keras-hub-nightly 0.16.1.dev202410180341__py3-none-any.whl → 0.16.1.dev202410200345__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/api/layers/__init__.py +2 -4
- keras_hub/api/models/__init__.py +4 -8
- keras_hub/src/models/mit/__init__.py +6 -0
- keras_hub/src/models/{mix_transformer/mix_transformer_backbone.py → mit/mit_backbone.py} +3 -7
- keras_hub/src/models/{mix_transformer/mix_transformer_classifier.py → mit/mit_image_classifier.py} +2 -4
- keras_hub/src/models/{mix_transformer/mix_transformer_classifier_preprocessor.py → mit/mit_image_classifier_preprocessor.py} +2 -6
- keras_hub/src/models/{mix_transformer/mix_transformer_image_converter.py → mit/mit_image_converter.py} +1 -1
- keras_hub/src/models/mobilenet/mobilenet_backbone.py +1 -1
- keras_hub/src/models/resnet/resnet_backbone.py +1 -2
- keras_hub/src/models/resnet/resnet_presets.py +141 -0
- keras_hub/src/models/sam/sam_image_segmenter.py +1 -1
- keras_hub/src/models/sam/sam_presets.py +3 -3
- keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +1 -1
- keras_hub/src/models/vae/vae_backbone.py +13 -1
- keras_hub/src/models/vgg/__init__.py +4 -0
- keras_hub/src/models/vgg/vgg_backbone.py +1 -1
- keras_hub/src/models/vgg/vgg_image_classifier.py +4 -15
- keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py +12 -0
- keras_hub/src/models/vgg/vgg_image_converter.py +8 -0
- keras_hub/src/models/vit_det/vit_det_backbone.py +2 -2
- keras_hub/src/utils/pipeline_model.py +3 -3
- keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.16.1.dev202410180341.dist-info → keras_hub_nightly-0.16.1.dev202410200345.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.16.1.dev202410180341.dist-info → keras_hub_nightly-0.16.1.dev202410200345.dist-info}/RECORD +28 -26
- keras_hub/src/models/mix_transformer/__init__.py +0 -12
- /keras_hub/src/models/{mix_transformer/mix_transformer_layers.py → mit/mit_layers.py} +0 -0
- /keras_hub/src/models/{mix_transformer/mix_transformer_presets.py → mit/mit_presets.py} +0 -0
- {keras_hub_nightly-0.16.1.dev202410180341.dist-info → keras_hub_nightly-0.16.1.dev202410200345.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.16.1.dev202410180341.dist-info → keras_hub_nightly-0.16.1.dev202410200345.dist-info}/top_level.txt +0 -0
keras_hub/api/layers/__init__.py
CHANGED
@@ -40,9 +40,7 @@ from keras_hub.src.models.deeplab_v3.deeplab_v3_image_converter import (
|
|
40
40
|
from keras_hub.src.models.densenet.densenet_image_converter import (
|
41
41
|
DenseNetImageConverter,
|
42
42
|
)
|
43
|
-
from keras_hub.src.models.
|
44
|
-
MiTImageConverter,
|
45
|
-
)
|
43
|
+
from keras_hub.src.models.mit.mit_image_converter import MiTImageConverter
|
46
44
|
from keras_hub.src.models.pali_gemma.pali_gemma_image_converter import (
|
47
45
|
PaliGemmaImageConverter,
|
48
46
|
)
|
@@ -52,7 +50,7 @@ from keras_hub.src.models.resnet.resnet_image_converter import (
|
|
52
50
|
from keras_hub.src.models.sam.sam_image_converter import SAMImageConverter
|
53
51
|
from keras_hub.src.models.sam.sam_mask_decoder import SAMMaskDecoder
|
54
52
|
from keras_hub.src.models.sam.sam_prompt_encoder import SAMPromptEncoder
|
55
|
-
from keras_hub.src.models.vgg.
