBm87oz2EXfi-0uEZHCMlCJPIb4-MaZIdYx3Dg,17865
12
+ keras_hub/src/version_utils.py,sha256=q1abC40lYrqWMUXyNp-l6x-Yor9zsei2pIIakN8TLuA,222
13
+ keras_hub/src/bounding_box/__init__.py,sha256=7i6KnGupN4AVivR_dFjQyuuTbI0GkHy8d-aMXeqZdU8,95
14
+ keras_hub/src/bounding_box/converters.py,sha256=MOBXnjFXCTLVy5BiLrg30atJvlS5Y-9gVAna0M0pzEE,21916
15
15
  keras_hub/src/bounding_box/formats.py,sha256=YmskOz2BOSat7NaE__J9VfpSNGPJJR0znSzA4lp8MMI,3868
16
16
  keras_hub/src/bounding_box/iou.py,sha256=wmBKEUwu7Q-dJMoTO9I493NQAwpU7lF4oWLpccpkQ0I,9116
17
17
  keras_hub/src/bounding_box/to_dense.py,sha256=usSkar5PfEoW-ZasacBXNHpJ-XaRHLUTnSagef2sZxo,2775
@@ -26,15 +26,16 @@ keras_hub/src/layers/modeling/f_net_encoder.py,sha256=uUDGGuhyNL3m---TRqODmDyUp6
26
26
  keras_hub/src/layers/modeling/masked_lm_head.py,sha256=nCtn94HXK2nrWOjQRfW_HalKPKnr4Ko_3MOn0Tyw9u4,9003
27
27
  keras_hub/src/layers/modeling/position_embedding.py,sha256=FfTS6JGMhnOIzo9bHzvoxBbdQNctc32iRLI7ZjdxoTY,3850
28
28
  keras_hub/src/layers/modeling/reversible_embedding.py,sha256=HEkVACePzuHcSuAliyhtu-fsly7t3m1zKOwaMRAUzyE,11810
29
+ keras_hub/src/layers/modeling/rms_normalization.py,sha256=pG3QKOzbFbI5L_mqPz6LW2wifAnbwrVoQweh9C1iNL4,1120
29
30
  keras_hub/src/layers/modeling/rotary_embedding.py,sha256=seLCflCUVZ_JwsEQzcHH6USiOqJBcGySYL-ANHvXJ-E,6054
30
31
  keras_hub/src/layers/modeling/sine_position_encoding.py,sha256=NAPW9HaVTMNZgUJNzA3l1B3C_FNvaY7IW-5tQgFgnNg,3453
31
32
  keras_hub/src/layers/modeling/token_and_position_embedding.py,sha256=uFzsaA_QhrWoQi-THUHXtcY6nEHZMEGwoD5gqUBRNXA,5262
32
33
  keras_hub/src/layers/modeling/transformer_decoder.py,sha256=_JbCSdLSn1Am5Gqf32c5VXHMakct_HcbZfyFcEktYPg,21105
33
- keras_hub/src/layers/modeling/transformer_encoder.py,sha256=howjIXH_vgBOKaXaIa7mTg8xuIeXrmMZS29Zg1vSXOQ,9900
34
+ keras_hub/src/layers/modeling/transformer_encoder.py,sha256=8VSTM8rfWVpz2jnxD3fx-UqEjmya5VJaSR_EqjXsHUo,10593
34
35
  keras_hub/src/layers/modeling/transformer_layer_utils.py,sha256=FuznrW33iG50B-VDN8R1RjuA5JG72yNMJ1TBgWLxR0E,3487
35
36
  keras_hub/src/layers/preprocessing/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
36
37
  keras_hub/src/layers/preprocessing/audio_converter.py,sha256=YGh_kQw65a1Z6S5zzSNVP-ChyLYHq3-eOYpOS53xIN8,4156
37
- keras_hub/src/layers/preprocessing/image_converter.py,sha256=j8SdL-pFOrWIGIV_HwlABUPhdcSOZXYhPRlvFCukAU8,10180
38
+ keras_hub/src/layers/preprocessing/image_converter.py,sha256=QZr1XGsIR67-wuTspHgBt9a44mjuwIw9b5frzSF5Ia8,10542
38
39
  keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py,sha256=itxWq3FHYlR0I7jKarQlSKbSmRLl9ut_UTSP3ZDwP0A,8162
39
40
  keras_hub/src/layers/preprocessing/multi_segment_packer.py,sha256=ZNqnUFnc9Af122Q7T6YyUoXgIdU9AgIJfsvR1UrCjFU,12068
40
41
  keras_hub/src/layers/preprocessing/preprocessing_layer.py,sha256=WyX41b9Ev_YJ5uVQVOAqD0PQasMOPDoyDjl_PkzkAkE,687
@@ -55,10 +56,12 @@ keras_hub/src/models/causal_lm_preprocessor.py,sha256=YY7VJZicdmnjDSWi9g4_pEpd5b
55
56
  keras_hub/src/models/feature_pyramid_backbone.py,sha256=clEW-TTQSVJ_5qFNdDF0iABkin1p_xlBUFjJrC7T0IA,2247
56
57
  keras_hub/src/models/image_classifier.py,sha256=yt6cjhPfqs8A_eWXBsXdXFzn-aRgH2rVHUq7Zu7CyK8,7804
57
58
  keras_hub/src/models/image_classifier_preprocessor.py,sha256=YdewYfMPVHI7gdhbBI-zVcy4NSfg0bhiOHTmGEKoOYI,2668
59
+ keras_hub/src/models/image_object_detector.py,sha256=i9-Hu0U_dpDj1b1R76wGjk3SEFPPL9tx2XPpkHGpGVM,3721
60
+ keras_hub/src/models/image_object_detector_preprocessor.py,sha256=8Cg_Wv95YszBZvO3T4mtAKdNWuKyXzuZ-32iLe2-65U,2232
58
61
  keras_hub/src/models/image_segmenter.py,sha256=C1bzIO59pG58iist5GLn_qnlotDpcAVxPV_8a68BkAc,2876
59
62
  keras_hub/src/models/image_segmenter_preprocessor.py,sha256=IMmVJWBc0VZ1-5jLmFmmwQ3q_oQnhIfCE9A6nS1ss8Q,3743
60
- keras_hub/src/models/image_to_image.py,sha256=z2TfFh9DiaEj9u6hEY8May3B0etxhptttg6Bx6bbopM,16452
61
- keras_hub/src/models/inpaint.py,sha256=8TTusRRS7ntPoAd0BsuhEZjedtaoljI4ZbgKQ_bnF34,20411
63
+ keras_hub/src/models/image_to_image.py,sha256=IJLZ6svgvcQvypwF6oe4SbJj_Zuk2-CrgHFBQcsY7n8,16753
64
+ keras_hub/src/models/inpaint.py,sha256=fxZZrheYIK1rI6BjqZsxt9G2U0afMZR62Z87ZzuSNrQ,20815
62
65
  keras_hub/src/models/masked_lm.py,sha256=uXO_dE_hILlOC9jNr6oK6IHi9IGUqLyNGvr6nMt8Rk0,3576
63
66
  keras_hub/src/models/masked_lm_preprocessor.py,sha256=g8vrnyYwqdnSw5xppROM1Gzo_jmMWKYZoQCsKdfrFKk,5656
64
67
  keras_hub/src/models/preprocessor.py,sha256=KqUJrF24h_6h2CnkuyneqOioCa1Sd3ZA0qzq3BdLqUA,8496
@@ -67,18 +70,18 @@ keras_hub/src/models/seq_2_seq_lm_preprocessor.py,sha256=HUHRbWRG5SF1pPpotGzBhXl
67
70
  keras_hub/src/models/task.py,sha256=06ISrWbn7ab-H1uszIPogpt6PuM90xiXKvwrAIEsC-o,14570
68
71
  keras_hub/src/models/text_classifier.py,sha256=VBDvQUHTpJPqKp7A4VAtm35FOmJ3yMo0DW6GdX67xG0,4159
69
72
  keras_hub/src/models/text_classifier_preprocessor.py,sha256=EoWp-GHnaLnAKTdAzDmC-soAV92ATF3QozdubdV2WXI,4722
70
- keras_hub/src/models/text_to_image.py,sha256=7s6rB1To46A7l9ItqRw3Pe4DGRm7YnqbHJ-RyNAlLPE,12973
73
+ keras_hub/src/models/text_to_image.py,sha256=UN38s_CXk-acasPDPlBEZk4jlTJsGEtEpXKIZOaFtXE,13327
71
74
  keras_hub/src/models/albert/__init__.py,sha256=rR6q_-8FujB1FXp6r4KOI7xi4gFjtAhQwXjp-MIhiyg,257
72
75
  keras_hub/src/models/albert/albert_backbone.py,sha256=4NQFo8lhv8rFiNIwQeZxxKxFwT3nKcCt36FUa6oPGok,10073
73
76
  keras_hub/src/models/albert/albert_masked_lm.py,sha256=jG6FttE_MAyBe8GzOEXMjEem3wo6UFGvxM3lRmXuS70,4126
74
77
  keras_hub/src/models/albert/albert_masked_lm_preprocessor.py,sha256=OxAr-PwU2eELevV7uNJPpXNPpSySOouMfUJXbWKOyEE,4475
75
- keras_hub/src/models/albert/albert_presets.py,sha256=o_CbZCrixGInt2ofc-2S_b7pXnn1Ek-IoG8OH-SMHE0,2209
78
+ keras_hub/src/models/albert/albert_presets.py,sha256=F4pDS37EWUedEfb-kceRG5Rd08oT6VD_u4YplZs65jc,1681
76
79
  keras_hub/src/models/albert/albert_text_classifier.py,sha256=B5vE3S3XTt7oc7v-MTDTQGP1R4QFH2nqLak6jE0EZ5s,6645