|
53
|
+
from keras_hub.src.models.vgg.vgg_image_converter import VGGImageConverter
|
56
54
|
from keras_hub.src.models.whisper.whisper_audio_converter import (
|
57
55
|
WhisperAudioConverter,
|
58
56
|
)
|
keras_hub/api/models/__init__.py
CHANGED
@@ -202,13 +202,9 @@ from keras_hub.src.models.mistral.mistral_causal_lm_preprocessor import (
|
|
202
202
|
MistralCausalLMPreprocessor,
|
203
203
|
)
|
204
204
|
from keras_hub.src.models.mistral.mistral_tokenizer import MistralTokenizer
|
205
|
-
from keras_hub.src.models.
|
206
|
-
|
207
|
-
|
208
|
-
from keras_hub.src.models.mix_transformer.mix_transformer_classifier import (
|
209
|
-
MiTImageClassifier,
|
210
|
-
)
|
211
|
-
from keras_hub.src.models.mix_transformer.mix_transformer_classifier_preprocessor import (
|
205
|
+
from keras_hub.src.models.mit.mit_backbone import MiTBackbone
|
206
|
+
from keras_hub.src.models.mit.mit_image_classifier import MiTImageClassifier
|
207
|
+
from keras_hub.src.models.mit.mit_image_classifier_preprocessor import (
|
212
208
|
MiTImageClassifierPreprocessor,
|
213
209
|
)
|
214
210
|
from keras_hub.src.models.mobilenet.mobilenet_backbone import MobileNetBackbone
|
@@ -299,7 +295,7 @@ from keras_hub.src.models.text_classifier_preprocessor import (
|
|
299
295
|
from keras_hub.src.models.text_to_image import TextToImage
|
300
296
|
from keras_hub.src.models.vgg.vgg_backbone import VGGBackbone
|
301
297
|
from keras_hub.src.models.vgg.vgg_image_classifier import VGGImageClassifier
|
302
|
-
from keras_hub.src.models.vgg.
|
298
|
+
from keras_hub.src.models.vgg.vgg_image_classifier_preprocessor import (
|
303
299
|
VGGImageClassifierPreprocessor,
|
304
300
|
)
|
305
301
|
from keras_hub.src.models.vit_det.vit_det_backbone import ViTDetBackbone
|
@@ -0,0 +1,6 @@
|
|
1
|
+
from keras_hub.src.models.mit.mit_backbone import MiTBackbone
|
2
|
+
from keras_hub.src.models.mit.mit_image_classifier import MiTImageClassifier
|
3
|
+
from keras_hub.src.models.mit.mit_presets import backbone_presets
|
4
|
+
from keras_hub.src.utils.preset_utils import register_presets
|
5
|
+
|
6
|
+
register_presets(backbone_presets, MiTBackbone)
|
@@ -4,12 +4,8 @@ from keras import ops
|
|
4
4
|
|
5
5
|
from keras_hub.src.api_export import keras_hub_export
|
6
6
|
from keras_hub.src.models.feature_pyramid_backbone import FeaturePyramidBackbone
|
7
|
-
from keras_hub.src.models.
|
8
|
-
|
9
|
-
)
|
10
|
-
from keras_hub.src.models.mix_transformer.mix_transformer_layers import (
|
11
|
-
OverlappingPatchingAndEmbedding,
|
12
|
-
)
|
7
|
+
from keras_hub.src.models.mit.mit_layers import HierarchicalTransformerEncoder
|
8
|
+
from keras_hub.src.models.mit.mit_layers import OverlappingPatchingAndEmbedding
|
13
9
|
|
14
10
|
|
15
11
|
@keras_hub_export("keras_hub.models.MiTBackbone")
|
@@ -61,7 +57,7 @@ class MiTBackbone(FeaturePyramidBackbone):
|
|
61
57
|
```python
|
62
58
|
images = np.ones(shape=(1, 96, 96, 3))
|
63
59
|
labels = np.zeros(shape=(1, 96, 96, 1))
|
64
|
-
backbone = keras_hub.models.MiTBackbone.from_preset("
|
60
|
+
backbone = keras_hub.models.MiTBackbone.from_preset("mit_b0_ade20k_512")
|
65
61
|
|
66
62
|
# Evaluate model
|
67
63
|
model(images)
|
keras_hub/src/models/{mix_transformer/mix_transformer_classifier.py → mit/mit_image_classifier.py}
RENAMED
@@ -1,9 +1,7 @@
|
|
1
1
|
from keras_hub.src.api_export import keras_hub_export
|
2
2
|
from keras_hub.src.models.image_classifier import ImageClassifier
|
3
|
-
from keras_hub.src.models.
|
4
|
-
|
5
|
-
)
|
6
|
-
from keras_hub.src.models.mix_transformer.mix_transformer_classifier_preprocessor import (
|
3
|
+
from keras_hub.src.models.mit.mit_backbone import MiTBackbone
|
4
|
+
from keras_hub.src.models.mit.mit_image_classifier_preprocessor import (
|
7
5
|
MiTImageClassifierPreprocessor,
|
8
6
|
)
|
9
7
|
|
@@ -2,12 +2,8 @@ from keras_hub.src.api_export import keras_hub_export
|
|
2
2
|
from keras_hub.src.models.image_classifier_preprocessor import (
|
3
3
|
ImageClassifierPreprocessor,
|
4
4
|
)
|
5
|
-
from keras_hub.src.models.
|
6
|
-
|
7
|
-
)
|
8
|
-
from keras_hub.src.models.mix_transformer.mix_transformer_image_converter import (
|
9
|
-
MiTImageConverter,
|
10
|
-
)
|
5
|
+
from keras_hub.src.models.mit.mit_backbone import MiTBackbone
|
6
|
+
from keras_hub.src.models.mit.mit_image_converter import MiTImageConverter
|
11
7
|
|
12
8
|
|
13
9
|
@keras_hub_export("keras_hub.models.MiTImageClassifierPreprocessor")
|
@@ -1,6 +1,6 @@
|
|
1
1
|
from keras_hub.src.api_export import keras_hub_export
|
2
2
|
from keras_hub.src.layers.preprocessing.image_converter import ImageConverter
|
3
|
-
from keras_hub.src.models.
|
3
|
+
from keras_hub.src.models.mit import MiTBackbone
|
4
4
|
|
5
5
|
|
6
6
|
@keras_hub_export("keras_hub.layers.MiTImageConverter")
|
@@ -96,7 +96,7 @@ class MobileNetBackbone(Backbone):
|
|
96
96
|
stackwise_activation,
|
97
97
|
output_num_filters,
|
98
98
|
inverted_res_block,
|
99
|
-
image_shape=(
|
99
|
+
image_shape=(None, None, 3),
|
100
100
|
input_activation="hard_swish",
|
101
101
|
output_activation="hard_swish",
|
102
102
|
depth_multiplier=1.0,
|
@@ -68,7 +68,7 @@ class ResNetBackbone(FeaturePyramidBackbone):
|
|
68
68
|
input_data = np.random.uniform(0, 1, size=(2, 224, 224, 3))
|
69
69
|
|
70
70
|
# Pretrained ResNet backbone.
|
71
|
-
model = keras_hub.models.ResNetBackbone.from_preset("
|
71
|
+
model = keras_hub.models.ResNetBackbone.from_preset("resnet_50_imagenet")
|
72
72
|
model(input_data)