77
80
  keras_hub/src/models/albert/albert_text_classifier_preprocessor.py,sha256=SPpjxnei4YMHqPuY6P4T8t7MPQgzyqtDxTMqsMllRtA,5539
78
81
  keras_hub/src/models/albert/albert_tokenizer.py,sha256=dNEkjqUHJXBgprMCNH8qsjhoXuxtqa0510iEa_tNsmU,2984
79
82
  keras_hub/src/models/bart/__init__.py,sha256=foekeZj_Z4I75KI2oB8AuyzXfRdEb8Fcvn-dbv9cTjs,245
80
83
  keras_hub/src/models/bart/bart_backbone.py,sha256=QIOYBBdIMLJPvCtSV235zN9TrViJEbTk8kIf3DM4o1E,9700
81
- keras_hub/src/models/bart/bart_presets.py,sha256=A4IkhcCHYn7pgcPv8gbedCRdpwxIubFXwEjzGnL-aVo,2151
84
+ keras_hub/src/models/bart/bart_presets.py,sha256=ppk9r_4Sm21XO6F9k3L946rkJBwWSLNT_zhBMeHakrA,1719
82
85
  keras_hub/src/models/bart/bart_seq_2_seq_lm.py,sha256=u-BFAMDND5ZPC0uc6HwWHmyJIs6Uz2CnFpyqo5A3atg,19323
83
86
  keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py,sha256=3_e-ULIcm_3DKgt7X7cvyLZEDIEkpu9HdANgH6MjZgg,4373
84
87
  keras_hub/src/models/bart/bart_tokenizer.py,sha256=Q7IXmIwXzhPSN427oQRyF9ufoExQGS184Yo_4boaOZo,2811
@@ -86,7 +89,7 @@ keras_hub/src/models/bert/__init__.py,sha256=K_UmCqDgOFFvXgzjXRn5oG0WWi53rAsQMOm
86
89
  keras_hub/src/models/bert/bert_backbone.py,sha256=o8GXUpoKPXLpfFzx5u9wI_3rZJeabPfYJEYSI09Clos,8069
87
90
  keras_hub/src/models/bert/bert_masked_lm.py,sha256=8gb1g8h5VFVLmKNEPfLe26z7SOlFnzf9R9okK3rp8AU,4045
88
91
  keras_hub/src/models/bert/bert_masked_lm_preprocessor.py,sha256=UAtj1gTxvrzTTueGts_9fkAyHeJ6cp269YwE69p7vys,4574
89
- keras_hub/src/models/bert/bert_presets.py,sha256=Q5IHXEovcLh0T1o0noTrE6L5s4alGulSt8taAYVFfXk,5024
92
+ keras_hub/src/models/bert/bert_presets.py,sha256=Sw4kfD43TBITzmif36BhoNe1LPmu4bO-_0jIh3rs-dk,3744
90
93
  keras_hub/src/models/bert/bert_text_classifier.py,sha256=TFot0fgGkESWLxBxFTcPF4apg-51J8bQQnJ04KJfCt0,5798
91
94
  keras_hub/src/models/bert/bert_text_classifier_preprocessor.py,sha256=0KIVajjOUDBagJIA9dfXdlQZB08h2XumUVec5OZauAI,4713
92
95
  keras_hub/src/models/bert/bert_tokenizer.py,sha256=hCyhRg_QTdexiaw23vcl1brxYJ-sPEImXSBCSTNwV9M,3025
@@ -96,13 +99,18 @@ keras_hub/src/models/bloom/bloom_backbone.py,sha256=dvSXekDbukixkeKxTo8yvRPpxVjF
96
99
  keras_hub/src/models/bloom/bloom_causal_lm.py,sha256=dq8WjkGZgj5kc4wqsZCxXrHk-nAVgwMVL0ur__Y2Bx8,10961
97
100
  keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py,sha256=KRvp3_lhRFPg8C028qEOJ9V2taI-07h5jj4DfkD7qoU,3011
98
101
  keras_hub/src/models/bloom/bloom_decoder.py,sha256=fda8iX4wzx2M8AoLX7fDHkyoir89KLJXrKbOZf70SX8,6572
99
- keras_hub/src/models/bloom/bloom_presets.py,sha256=b-H9lNQiVDNJDCqsRWgxcS36ARBPG1GT9mEmJyK5y9Q,4111
102
+ keras_hub/src/models/bloom/bloom_presets.py,sha256=o-oQEHiFnD5-NtSkvWj2ODUWfbaQ3xBK9pfj00lSfvU,3215
100
103
  keras_hub/src/models/bloom/bloom_tokenizer.py,sha256=6Konh7B_L9BqgjkA0z8-APFpr9sQmQPuAJFZSsCIClU,2574
101
- keras_hub/src/models/clip/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
102
- keras_hub/src/models/clip/clip_encoder_block.py,sha256=y1b9rhkCIaNPZNhOyGMslU1g0eANx9uw64ChE629lOE,3208
104
+ keras_hub/src/models/clip/__init__.py,sha256=NcjBkTNWxLY4Ss9wV-NW9iS8k6AwMiS2ARMcxr6KEps,245
105
+ keras_hub/src/models/clip/clip_backbone.py,sha256=AyVhLwFg5nLFSaoaL8mLuNkK9uBPJ9y5FMQu4psTGvo,9877
106
+ keras_hub/src/models/clip/clip_encoder_block.py,sha256=4Jxqb0Pq3Joh-lHDq-Y2c8v-gcMm1sDjPID4eRGK0DE,3823
107
+ keras_hub/src/models/clip/clip_image_converter.py,sha256=XyHEDB4RbYiveMN1hLQxHgGADb_goyWyE0TceAd2owM,330
103
108
  keras_hub/src/models/clip/clip_preprocessor.py,sha256=nUYu8Bgf3TU7jrR10kr0BIe7ph3aABvGtIqnjqrIb9k,4752
104
- keras_hub/src/models/clip/clip_text_encoder.py,sha256=0bBiBnDLkm2Dsyogcpb6nudL16fPS-TAF9yxbwe-Jqk,5327
105
- keras_hub/src/models/clip/clip_tokenizer.py,sha256=X68w_-Bq-UHhQ_O-n_T3QIA6WwUqbnxk22J_rqRX97w,7061
109
+ keras_hub/src/models/clip/clip_presets.py,sha256=qlBJ0BOfSP1v5aXHdspSaFEoDEIhDHrxqL3K1L0FvNo,3348
110
+ keras_hub/src/models/clip/clip_text_encoder.py,sha256=BCIE24eKZJ3yc4T0sjD6-Msjr1FQRKpdTP7vpGEn_7M,5456
111
+ keras_hub/src/models/clip/clip_tokenizer.py,sha256=6gIm_LWRbCeBQUI9M2gA8-OXb4tXGygixkbcL6joV1c,7444
112
+ keras_hub/src/models/clip/clip_vision_embedding.py,sha256=EOGFOMQsXc140OMCgE1X4ltOIQ4R7oRLSzBHwZEs-Fc,3666
113
+ keras_hub/src/models/clip/clip_vision_encoder.py,sha256=q62MXySZN38uCsjqq8cttfBxD7P5abaKQV2i8_u4N6E,6385
106
114
  keras_hub/src/models/csp_darknet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
107
115
  keras_hub/src/models/csp_darknet/csp_darknet_backbone.py,sha256=7Lmk98S7PLI3ONeVNRPAPshbs6zWrzfaGgvoAS9CRkQ,13727
108
116
  keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py,sha256=2nMkmym36EF4v3BO-wwPIjO3OsRvGloDKW0RbHGB7ag,368
@@ -110,7 +118,7 @@ keras_hub/src/models/deberta_v3/__init__.py,sha256=6E-QtAD1uvTBobrn5bUoyB1qtaCJU
110
118
  keras_hub/src/models/deberta_v3/deberta_v3_backbone.py,sha256=jAxG0XQ4CrHwzqruvYh2ZixC5ML09M4uhy0pWipgt0Y,7244
111
119
  keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py,sha256=ADBktf1DdiP9T6LCaMhdFiZ_mUbBRKMekY5mGwAeJIo,4186
112
120
  keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py,sha256=qoUCmhHAqx_YW0GzHsE44u2AT8ms-HFBwkFovPqZdD0,4966
113
- keras_hub/src/models/deberta_v3/deberta_v3_presets.py,sha256=eU0M8RrTZ5VE2hyNBdfv6Dx37I1mKzG2SitSr2XS9ZY,2715
121
+ keras_hub/src/models/deberta_v3/deberta_v3_presets.py,sha256=TvknOy9wzJr8_BDfuzmn55Ctl6ghlEIZ44B6V3eus4A,2110
114
122
  keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py,sha256=G1ymonB7nqSBOs-afGTofm6-BAtH7muTxMvrIupSusA,7238
115
123
  keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py,sha256=3U2x8Nr7HhwdhAyd3duYo8jj0JDYuB8Z1WMzArzQpKI,5975
116
124
  keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py,sha256=zEMCLy9eCiBEpA_xM2j8ACg7YJunD3bAruEK-1beElk,4987
@@ -122,35 +130,40 @@ keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py,sha256=WyFhuLcjFPFVuNL09b
122
130
  keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py,sha256=mRkH3HdhpV0fCcQcVXEvIX7SNk-bAMb3SAHzgK-FD5c,371
123
131
  keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py,sha256=hR9S6lNYamY0EBDBo3e1qTCiwtftmLXrN-UYuzfw5Io,581
124
132
  keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py,sha256=qmEiolOOriLAojXB67xXW9IOo717kaCGeDVZJLaGY98,7834
125
- keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py,sha256=jdSycE_H2Dm1z2WHYu0WtpEJBMiAoioHgJL1gMEGLDI,709
126
- keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py,sha256=tiMDcCFANHMUx3IVtW3r1P_JTazgPPsbW4IktIytKEU,3650
133
+ keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py,sha256=psi8kAgD2u8YXwjYNST7rFJPDODWrbyM6YAzvYGo2Kg,605
134
+ keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py,sha256=MxWjBBVueOz4aw3MBKXWzqXdPSNRnrvp98tET8ihgGM,3712
127
135
  keras_hub/src/models/densenet/__init__.py,sha256=r7StyamnWeeZxOk9r4ZYNbS_YVhu9YGPyXhNxljvdPg,269
128
- keras_hub/src/models/densenet/densenet_backbone.py,sha256=dN9lUwKzO3E2HthNV2x54ozeBEQ0ilNs5uYHshFQpT0,6723
136
+ keras_hub/src/models/densenet/densenet_backbone.py,sha256=bfqnnqQy7nLM8nGGrbTNxyZgImnao9DYRLE0ddTJqY0,6724
129
137
  keras_hub/src/models/densenet/densenet_image_classifier.py,sha256=ptuV6PwgoUpmrSPqX7-a85IpWsElwcCv_G5IVkP9E_Q,530
130
138
  keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py,sha256=xDZbTw_h6pjLDzf8QmbDyMnMsFzgh-dPX1ldg9kddhg,563
131
139
  keras_hub/src/models/densenet/densenet_image_converter.py,sha256=DoxYlJVZ9uaabFhVjWOmzvhONoc8KNcQj2vQ6Z1AUpU,354
132
- keras_hub/src/models/densenet/densenet_presets.py,sha256=QoluKQJnV391K6hoIX5X8UquD8f647u_8Ygta-UxmwE,1531
140
+ keras_hub/src/models/densenet/densenet_presets.py,sha256=_vhoc424gJI0ZwMKJSb6GsWzcSLvQ9Qzmw3Yd0SsB8Q,1222
133
141
  keras_hub/src/models/distil_bert/__init__.py,sha256=3Z0w-Mt3aOR0u9RGzjHQ7B3J3qBF2pGjupDGQ9yyzoc,303
134
142
  keras_hub/src/models/distil_bert/distil_bert_backbone.py,sha256=rnAf_GokB3wAeJwVZtgUKQO_bKJIa8RavhL_ykTJpNw,6440
135
143
  keras_hub/src/models/distil_bert/distil_bert_masked_lm.py,sha256=L0DvOl01MIwqc2f6H_E8si9qVUXPd0OKknJ5Rha33TA,4275
136
144
  keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py,sha256=N3e94EtJJeg1B-2GYpgn1vsRSte-R95pAqPp_qqKJCg,5230
137
- keras_hub/src/models/distil_bert/distil_bert_presets.py,sha256=w8XZPp0rNfa2wiIZWienkmsH2PRcjdXbUDrkXgCnQ7c,1727
145
+ keras_hub/src/models/distil_bert/distil_bert_presets.py,sha256=aZO_6S3UgyZJPiZBrRySEduvL9-cvoKZ9nkz7zXofoo,1361
138
146
  keras_hub/src/models/distil_bert/distil_bert_text_classifier.py,sha256=Ig9P5Benk1PJjIEpuQl60c2XkUXk7T-7WeG-gVBiQ68,6737
139
147
  keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py,sha256=Z51X2EkimPN1qeWfwa0Ie7d3fmNe7J34D0YsRNUsj_k,4893
140
148
  keras_hub/src/models/distil_bert/distil_bert_tokenizer.py,sha256=LiS9_1nMVbZ0IcPaHbs2gBesdBUP8Dq8aJLLWLFAJxs,3111
141
- keras_hub/src/models/efficientnet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
142
- keras_hub/src/models/efficientnet/efficientnet_backbone.py,sha256=SFwTC5JwmE9fqIheCTYAdFNmUOhdtqFWDuQ4LpYPOAs,20807
143
- keras_hub/src/models/efficientnet/fusedmbconv.py,sha256=583SrYroSarRlmXSFX2xR83niX-bMZItpkFe19TKlzw,7347
144
- keras_hub/src/models/efficientnet/mbconv.py,sha256=bR-kVEmFaBcF2h8h3ZHB02Uh4s5svb7PXceB_ytZmCY,7626
149
+ keras_hub/src/models/efficientnet/__init__.py,sha256=QSy7wnaMHs5Mx3OVrTN0twH6ynu7aXuIiIyijfxlzWs,311
150
+ keras_hub/src/models/efficientnet/cba.py,sha256=M-iWM2_4DrR-KXXsYRxL9sKKrgY-zMPnI5n_7ZkjpbI,4609
151
+ keras_hub/src/models/efficientnet/efficientnet_backbone.py,sha256=Z2lE86UpwlDXCH40NkfXhzPCo3316OJ0_2_ay1T-3cc,24967
152
+ keras_hub/src/models/efficientnet/efficientnet_image_classifier.py,sha256=H_buEEPjQpAwpiXKaKuu2jZtDMqGbwQ9-xUuMEFwGfw,579
153
+ keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py,sha256=Njs8nGyz28Xngzrc7fQrIJH6ItDkDJUPEsBGKVlKgZs,612
154
+ keras_hub/src/models/efficientnet/efficientnet_image_converter.py,sha256=X9Io6IhjoUglywiyph48C0rt9Xp-3ZW4rsIzyt7zkmg,387
155
+ keras_hub/src/models/efficientnet/efficientnet_presets.py,sha256=vlNiIDMWGbMcaTEeYccujQvz_LQ1X0xwsEesDNBwE6Y,7577
156
+ keras_hub/src/models/efficientnet/fusedmbconv.py,sha256=rRqrdsVEncLVpbFRlud1ZucxQXWD8N9qraJc-Y4yH_A,9588
157
+ keras_hub/src/models/efficientnet/mbconv.py,sha256=oU-K9D-aXC7FL06FxK-C94g_h7VvMUo0z2h6ijuf7AM,8941
145
158
  keras_hub/src/models/electra/__init__.py,sha256=vaXl_uQx_oLeKZWxmc1NRgCJfHpYJ35JeF9as8U0q5M,263
146
159
  keras_hub/src/models/electra/electra_backbone.py,sha256=sO4W8t8hr6OreemtkTIe1cNBpiTZ4ArT9eiHyxf2ytg,9004
147
- keras_hub/src/models/electra/electra_presets.py,sha256=d6cgPoRApnGJ_dwYmfysYni-yKALipmBaOUhlaH4qRM,3369
160
+ keras_hub/src/models/electra/electra_presets.py,sha256=cFTP-ECB13chZXS3JZ49NS5GtY59NTL29_I-V1_f58U,2697
148
161
  keras_hub/src/models/electra/electra_tokenizer.py,sha256=Ll_EW-14i-OZr6appQEt5ceMUCeEadF4yPJHMwaRfVs,2729
149
162
  keras_hub/src/models/f_net/__init__.py,sha256=a3OAwgEVy3Rv88ZlBE9RYLrPCNteImhGkW-lSAq5hyI,249
150
163
  keras_hub/src/models/f_net/f_net_backbone.py,sha256=6vZEq2UgoJxU2-aEesdXZnyRbACxpMZQ1akyVbGH8wg,8290
151
164
  keras_hub/src/models/f_net/f_net_masked_lm.py,sha256=GDRtPdF4K2tPtnM6NqmMeZs6PCRwtBN5Bo1qIMeqwCU,3978
152
165
  keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py,sha256=eCSaiMCcrrjS51SP5fF0OkWj57C2z_zmg_qGSEbvNNo,5081
153
- keras_hub/src/models/f_net/f_net_presets.py,sha256=kpvQKINrqI-atOAUld1RMC6ELdrDDr3Bhoj28C-Qrwk,1055
166
+ keras_hub/src/models/f_net/f_net_presets.py,sha256=_UgBa4g7vKinQ4XRZv1h82VabuvyDMBDhNkRpKR2DeE,765
154
167
  keras_hub/src/models/f_net/f_net_text_classifier.py,sha256=oUH30T9sb5tIIpVSWnR93OYERlvOiSNusnCCeZFCJTs,4869
155
168
  keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py,sha256=E9DgsDMwA780Suni7GGnYGpYDpbD3gIkYgLxzw3UiVU,4821
156
169