|
73
73
|
|
74
74
|
# Randomly initialized ResNetV2 backbone with a custom config.
|
@@ -80,7 +80,6 @@ class ResNetBackbone(FeaturePyramidBackbone):
|
|
80
80
|
stackwise_num_strides=[1, 2, 2],
|
81
81
|
block_type="basic_block",
|
82
82
|
use_pre_activation=True,
|
83
|
-
pooling="avg",
|
84
83
|
)
|
85
84
|
model(input_data)
|
86
85
|
```
|
@@ -79,4 +79,145 @@ backbone_presets = {
|
|
79
79
|
},
|
80
80
|
"kaggle_handle": "kaggle://keras/resnetv2/keras/resnet_v2_101_imagenet/2",
|
81
81
|
},
|
82
|
+
"resnet_vd_18_imagenet": {
|
83
|
+
"metadata": {
|
84
|
+
"description": (
|
85
|
+
"18-layer ResNetVD (ResNet with bag of tricks) model "
|
86
|
+
"pre-trained on the ImageNet 1k dataset at a 224x224 "
|
87
|
+
"resolution."
|
88
|
+
),
|
89
|
+
"params": 11722824,
|
90
|
+
"official_name": "ResNet",
|
91
|
+
"path": "resnet",
|
92
|
+
"model_card": "https://arxiv.org/abs/1812.01187",
|
93
|
+
},
|
94
|
+
"kaggle_handle": "kaggle://kerashub/resnetvd/keras/resnet_vd_18_imagenet",
|
95
|
+
},
|
96
|
+
"resnet_vd_34_imagenet": {
|
97
|
+
"metadata": {
|
98
|
+
"description": (
|
99
|
+
"34-layer ResNetVD (ResNet with bag of tricks) model "
|
100
|
+
"pre-trained on the ImageNet 1k dataset at a 224x224 "
|
101
|
+
"resolution."
|
102
|
+
),
|
103
|
+
"params": 21838408,
|
104
|
+
"official_name": "ResNet",
|
105
|
+
"path": "resnet",
|
106
|
+
"model_card": "https://arxiv.org/abs/1812.01187",
|
107
|
+
},
|
108
|
+
"kaggle_handle": "kaggle://kerashub/resnetvd/keras/resnet_vd_34_imagenet",
|
109
|
+
},
|
110
|
+
"resnet_vd_50_imagenet": {
|
111
|
+
"metadata": {
|
112
|
+
"description": (
|
113
|
+
"50-layer ResNetVD (ResNet with bag of tricks) model "
|
114
|
+
"pre-trained on the ImageNet 1k dataset at a 224x224 "
|
115
|
+
"resolution."
|
116
|
+
),
|
117
|
+
"params": 25629512,
|
118
|
+
"official_name": "ResNet",
|
119
|
+
"path": "resnet",
|
120
|
+
"model_card": "https://arxiv.org/abs/1812.01187",
|
121
|
+
},
|
122
|
+
"kaggle_handle": "kaggle://kerashub/resnetvd/keras/resnet_vd_50_imagenet",
|
123
|
+
},
|
124
|
+
"resnet_vd_50_ssld_imagenet": {
|
125
|
+
"metadata": {
|
126
|
+
"description": (
|
127
|
+
"50-layer ResNetVD (ResNet with bag of tricks) model "
|
128
|
+
"pre-trained on the ImageNet 1k dataset at a 224x224 "
|
129
|
+
"resolution with knowledge distillation."
|
130
|
+
),
|
131
|
+
"params": 25629512,
|
132
|
+
"official_name": "ResNet",
|
133
|
+
"path": "resnet",
|
134
|
+
"model_card": "https://arxiv.org/abs/1812.01187",
|
135
|
+
},
|
136
|
+
"kaggle_handle": "kaggle://kerashub/resnetvd/keras/resnet_vd_50_ssld_imagenet",
|
137
|
+
},
|
138
|
+
"resnet_vd_50_ssld_v2_imagenet": {
|
139
|
+
"metadata": {
|
140
|
+
"description": (
|
141
|
+
"50-layer ResNetVD (ResNet with bag of tricks) model "
|
142
|
+
"pre-trained on the ImageNet 1k dataset at a 224x224 "
|
143
|
+
"resolution with knowledge distillation and AutoAugment."