  keras_hub/src/models/f_net/f_net_tokenizer.py,sha256=ZRTaSfgZnYLTVXgM51303LpryRsSL5GaC2Cl_D7g27A,2285
@@ -159,16 +172,23 @@ keras_hub/src/models/falcon/falcon_attention.py,sha256=nBpvh3KGElNG062NfqznNJmTq
159
172
  keras_hub/src/models/falcon/falcon_backbone.py,sha256=M8_0jKcS-2-8jUr2iktVbAyNUbzHfOwHk4fbVy5V0P4,5427
160
173
  keras_hub/src/models/falcon/falcon_causal_lm.py,sha256=1YZcNZMuSgG22qvHhgWn4Okxwd6Z4xnPcwNoAkx3REA,10833
161
174
  keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py,sha256=nI9E8N9enx5DppDHpLwGslb65rqGorL2sEz1jzet4gA,3033
162
- keras_hub/src/models/falcon/falcon_presets.py,sha256=gnyUq8JQD_kVZB23TmuPIFB4UsD5ugP_4le9IkLeJ_w,574
175
+ keras_hub/src/models/falcon/falcon_presets.py,sha256=cnIVlfHV_w_H749F3iAMEhgheAT5oG9SllnMigLD08Y,463
163
176
  keras_hub/src/models/falcon/falcon_tokenizer.py,sha256=2B5vmpakj_iVB7T95_8OVreJbZy780cgSeYAQELnJeE,2554
164
177
  keras_hub/src/models/falcon/falcon_transformer_decoder.py,sha256=QqIK6v97uBXZFBG3qS6O8HrP9_93uOFzvHQgOiMO2eY,8125
178
+ keras_hub/src/models/flux/__init__.py,sha256=rBO-FNMbnfABw2QQazRmuWpIhhiVXwowaYQXWkTGeyU,224
179
+ keras_hub/src/models/flux/flux_layers.py,sha256=tly7sQPxP0iF-qeW11DP5zT4g565AMNZoIkcFaPHqgc,16429
180
+ keras_hub/src/models/flux/flux_maths.py,sha256=6H-0SBPaFqlRPgqJ29X7rpJ9kwSRi2mod8eeTnwRxeE,7513
181
+ keras_hub/src/models/flux/flux_model.py,sha256=qiaXmobxTVox9LzUjjHq9SSl815BTP3QXnvd5dEIMl0,8948
182
+ keras_hub/src/models/flux/flux_presets.py,sha256=joa_RBeqPs-CvFKZnOi650604yQGpc7-Hvkoc0KVjYQ,370
183
+ keras_hub/src/models/flux/flux_text_to_image.py,sha256=fLF9573vi7zqkT2it9d8EmLkknEH4PdBBYkmFVSEH5Y,4252
184
+ keras_hub/src/models/flux/flux_text_to_image_preprocessor.py,sha256=Fs9jr97QtmRUbRRz1kITpkuhDM2GoV3n0XSFC-qQA14,2252
165
185
  keras_hub/src/models/gemma/__init__.py,sha256=rVzOJMJ39bgVlT8UdC0t8PlN2c237GKTBmfHIsbPuOQ,251
166
186
  keras_hub/src/models/gemma/gemma_attention.py,sha256=1CVN5z9GKoU8TuNMih2_MweDkpd98xSqdic9F8xIBE8,8317
167
187
  keras_hub/src/models/gemma/gemma_backbone.py,sha256=P5srrrqIrFIBF84KCKKl9vKyYiq0CxjhdcVk76PKVTQ,13377
168
188
  keras_hub/src/models/gemma/gemma_causal_lm.py,sha256=BNBoQIf0HoqCooalYsWE-28v5BGUNvL9YdUB8_NSkBU,16770
169
189
  keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py,sha256=bpKkEurWIfa6Kp9s4pz84-sBDSA6ZFNHP8nXG1fFQrg,2912
170
190
  keras_hub/src/models/gemma/gemma_decoder_block.py,sha256=tpBfH86Q48EvV0COkd1g2FJg9zHp7ktZBjegs3ehOYo,7588
171
- keras_hub/src/models/gemma/gemma_presets.py,sha256=HoLRnMh618oXHuTZxqGrwmujRXlbjxCs6_zOVJ_zmHY,9282
191
+ keras_hub/src/models/gemma/gemma_presets.py,sha256=vuxieVn_Plj57l170x9IwqKxOgjXP7T2Zaq5fDqB950,7082
172
192
  keras_hub/src/models/gemma/gemma_tokenizer.py,sha256=FhcyNL4lo63MqOhTQPFr07-u3BddL0fVM4TmOm8ku-I,2622
173
193
  keras_hub/src/models/gemma/rms_normalization.py,sha256=fku-JEo2sNy-ytX7ySD1sRzdhRAPmYex_z8oFk1NiG8,833
174
194
  keras_hub/src/models/gpt2/__init__.py,sha256=_hqeljpBkW8DLABy4nKBzJxXUh29WIEW27obmDCiH5Q,245
@@ -176,7 +196,7 @@ keras_hub/src/models/gpt2/gpt2_backbone.py,sha256=H1LgDd-bavrWtdCavdI519qlaruE2J
176
196
  keras_hub/src/models/gpt2/gpt2_causal_lm.py,sha256=vLnL2wXscne3EWMvaV-BXgDM5Ye6WAROIVxcBI_Y2x8,16765
177
197
  keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py,sha256=3AD1LBFJ-u6bDdrwKa1LbINlEblZkhwB2sMJx-XEUZk,2992
178
198
  keras_hub/src/models/gpt2/gpt2_preprocessor.py,sha256=eYMIXw8Oebsr14GhqBh1CEhbLbIK3WnLUxaXj25fFpQ,3179
179
- keras_hub/src/models/gpt2/gpt2_presets.py,sha256=S_NV9s7jDobmYi0qDFdmZ5wt2ZOwTdQKCHVg8RcSPH8,2435
199
+ keras_hub/src/models/gpt2/gpt2_presets.py,sha256=lJu2BBiaFBTwmrGY8uJ4huqdK3VkF067Q6MgqcS8J3g,1897
180
200
  keras_hub/src/models/gpt2/gpt2_tokenizer.py,sha256=-wA7ZTiRZDVdEKAskyQiXB5GLYuj9TkuADtyyYpoBuA,2615
181
201
  keras_hub/src/models/gpt_neo_x/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
182
202
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py,sha256=z6-Hpl5nm4g39fE_w0kk82TpCCVHE1tSyGDkcOkb6KM,8525
@@ -187,18 +207,18 @@ keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py,sha256=xSLDgavOhhm3SZc18VN60
187
207
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py,sha256=aKso-8yGrynn3tZ5xm2egcXIBQo3__sWZDBtjmS3ZgU,1991
188
208
  keras_hub/src/models/llama/__init__.py,sha256=svVZjGi71R3lVbq0AdbqlXj909mr3Rp9EPXdiO0w0G0,251
189
209
  keras_hub/src/models/llama/llama_attention.py,sha256=HzTWtvTjfN_j0vA9-ComstHpI81tzUrJU3RSSvSCaI4,7194
190
- keras_hub/src/models/llama/llama_backbone.py,sha256=ElMjhfyTwXcChQPcrKo3bZozeRhzGyCXqOWA_siQFj8,11687
210
+ keras_hub/src/models/llama/llama_backbone.py,sha256=H1paG4Tcqed8-nwrgd8hamWNy-dzpi_1uCx5Jl3Bj7s,11684
191
211
  keras_hub/src/models/llama/llama_causal_lm.py,sha256=9bP4-XDCMgsZuH1ILIMzmwq2Fyy6vkk1Vsht-lMGCNo,13258
192
212
  keras_hub/src/models/llama/llama_causal_lm_preprocessor.py,sha256=VTboOMiRBoxHrwP343upLUTsv3AG65r2H8h_PNPVphE,3047
193
213
  keras_hub/src/models/llama/llama_decoder.py,sha256=6iERIblED0ZB5w_EUlHks4UvMnsrWONdO_Xdz2OzhWM,8623
194
214
  keras_hub/src/models/llama/llama_layernorm.py,sha256=LfRbePHUJs00Ptf7dvNaw3Aj9n1xBMBpE_rS5zzsYMo,1050
195
- keras_hub/src/models/llama/llama_presets.py,sha256=8NuEtLS76N7FuNnljt-uMLOwMDKW-KeoJhok0U7m_OE,2430
215
+ keras_hub/src/models/llama/llama_presets.py,sha256=RAQdTh7mjBy3poSdtSNNBLf0cUSJwTSSU_Xi5Ubsnrw,1902
196
216
  keras_hub/src/models/llama/llama_tokenizer.py,sha256=NKWhxTutQ2jd6sd3NSTy9plQyKGCmuNG7U6kVxhZU4Y,1981
197
217
  keras_hub/src/models/llama3/__init__.py,sha256=Vqvr2E10cnANkrRQGNBJtVLNAu-Bg9Lx6sqKOZWFy_8,257
198
218
  keras_hub/src/models/llama3/llama3_backbone.py,sha256=nR5y51oI2QraL4Q9IxmQZrr0yS3XII7M9gMs52kqns8,2855
199
219
  keras_hub/src/models/llama3/llama3_causal_lm.py,sha256=0Kcr0sB78wSNDpeo4AE-PeefJe1DxEIdGRNMzdjk3WM,1541
200
220
  keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py,sha256=twbXel9hsQgGxDAoQhEQuVm2udnEybI4fAQTJzXAuBs,3064
201
- keras_hub/src/models/llama3/llama3_presets.py,sha256=n-GIQg6tVf9JY9djBqsFZvWAAuDqXHORrRxFg-xcDFw,2003
221
+ keras_hub/src/models/llama3/llama3_presets.py,sha256=HNuiZ-pgSGhALBbjxWwuwtwJqmIXgzk2zMYekcf_XCo,1579
202
222
  keras_hub/src/models/llama3/llama3_tokenizer.py,sha256=J-KxRc08vGs4olFw_4mtJs0W_dTeUyj_XxMycazBmxI,1934
203
223
  keras_hub/src/models/mistral/__init__.py,sha256=vjBlzcrIsFSwJKnfwfTNMKstIEKGFTE3kVcdAdfwlnE,263
204
224
  keras_hub/src/models/mistral/mistral_attention.py,sha256=HCkUIc2DVIlYC5hhwomENlqLOsKTvbCKF0lx0_OBAyA,7862
@@ -206,16 +226,16 @@ keras_hub/src/models/mistral/mistral_backbone.py,sha256=x4BfyfWTCUXcjPSxdPSl8QIT
206
226
  keras_hub/src/models/mistral/mistral_causal_lm.py,sha256=gEGUnB6yOib9G71n5Em5X8TPOllJW53UXlUCNJkL_ZU,13234
207
227
  keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py,sha256=_4qq-uKktfIg_i081ZWjZGEIYZpedBwtBGpchQQ-qEk,3079
208
228
  keras_hub/src/models/mistral/mistral_layer_norm.py,sha256=nimMZ5CTPK8v9eflfrGuzqmv-2vd2rGlPvcHOMwYZyg,1063
209
- keras_hub/src/models/mistral/mistral_presets.py,sha256=gucgdaFAiU-vRDS1g9zWGHjbDF_jaCiljPibCF4yVqY,1329
229
+ keras_hub/src/models/mistral/mistral_presets.py,sha256=YfdFdjx0OrQJWIf1msil_WeMWP2fTUpxOI-ZO6cphpI,939
210
230
  keras_hub/src/models/mistral/mistral_tokenizer.py,sha256=wyzR_Y2XwrDiBV3jIeBChSPiaOkVVaxFuLxMH2F6EYA,2005
211
231
  keras_hub/src/models/mistral/mistral_transformer_decoder.py,sha256=RDIIB3FhneHZP11tNUFQT9DcWawCMnrtVxtSvtnP3ts,9542
212
232
  keras_hub/src/models/mit/__init__.py,sha256=F70_0PR_nPzPdMI8XOpXDRR_nxclGjcHv3iWSWUX3w8,316
213
- keras_hub/src/models/mit/mit_backbone.py,sha256=0lsWM7TkwmFE3euYbI5Xe808_ua9UDPOV4hOPlCBrOo,5984
233
+ keras_hub/src/models/mit/mit_backbone.py,sha256=7oQ-GLJTXTgN-tozXY5BaeCgrieuxANzZKvywstptA0,6795
214
234
  keras_hub/src/models/mit/mit_image_classifier.py,sha256=HKj6u6AqPbxinGYPRsz_ZdW2pEHAcFsKenrGHpRMobM,480
215
235
  keras_hub/src/models/mit/mit_image_classifier_preprocessor.py,sha256=oNYs-pUK8VnzNEPcq5beYX0qfnnlbJcxY8o5s7bVQes,504
216
236
  keras_hub/src/models/mit/mit_image_converter.py,sha256=Mw7nV-OzyBveGuZUNFsPPKyq9jXJVW2_cVH024CNkXM,311
217
- keras_hub/src/models/mit/mit_layers.py,sha256=9AbA4kCJkjeV7fAwbRns8VGn0l1pgQ3CqFPjY-99VGA,9695
218
- keras_hub/src/models/mit/mit_presets.py,sha256=9bxWVOLhmBdoq2I4uZfZb7wZAB-3YjuMq0T_-JJzr2w,4960
237
+ keras_hub/src/models/mit/mit_layers.py,sha256=VL1DHml-vJOMmZ5QRbCMdcjekoc7mD0UA0vx3jkBpZQ,9723
238
+ keras_hub/src/models/mit/mit_presets.py,sha256=Njf4A6vvOvdc6xElsspmwgBf10BtueXMWH7_DXVFk4Q,4528
219
239
  keras_hub/src/models/mobilenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
220
240
  keras_hub/src/models/mobilenet/mobilenet_backbone.py,sha256=fFqEH3WTspEBYnF9LEdsX7RGHEEL3CVoVDPWG1ZnqBk,18193
221
241
  keras_hub/src/models/mobilenet/mobilenet_image_classifier.py,sha256=l5jo99I0fLlbwLub5jHw07CjC-NnmuV-ySJwXGI20Ek,351
@@ -223,17 +243,17 @@ keras_hub/src/models/opt/__init__.py,sha256=6Ybj8etxNaPsVcuZvaeHnKB3As92Px--dbiF
223
243
  keras_hub/src/models/opt/opt_backbone.py,sha256=mK5z_E5mSiIX5s0w4hr4IVQpT7K46W2ajZBmuMjxwaY,5873
224
244
  keras_hub/src/models/opt/opt_causal_lm.py,sha256=DzQuOy3xIXgzPEbcoY_s_CLYpanpghGnS1OFWCx_zxc,10851
225
245
  keras_hub/src/models/opt/opt_causal_lm_preprocessor.py,sha256=xHfslVMOZlAIj2V2jIc-1GizR8TzEbeg1aggfwFTsPY,3102
226
- keras_hub/src/models/opt/opt_presets.py,sha256=J1IJ5VRcZZ6UZJSLrxpbWXw39YmbRd_WQujX1a6dxHo,2329
246
+ keras_hub/src/models/opt/opt_presets.py,sha256=qRHCFImOQCJJSyAQxRM3bmytos9y_MtXjbbxT655AUg,1745
227
247
  keras_hub/src/models/opt/opt_tokenizer.py,sha256=oDHeed4xf07tm14hj_C78BkzMuuRwRP2cRHmqYnObrs,2557
228
248
  keras_hub/src/models/pali_gemma/__init__.py,sha256=uODWTlttOOchcTLpiYHCEWMXnDxIz8ZVIeYFQN2bd8o,288
229
- keras_hub/src/models/pali_gemma/pali_gemma_backbone.py,sha256=Rrl7nof_gAZL2Nge1cFymCsRdwqxQjwmEEhucGspUr0,10586
249
+ keras_hub/src/models/pali_gemma/pali_gemma_backbone.py,sha256=_g_9jn0eMVizJsH2VcVDIq2e2xhUHeAW10iLz4_7ngA,13373
230
250
  keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py,sha256=AViEs6YltUqWnIVo7J02JkXcanBgLSdwZwF56TVr8gc,11345
231
251
  keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py,sha256=F57y0fZ0wYYxfGIjfrJc1W9uQpViYFx5bvFjj5CqUbI,4814
232
- keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py,sha256=Q_sPAULiSo_ZJeXklZjCLhvOMXk8MrPZhEXtL5yNOiI,5175
252
+ keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py,sha256=24ABQ1vGlppV-KfWh0YqJjzM_Lu2GIwvyJ4X2XXie_A,5616
233
253
  keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=5yM_jUtrFsWIieiwfFBoP7mtPmQAwywkeLKbd7fhmzk,371
234
- keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=yLLuPwhIDE7HuMNJwLw1_yhHGz3w3mvYCxVcgAtSydc,2401
254
+ keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=FJLwJc43M0AuWvCd_CE9PNRaZVsveE3uQ0kNEXlLPaE,8983
235
255
  keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=ljTiADHo0Ok88q-jVzwJIle2C8xcxnudLTsBLzIySaM,2415
236
- keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=UpmymNkwuN9iuTV2I4M6lvHnlqpZIDmPb5pAADKs-Vg,18029
256
+ keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=NFHbUSXY0xKS2OYWSo0m2o77cvd8F02SxG4JqF8YqaU,18311
237
257
  keras_hub/src/models/phi3/__init__.py,sha256=zIbf1MU-ks91mEkjTRJAsk51N3BBnXDF2JM1vO-13PQ,245
238
258
  keras_hub/src/models/phi3/phi3_attention.py,sha256=dN8QwwTP9TxPBDv0MCvObLF3nHm1H6xbYr3T1K0nmg8,9243
239
259
  keras_hub/src/models/phi3/phi3_backbone.py,sha256=fY-OY2ZrqxDHglYjTM0OCacBdEQHwj-XNmU0MnXL7iU,8885
@@ -241,7 +261,7 @@ keras_hub/src/models/phi3/phi3_causal_lm.py,sha256=kMMq7fQ8hlb_mLO_nU1lGVqILayul
241
261
  keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py,sha256=gNx1k-n7d0XDwpNbcZiO9yLkwdXYCvwGyA3b0QCnPAE,3043
242
262
  keras_hub/src/models/phi3/phi3_decoder.py,sha256=1raVexz1TkpqvMwW1Zs08KSxTs9gDc6VWUKJ9sM1VFY,9587