|
144
|
+
),
|
145
|
+
"params": 25629512,
|
146
|
+
"official_name": "ResNet",
|
147
|
+
"path": "resnet",
|
148
|
+
"model_card": "https://arxiv.org/abs/1812.01187",
|
149
|
+
},
|
150
|
+
"kaggle_handle": "kaggle://kerashub/resnetvd/keras/resnet_vd_50_ssld_v2_imagenet",
|
151
|
+
},
|
152
|
+
"resnet_vd_50_ssld_v2_fix_imagenet": {
|
153
|
+
"metadata": {
|
154
|
+
"description": (
|
155
|
+
"50-layer ResNetVD (ResNet with bag of tricks) model "
|
156
|
+
"pre-trained on the ImageNet 1k dataset at a 224x224 "
|
157
|
+
"resolution with knowledge distillation, AutoAugment and "
|
158
|
+
"additional fine-tuning of the classification head."
|
159
|
+
),
|
160
|
+
"params": 25629512,
|
161
|
+
"official_name": "ResNet",
|
162
|
+
"path": "resnet",
|
163
|
+
"model_card": "https://arxiv.org/abs/1812.01187",
|
164
|
+
},
|
165
|
+
"kaggle_handle": "kaggle://kerashub/resnetvd/keras/resnet_vd_50_ssld_v2_fix_imagenet",
|
166
|
+
},
|
167
|
+
"resnet_vd_101_imagenet": {
|
168
|
+
"metadata": {
|
169
|
+
"description": (
|
170
|
+
"101-layer ResNetVD (ResNet with bag of tricks) model "
|
171
|
+
"pre-trained on the ImageNet 1k dataset at a 224x224 "
|
172
|
+
"resolution."
|
173
|
+
),
|
174
|
+
"params": 44673864,
|
175
|
+
"official_name": "ResNet",
|
176
|
+
"path": "resnet",
|
177
|
+
"model_card": "https://arxiv.org/abs/1812.01187",
|
178
|
+
},
|
179
|
+
"kaggle_handle": "kaggle://kerashub/resnetvd/keras/resnet_vd_101_imagenet",
|
180
|
+
},
|
181
|
+
"resnet_vd_101_ssld_imagenet": {
|
182
|
+
"metadata": {
|
183
|
+
"description": (
|
184
|
+
"101-layer ResNetVD (ResNet with bag of tricks) model "
|
185
|
+
"pre-trained on the ImageNet 1k dataset at a 224x224 "
|
186
|
+
"resolution with knowledge distillation."
|
187
|
+
),
|
188
|
+
"params": 44673864,
|
189
|
+
"official_name": "ResNet",
|
190
|
+
"path": "resnet",
|
191
|
+
"model_card": "https://arxiv.org/abs/1812.01187",
|
192
|
+
},
|
193
|
+
"kaggle_handle": "kaggle://kerashub/resnetvd/keras/resnet_vd_101_ssld_imagenet",
|
194
|
+
},
|
195
|
+
"resnet_vd_152_imagenet": {
|
196
|
+
"metadata": {
|
197
|
+
"description": (
|
198
|
+
"152-layer ResNetVD (ResNet with bag of tricks) model "
|
199
|
+
"pre-trained on the ImageNet 1k dataset at a 224x224 "
|
200
|
+
"resolution."
|
201
|
+
),
|
202
|
+
"params": 60363592,
|
203
|
+
"official_name": "ResNet",
|
204
|
+
"path": "resnet",
|
205
|
+
"model_card": "https://arxiv.org/abs/1812.01187",
|
206
|
+
},
|
207
|
+
"kaggle_handle": "kaggle://kerashub/resnetvd/keras/resnet_vd_152_imagenet",
|
208
|
+
},
|
209
|
+
"resnet_vd_200_imagenet": {
|
210
|
+
"metadata": {
|
211
|
+
"description": (
|
212
|
+
"200-layer ResNetVD (ResNet with bag of tricks) model "
|
213
|
+
"pre-trained on the ImageNet 1k dataset at a 224x224 "
|
214
|
+
"resolution."