243
263
  keras_hub/src/models/phi3/phi3_layernorm.py,sha256=Oqu81tGd97Lzx3kG1QEtZ0S6gbfn3GLgRzY8UWGJRBo,1049
244
- keras_hub/src/models/phi3/phi3_presets.py,sha256=DNyPTDA7PzFC8Ys2QmR2-mxUDa8Y8Idyn3S_mhmz3FU,1610
264
+ keras_hub/src/models/phi3/phi3_presets.py,sha256=hFGdBn9rtilV7N16rjfnPepVmG6XjAlvwQmsPorPg80,1362
245
265
  keras_hub/src/models/phi3/phi3_rotary_embedding.py,sha256=WTPCN8IKq3R7kMzsES1b8JEKV-8iNi_49WkhNTXoNUk,5012
246
266
  keras_hub/src/models/phi3/phi3_tokenizer.py,sha256=bOPH14wTVVHJHq8mgzXLjsgvKMNhfO8eayevAPpjYVA,1992
247
267
  keras_hub/src/models/resnet/__init__.py,sha256=C5UqlQ6apm8WSp1bnrxB6Bi3BGaknxRQs-r3b2wpaGA,257
@@ -249,74 +269,86 @@ keras_hub/src/models/resnet/resnet_backbone.py,sha256=3acTjdWbnos8l_TPxYLgoV3Y4V
249
269
  keras_hub/src/models/resnet/resnet_image_classifier.py,sha256=nf35EKDzvBkfhHsK-s6Ks0nbhvKO7HEOYZm94YckyWE,510
250
270
  keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py,sha256=fM7gyQ0qB-RRuI4USJkRD6q9-HVfuC71e-BLTo-UhHQ,543
251
271
  keras_hub/src/models/resnet/resnet_image_converter.py,sha256=fgTxihJznGFss-y3Z-jp0JE3X1gaaB2y-f2KMwrT8Pk,342
252
- keras_hub/src/models/resnet/resnet_presets.py,sha256=kgEZQtJKnK37bSKy4Ny0GdE70P71z6OOdR_H--1pYGI,8563
253
- keras_hub/src/models/retinanet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
254
- keras_hub/src/models/retinanet/anchor_generator.py,sha256=43NoI7djbRudH98hUm-9fw5OEGQNRXOUYzypIZhLYhE,6750
272
+ keras_hub/src/models/resnet/resnet_presets.py,sha256=OOHGP87Se_BwEBZWH5sQ9E2PcBQd4a5Uys92IIMhAGQ,6927
273
+ keras_hub/src/models/retinanet/__init__.py,sha256=veWIFvMN6151M69l7FvTcI-IIEe_8dLmNO5NLOszQ1c,275
274
+ keras_hub/src/models/retinanet/anchor_generator.py,sha256=0OgKSW3OKmbc0cOPHF6FYTAzn7fcHklg665PGSwAaDM,6504
255
275
  keras_hub/src/models/retinanet/box_matcher.py,sha256=l820r1R-ByqiyVgmZ0YFjjz0njchDda-wItzLn1X84o,10834
256
- keras_hub/src/models/retinanet/feature_pyramid.py,sha256=Z6-5VB49LXCQBhjFPATd7PBuEg-s3LU7F69WrTo_Lt4,14912
257
- keras_hub/src/models/retinanet/non_max_supression.py,sha256=jY_j4X24-tStb_Asld3jOo8xrXrThJ90XRbzwarRZZs,20936
258
- keras_hub/src/models/retinanet/retinanet_label_encoder.py,sha256=rOEc4jpA7sw8kBRX7gdVzKoKwK8C-NoXbAnYONo5iNM,11217
276
+ keras_hub/src/models/retinanet/feature_pyramid.py,sha256=275lR1v8cdpS3SVQjf1ngKsgas6bQ-gm27dBfwQZIO8,17596
277
+ keras_hub/src/models/retinanet/non_max_supression.py,sha256=PMOLlRw-EnyEmhlUhJjEbHf1xXiplN95pUxQbiJQbN4,20996
278
+ keras_hub/src/models/retinanet/prediction_head.py,sha256=oNOsydmmkq6hDiBo43olALlqK5pmxw3bt-C-ShUmaF0,7863
279
+ keras_hub/src/models/retinanet/retinanet_backbone.py,sha256=LrIwq5c8T-wy3ow1kmOP9jexeNh8acIP2d5RF1P_1BI,5648
280
+ keras_hub/src/models/retinanet/retinanet_image_converter.py,sha256=QqqM6ex9sK9ma3O5zXiyXwIMDytgHFbWT8pSf07qTSE,1729
281
+ keras_hub/src/models/retinanet/retinanet_label_encoder.py,sha256=K4Ffs5Gh052kIvStxQXM7jifMyJVAwAF3kZN-ofr9rQ,10935
282
+ keras_hub/src/models/retinanet/retinanet_object_detector.py,sha256=OymbbKsgKgE3bQ5q_46ucr6fnqywneU_Gco2886YMNA,15563
283
+ keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py,sha256=oKA-rSgX5kIOsCxKjo5Z3x2R5R15k_kUNQQXZ7VAR0c,584
284
+ keras_hub/src/models/retinanet/retinanet_presets.py,sha256=KGWIhlOg61dW3LTIkUyoCpOq47ibNOflO5rJTpLUrPo,491
259
285
  keras_hub/src/models/roberta/__init__.py,sha256=3ouSnKdLlMwoDDLVKD9cNtxam6f8XWgCyc0pwWJ0Zjo,263
260
286
  keras_hub/src/models/roberta/roberta_backbone.py,sha256=2eBSHuzFF5EJJPU0Ef3S3i396g70WCPtcJ7VLJM1guE,6339
261
287
  keras_hub/src/models/roberta/roberta_masked_lm.py,sha256=j2dFANRFHd1MNFP_REchljGWOcpOjCpdSya-WGdRzPA,4176
262
288
  keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py,sha256=bk6AYRbVQXGprD1LmDW1N3qYp-Q520X6mnxNF8jFwmQ,5851
263
- keras_hub/src/models/roberta/roberta_presets.py,sha256=_0kYwJySwPCX5MVRPapT_PE2RXhFEn3HzYEsblQqFk0,1179
289
+ keras_hub/src/models/roberta/roberta_presets.py,sha256=R4ok2L3hqa1qEpT-VkR2C98fLyZHPJqlvUAZePbtJE0,879
264
290
  keras_hub/src/models/roberta/roberta_text_classifier.py,sha256=EcxudQle2gW9RB6wmpoIJ7YM4UOzin74fluelSrJ6YY,6681
265
291
  keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py,sha256=gAJa8JdPUmT1N7nxBqtaIbnfXV-xlNjTtkEevQhfjNU,5993
266
292
  keras_hub/src/models/roberta/roberta_tokenizer.py,sha256=VKPrgXVT9aMKP7et2DIWKlTN8g4tIzjya0MHqNz9BwQ,2712
267
293
  keras_hub/src/models/sam/__init__.py,sha256=fp71Q288xeE81tIOZkkudec4Acs8v4aO5WdyzCD9x-c,239
268
- keras_hub/src/models/sam/sam_backbone.py,sha256=fbvtGG6du7tnkcGtEsRyT9TRwPBUJ99GBolGkWR5pkc,4351
294
+ keras_hub/src/models/sam/sam_backbone.py,sha256=cKb5ZMWqR8nLU-uZyl_ugtgyW2SVZJyz5xHOlH7jDM0,4302
269
295
  keras_hub/src/models/sam/sam_image_converter.py,sha256=5POp3aYFu6CK3R0NNfeUBbjhguBkincSMNvlcIJXarE,324
270
- keras_hub/src/models/sam/sam_image_segmenter.py,sha256=2OIowfl7cF298gIlqQlOJUsx_BcI2mCDntbXR8uohZc,7680
296
+ keras_hub/src/models/sam/sam_image_segmenter.py,sha256=r4NHVl38Tw1G6RVtvOwY6jqwjNOKZkvjGfEOaSwkhP4,7770
271
297
  keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py,sha256=7slvyhGoMHmSigagqIcjDJ3gX8fUJbuMBwmozC4FlCg,849
272
298
  keras_hub/src/models/sam/sam_layers.py,sha256=SE5e6tYc-lsIVfMp9khewvuA1jY-dEHQmLT00YUok4M,13862
273
299
  keras_hub/src/models/sam/sam_mask_decoder.py,sha256=9RfjoNL7GSY6I9LZ3ulUa5cIoYSPJNP4KnHvq16lnM4,9549
274
- keras_hub/src/models/sam/sam_presets.py,sha256=IzpNyhxa3s5zqQFPTZOuqU75I7DU6y-TvMM27gKXLAs,1211
300
+ keras_hub/src/models/sam/sam_presets.py,sha256=XYi-Z47-wHc2deOCBibVxl7xKEVP2O3AM27ZpYD-GCk,875
275
301
  keras_hub/src/models/sam/sam_prompt_encoder.py,sha256=2foB7900QbzQfZjBo335XYsdjmhOnVT8fKD1CubJNVE,11801
276
302
  keras_hub/src/models/sam/sam_transformer.py,sha256=L2bdxdc2RUF1juRZ0F0Z6r0gTva1sUwEdjItJmKKf6w,5730
303
+ keras_hub/src/models/segformer/__init__.py,sha256=ERgxA8tyeG2l4G6ywHisn6Oo0Iu7_9OAkzrC9TEFHSE,365
304
+ keras_hub/src/models/segformer/segformer_backbone.py,sha256=2MfLo7iNMEdQXYrLn-VsLD4U-PipUAqDjS11TzmZ39w,5666
305
+ keras_hub/src/models/segformer/segformer_image_converter.py,sha256=zePZ1cYZl-2TaEF82lj3y7kXjDao5Hgw8c7qfKI2Jd8,360
306
+ keras_hub/src/models/segformer/segformer_image_segmenter.py,sha256=hC-4MOEu0C30XuqnmBkSFc1H0F1cmbMixn2pTU1L1ls,5895
307
+ keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py,sha256=p61nzDIC13MSm8tMl4tda00gMbUn9GXp27Rar5E4dJY,1091
308
+ keras_hub/src/models/segformer/segformer_presets.py,sha256=Nzg7egIEB-qlLCXkug8I56CqYy2lGU_ruQakXlu_xU8,4565
277
309
  keras_hub/src/models/stable_diffusion_3/__init__.py,sha256=ZKYQuaRObyhKq8GVAHmoRvlXp6FpU8ChvutVCHyXKuc,343
278
310
  keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py,sha256=vtVhieAv277mAiZj7Kvvqg_Ba7klfQxZVk4PPxNNQ0s,3062
279
- keras_hub/src/models/stable_diffusion_3/mmdit.py,sha256=ByFot4_I1Z6woOBYvPcbkUtYXWn-dPwgg-4het5vrH4,30615
280
- keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py,sha256=QuggvAy1yvtIXFcwyXOmE_aUdhLcCEUw4FnTuqekys0,22497
281
- keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py,sha256=6_IXkxAv588lAKEasJrXgCjQePSXs-54XrvVIlYOT60,5483
282
- keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py,sha256=tKVAQVbKOt3lWkWsQLKN9KK3WYem0-u5fonq2uBAPrc,6367
283
- keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py,sha256=9LcbF9Okin9ba6XJd9EQJKW5AVWdrfvW8r6F6TCx7X8,661
284
- keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py,sha256=pQOC7xMJfJHZxZRiYFtjrbjx0GXb94cNyOr9NELoXo8,4488
311
+ keras_hub/src/models/stable_diffusion_3/mmdit.py,sha256=pAXB_8JUvFxzSDMsGR_-k9sbxImw6_A3n1YgXrgUszA,32604
312
+ keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py,sha256=R2dU6jZ-aIL4q85XLgFpkSvl9cIbKeCFnXSdHHiJcCQ,23354
313
+ keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py,sha256=V-yHCs4S4G8OtwmBD67lWxzLa1v7QJLoDbuhSWNrDO4,5487
314
+ keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py,sha256=WaYAxPyTc0aFdwa4QNdVQx_uBnAA-52bBhp3NeddRqA,6371
315
+ keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py,sha256=a8uTfaZ9Fy4QXt4LJSTf6mM2faYSbay-SqY6CIb7yF0,1680
316
+ keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py,sha256=6kIdAT3jGZUSOF_lSnvqhbet2UT3OjU3sQCx1xylAXk,4492
285
317
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py,sha256=TB0KESt5dnFYiS292PbzB0LdiH23AD6aTSTGmQEuzGM,2742
286
318
  keras_hub/src/models/stable_diffusion_3/t5_encoder.py,sha256=oV7P1uwCKdGiD93zXq7kmqX0elMZQU4UvBa8wg6P1hs,5113
287
319
  keras_hub/src/models/t5/__init__.py,sha256=OWyoUeDY3v4DnO8Ry02DWV1bNSVGcC89PF9oCftyi1s,233
288
- keras_hub/src/models/t5/t5_backbone.py,sha256=AtE2VudEUkm7hE3p6JP_CfEAjt4pwgSKOBQ0B0BggQc,10258
320
+ keras_hub/src/models/t5/t5_backbone.py,sha256=MUmabugPx5_BkAHkuJXr2-8z_yZfKD19SO0KJtlcHhA,10331
289
321
  keras_hub/src/models/t5/t5_layer_norm.py,sha256=R8KPHFOq9N3SD013WjtloLWRzaEMNEyY0fbViNEFVXQ,630
290
322
  keras_hub/src/models/t5/t5_multi_head_attention.py,sha256=gStbrTZZx8X3J-bHFgwgugQMP-Wa6SC6kdShrqbUttQ,11859
291
323
  keras_hub/src/models/t5/t5_preprocessor.py,sha256=UVOnCHUJF_MBcOyfR9G9oeRUEoN3XotM6M0YQc2WNKU,2253
292
- keras_hub/src/models/t5/t5_presets.py,sha256=95zU4cTNEZMH2yiCLptA9zhu2D4mE1Cay18K91nt7jM,3005
324
+ keras_hub/src/models/t5/t5_presets.py,sha256=aC6HX3HYIqiyRHRlKxGYUGKKCfXuezeJWx5NIeK0GNg,3173
293
325
  keras_hub/src/models/t5/t5_tokenizer.py,sha256=pLTu15JeYSpVmy-2600vBc-Mxn_uHyTKts4PI2MxxBM,2517
294
326
  keras_hub/src/models/t5/t5_transformer_layer.py,sha256=uDeP84F1x7xJxki5iKe12Zn6eWD_4yVjoFXMuod-a3A,5347
295
327
  keras_hub/src/models/vae/__init__.py,sha256=i3UaSW4IJf76O7lSPE1dyxOVjuHx8iAYKivqvUbDHOw,62
296
328
  keras_hub/src/models/vae/vae_backbone.py,sha256=Yk0srJhB-zfxQeAoyZdNzvxfxPxPMVie0nqKU7cp-2M,7033
297
329
  keras_hub/src/models/vae/vae_layers.py,sha256=N83CYM1zgbl1EIjAOs3cFCkJEdxvbXkgM9ghKyljFAg,27752
298
330
  keras_hub/src/models/vgg/__init__.py,sha256=5ktFtITvvYja4Jg3q1LqPvGH-fMicx5wxCCpXT8aVKQ,239
299
- keras_hub/src/models/vgg/vgg_backbone.py,sha256=yzzindEMO1rDgf3eAv9K0rhpg4NgfGZLgxaAv5CyGM8,3699
331
+ keras_hub/src/models/vgg/vgg_backbone.py,sha256=XemFrdmX2i_JjvuAAgb7S-J11a1UPVjeDnEB_CHvkeA,3709
300
332
  keras_hub/src/models/vgg/vgg_image_classifier.py,sha256=d-hlgvwbNhzR6r3q2oqEmRmuAuCpKzUwNC2JUwdzruI,7460
301
333
  keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py,sha256=M7hBbDPws5Z7oDQPigBx-upHssul7Q_p0QIv3E4yOwo,504
302
334
  keras_hub/src/models/vgg/vgg_image_converter.py,sha256=FKVrSNNBxIkiKvApzf4TZxidBb1z917Xs9nooHCcRLM,324
303
- keras_hub/src/models/vgg/vgg_presets.py,sha256=ltKExQdrR3E30kZPZD53tXVOsc8Gj7Krj6pzHP1UYVU,1879
335
+ keras_hub/src/models/vgg/vgg_presets.py,sha256=qD2AK3W9NdyljY5ObVYpDyWAYgl1puQ3RLbha0CvrvU,1491
304
336
  keras_hub/src/models/vit_det/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
305
337
  keras_hub/src/models/vit_det/vit_det_backbone.py,sha256=-ZSvfL_XSjYK_qpo5fDGY-UOI38_rqU4fD9XszK2yxU,7656
306
338
  keras_hub/src/models/vit_det/vit_layers.py,sha256=oCKeUw5ckyUAGvmFPuxIiIAqgmC3uqh85LfZcgyh964,19852
307
339
  keras_hub/src/models/whisper/__init__.py,sha256=45vTF01_e-7VzD-zvXPw1NiA9SCgDE8w0cI-6peG9cA,263
308
- keras_hub/src/models/whisper/whisper_audio_converter.py,sha256=aXqQ6uPI9fBSjuYbo7bMr4C0avPh3iDwrVXHEJ7W_zo,8386
340
+ keras_hub/src/models/whisper/whisper_audio_converter.py,sha256=qHr7xt9jMpy7EhB7DWDP3VtZZNC4RjqTiA3mhTr5cwc,8386
309
341
  keras_hub/src/models/whisper/whisper_backbone.py,sha256=5AwhulDC-ius9zJQNqWmOISXRv3hLMurRfnaaj_EXVQ,11514
310
342
  keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py,sha256=Dt6m0O5XU5_o4SOmMEkNj2RVqxMGJ3uIhouu_XLw0cc,4948
311
343
  keras_hub/src/models/whisper/whisper_decoder.py,sha256=bTA_auMfMtsrFHqXXRa8AHUv8uU0Fejo1gdNJGrTGOA,5270
312
344