|
215
|
+
),
|
216
|
+
"params": 74933064,
|
217
|
+
"official_name": "ResNet",
|
218
|
+
"path": "resnet",
|
219
|
+
"model_card": "https://arxiv.org/abs/1812.01187",
|
220
|
+
},
|
221
|
+
"kaggle_handle": "kaggle://kerashub/resnetvd/keras/resnet_vd_200_imagenet",
|
222
|
+
},
|
82
223
|
}
|
@@ -9,7 +9,7 @@ backbone_presets = {
|
|
9
9
|
"path": "sam",
|
10
10
|
"model_card": "https://arxiv.org/abs/2304.02643",
|
11
11
|
},
|
12
|
-
"kaggle_handle": "kaggle://keras/sam/keras/sam_base_sa1b/
|
12
|
+
"kaggle_handle": "kaggle://keras/sam/keras/sam_base_sa1b/4",
|
13
13
|
},
|
14
14
|
"sam_large_sa1b": {
|
15
15
|
"metadata": {
|
@@ -19,7 +19,7 @@ backbone_presets = {
|
|
19
19
|
"path": "sam",
|
20
20
|
"model_card": "https://arxiv.org/abs/2304.02643",
|
21
21
|
},
|
22
|
-
"kaggle_handle": "kaggle://keras/sam/keras/sam_large_sa1b/
|
22
|
+
"kaggle_handle": "kaggle://keras/sam/keras/sam_large_sa1b/4",
|
23
23
|
},
|
24
24
|
"sam_huge_sa1b": {
|
25
25
|
"metadata": {
|
@@ -29,6 +29,6 @@ backbone_presets = {
|
|
29
29
|
"path": "sam",
|
30
30
|
"model_card": "https://arxiv.org/abs/2304.02643",
|
31
31
|
},
|
32
|
-
"kaggle_handle": "kaggle://keras/sam/keras/sam_huge_sa1b/
|
32
|
+
"kaggle_handle": "kaggle://keras/sam/keras/sam_huge_sa1b/4",
|
33
33
|
},
|
34
34
|
}
|
@@ -10,7 +10,7 @@ backbone_presets = {
|
|
10
10
|
),
|
11
11
|
"params": 2987080931,
|
12
12
|
"official_name": "StableDiffusion3",
|
13
|
-
"path": "
|
13
|
+
"path": "stable_diffusion_3",
|
14
14
|
"model_card": "https://arxiv.org/abs/2110.00476",
|
15
15
|
},
|
16
16
|
"kaggle_handle": "kaggle://keras/stablediffusion3/keras/stable_diffusion_3_medium/1",
|
@@ -10,7 +10,7 @@ from keras_hub.src.utils.keras_utils import standardize_data_format
|
|
10
10
|
|
11
11
|
|
12
12
|
class VAEBackbone(Backbone):
|
13
|
-
"""VAE backbone used in latent diffusion models.
|
13
|
+
"""Variational Autoencoder(VAE) backbone used in latent diffusion models.
|
14
14
|
|
15
15
|
When encoding, this model generates mean and log variance of the input
|
16
16
|
images. When decoding, it reconstructs images from the latent space.
|
@@ -51,6 +51,18 @@ class VAEBackbone(Backbone):
|
|
51
51
|
`"channels_last"`.
|
52
52
|
dtype: `None` or str or `keras.mixed_precision.DTypePolicy`. The dtype
|
53
53
|
to use for the model's computations and weights.