  keras_hub/src/models/whisper/whisper_encoder.py,sha256=ZJ93D6mP95Mb9cFDZbfMWbB9FlrV3706ZsUwUJMKOdg,3730
313
- keras_hub/src/models/whisper/whisper_presets.py,sha256=xggQaX_JgpaqL0HYFZ3D3r-7dkoZPg-1sDZxyJKBWKM,5168
345
+ keras_hub/src/models/whisper/whisper_presets.py,sha256=Syq9mFYqpw0suQ6ZLZDLomsbUXNVPrlVoFgLbsBVlso,3898
314
346
  keras_hub/src/models/whisper/whisper_tokenizer.py,sha256=HcF3PMoaLm-bNH9J_mG_iCBWGtJO6ahCRGAjjCptQOs,5575
315
347
  keras_hub/src/models/xlm_roberta/__init__.py,sha256=iiCNSvDxPXZdxDyQKRxSLp5qzSpTuodL2TlHfwfqQjQ,303
316
348
  keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py,sha256=x7wSDya7M4qcmzAwskd6qx9avSQs8mWhvAMWS4hnpFY,2922
317
349
  keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py,sha256=G2RysGG8o2vuggNSrPmU3UA9FBhsAkjLHYby1ZzgWcQ,4378
318
350
  keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py,sha256=xf8lggg99D3cO5mlZseQjfYDN9W12V_VgEYS-5BbQlE,5995
319
- keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py,sha256=0nN72aH113yS1ADKLfpZ-tB6A2sF62DVKoanKO9w4U8,1177
351
+ keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py,sha256=6_kPYz0syVV7SXi7Nw4wceILi-eHay3274Y62HYDyUM,875
320
352
  keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py,sha256=RZZBYa3EWmcSpTe4a2qFX87lFIgVjbV7zGBMyawBQyM,7237
321
353
  keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py,sha256=YwM-Ravzj_UxWhmm_xREvNxvT3kNTYQgRTkH6g9o2yM,6525
322
354
  keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py,sha256=-mQC5j1hCVaDPUkUP8fovQhKGZBcAt-TOTkGFusWIM8,6774
@@ -335,7 +367,7 @@ keras_hub/src/samplers/serialization.py,sha256=K6FC4AY1sfOLLIk2k4G783XWnQ_Rk3z1Q
335
367
  keras_hub/src/samplers/top_k_sampler.py,sha256=WSyrhmOCan55X2JYAnNWE88rkx66sXqdoerl87nOrDQ,2250
336
368
  keras_hub/src/samplers/top_p_sampler.py,sha256=9r29WdqBlrW_2TBma6QqkRps2Uit4a6iZPmq1Gsiuko,3400
337
369
  keras_hub/src/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
338
- keras_hub/src/tests/test_case.py,sha256=KMFdQoTqAGotj8Pt8AxXjTJ_f0qwavIGUh-iqN1nQvA,26304
370
+ keras_hub/src/tests/test_case.py,sha256=wBDTzty7O5pM96GcvgnYrNt76y72jdNA8_8mic4f9yY,27502
339
371
  keras_hub/src/tokenizers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
340
372
  keras_hub/src/tokenizers/byte_pair_tokenizer.py,sha256=fGFp3WgPNYGTztpSGMl0kKFjn1bCeZB71lSJfT1eqEE,24052
341
373
  keras_hub/src/tokenizers/byte_tokenizer.py,sha256=vjgrTT8FdtZVAlr0mU13alzADcUhtMrzgOs4lYeHvAQ,10648
@@ -348,16 +380,17 @@ keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=xUhc9EMswarzghNf
348
380
  keras_hub/src/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
349
381
  keras_hub/src/utils/keras_utils.py,sha256=lrZuC8HL2lmQfbHaS_t1JUyJann_ji2iTYE0Fzos8PU,1969
350
382
  keras_hub/src/utils/pipeline_model.py,sha256=jgzB6NQPSl0KOu08N-TazfOnXnUJbZjH2EXXhx25Ftg,9084
351
- keras_hub/src/utils/preset_utils.py,sha256=w45mluy4bhPPWB68waWpXFQ4MAKvSXS6llVw4rAE70s,30119
383
+ keras_hub/src/utils/preset_utils.py,sha256=hwJgx2WDUnlsnz2yYmM9FyMYsxVAbszzQkBbciewer4,30863
352
384
  keras_hub/src/utils/python_utils.py,sha256=N8nWeO3san4YnGkffRXG3Ix7VEIMTKSN21FX5TuL7G8,202
353
385
  keras_hub/src/utils/tensor_utils.py,sha256=JipeJUDnnvLuT-ToVQC0t9dmSzebwPG6XiZgEwGEGI4,14646
354
386
  keras_hub/src/utils/imagenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
355
387
  keras_hub/src/utils/imagenet/imagenet_utils.py,sha256=MvIvv1WJo51ZXBxy4S7t_DsN3ZMtJWlC4cmRvKM2kIA,39304
356
388
  keras_hub/src/utils/timm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
357
389
  keras_hub/src/utils/timm/convert_densenet.py,sha256=V-GRjWuDnlh3b1EMxqahwZ3GMwSgOa3v0HOfb2ZZ-d0,3342
390
+ keras_hub/src/utils/timm/convert_efficientnet.py,sha256=KDRlR6OfJdh1gq3IOzuLimK_2t_T6D1vUqZUnXKsjtw,17085
358
391
  keras_hub/src/utils/timm/convert_resnet.py,sha256=ee8eTml0ffJKE8avzGoLFcpjPF63DsvoIUArAGa8Ngg,5832
359
392
  keras_hub/src/utils/timm/convert_vgg.py,sha256=MT5jGnLrzenPpe66Af_Lp1IdR9KGtsSrcmn6_UPqHvQ,2419
360
- keras_hub/src/utils/timm/preset_loader.py,sha256=PBqmnEj-fash_-GH-_ulb9YYaHAIESlOsI3wXCwKGRo,3221
393
+ keras_hub/src/utils/timm/preset_loader.py,sha256=cdZDjthZdTD2myMOenQar4ACyi7VTuIzNRg24LuqS-4,3374
361
394
  keras_hub/src/utils/transformers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
362
395
  keras_hub/src/utils/transformers/convert_albert.py,sha256=VdKclZpCxtDWq3UbUUQZf4fR9DJK_JYZ73B4O_G9skg,7695
363
396
  keras_hub/src/utils/transformers/convert_bart.py,sha256=Tk4h9Md9rwN5wjQbGIVrC7qzDpF8kI8qm-FKL8HlUok,14411
@@ -370,7 +403,7 @@ keras_hub/src/utils/transformers/convert_mistral.py,sha256=kVhN9h1ZFVhwkNW8p3wnS
370
403
  keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYumf66hIid07k5NLqoeWAJgPnaLs,10649
371
404
  keras_hub/src/utils/transformers/preset_loader.py,sha256=GS44hZUuGQCtzsyn8z44ZpHdftd3DFemwV2hx2bQa-U,2738
372
405
  keras_hub/src/utils/transformers/safetensor_utils.py,sha256=rPK-Uw1CG0DX0d_UAD-r2cG9fw8GI8bvAlrcXfQ9g4c,3323
373
- keras_hub_nightly-0.16.1.dev202410200345.dist-info/METADATA,sha256=NriUPiepBw1bkQefKH4n_O5T-8UMx8pKwN6WQeKE7-s,7458
374
- keras_hub_nightly-0.16.1.dev202410200345.dist-info/WHEEL,sha256=OVMc5UfuAQiSplgO0_WdW7vXVGAt9Hdd6qtN4HotdyA,91
375
- keras_hub_nightly-0.16.1.dev202410200345.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
376
- keras_hub_nightly-0.16.1.dev202410200345.dist-info/RECORD,,
406
+ keras_hub_nightly-0.19.0.dev202412070351.dist-info/METADATA,sha256=OCsi404QHcWaJ2r_B-eT6ePj-1_s8d4DL3uZeHHG4FA,6988
407
+ keras_hub_nightly-0.19.0.dev202412070351.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
408
+ keras_hub_nightly-0.19.0.dev202412070351.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
409
+ keras_hub_nightly-0.19.0.dev202412070351.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.2.0)
2
+ Generator: setuptools (75.6.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5