|
54
|
+
|
55
|
+
Example:
|
56
|
+
```Python
|
57
|
+
backbone = VAEBackbone(
|
58
|
+
encoder_num_filters=[32, 32, 32, 32],
|
59
|
+
encoder_num_blocks=[1, 1, 1, 1],
|
60
|
+
decoder_num_filters=[32, 32, 32, 32],
|
61
|
+
decoder_num_blocks=[1, 1, 1, 1],
|
62
|
+
)
|
63
|
+
input_data = ops.ones((2, self.height, self.width, 3))
|
64
|
+
output = backbone(input_data)
|
65
|
+
```
|
54
66
|
"""
|
55
67
|
|
56
68
|
def __init__(
|
@@ -20,7 +20,7 @@ class VGGBackbone(Backbone):
|
|
20
20
|
stackwise_num_filters: list of ints, filter size for convolutional
|
21
21
|
blocks per VGG block. For both VGG16 and VGG19 this is [
|
22
22
|
64, 128, 256, 512, 512].
|
23
|
-
image_shape: tuple, optional shape tuple, defaults to (
|
23
|
+
image_shape: tuple, optional shape tuple, defaults to (None, None, 3).
|
24
24
|
|
25
25
|
Examples:
|
26
26
|
```python
|
@@ -1,24 +1,12 @@
|
|
1
1
|
import keras
|
2
2
|
|
3
3
|
from keras_hub.src.api_export import keras_hub_export
|
4
|
-
from keras_hub.src.layers.preprocessing.image_converter import ImageConverter
|
5
4
|
from keras_hub.src.models.image_classifier import ImageClassifier
|
6
|
-
from keras_hub.src.models.image_classifier_preprocessor import (
|
7
|
-
ImageClassifierPreprocessor,
|
8
|
-
)
|
9
5
|
from keras_hub.src.models.task import Task
|
10
6
|
from keras_hub.src.models.vgg.vgg_backbone import VGGBackbone
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
class VGGImageConverter(ImageConverter):
|
15
|
-
backbone_cls = VGGBackbone
|
16
|
-
|
17
|
-
|
18
|
-
@keras_hub_export("keras_hub.models.VGGImageClassifierPreprocessor")
|
19
|
-
class VGGImageClassifierPreprocessor(ImageClassifierPreprocessor):
|
20
|
-
backbone_cls = VGGBackbone
|
21
|
-
image_converter_cls = VGGImageConverter
|
7
|
+
from keras_hub.src.models.vgg.vgg_image_classifier_preprocessor import (
|
8
|
+
VGGImageClassifierPreprocessor,
|
9
|
+
)
|
22
10
|
|
23
11
|
|
24
12
|
@keras_hub_export("keras_hub.models.VGGImageClassifier")
|
@@ -211,6 +199,7 @@ class VGGImageClassifier(ImageClassifier):
|
|
211
199
|
self.pooling = pooling
|
212
200
|
self.pooling_hidden_dim = pooling_hidden_dim
|
213
201
|
self.dropout = dropout
|
202
|
+
self.preprocessor = preprocessor
|
214
203
|
|
215
204
|
def get_config(self):
|
216
205
|
# Backbone serialized in `super`
|
@@ -0,0 +1,12 @@
|
|
1
|
+
from keras_hub.src.api_export import keras_hub_export
|
2
|
+
from keras_hub.src.models.image_classifier_preprocessor import (
|
3
|
+
ImageClassifierPreprocessor,
|
4
|
+
)
|
5
|
+
from keras_hub.src.models.vgg.vgg_backbone import VGGBackbone
|
6
|
+
from keras_hub.src.models.vgg.vgg_image_converter import VGGImageConverter
|
7
|
+
|
8
|
+
|
9
|
+
@keras_hub_export("keras_hub.models.VGGImageClassifierPreprocessor")
|
10
|
+
class VGGImageClassifierPreprocessor(ImageClassifierPreprocessor):
|
11
|
+
backbone_cls = VGGBackbone
|
12
|
+
image_converter_cls = VGGImageConverter
|
@@ -0,0 +1,8 @@
|
|
1
|
+
from keras_hub.src.api_export import keras_hub_export
|
2
|
+
from keras_hub.src.layers.preprocessing.image_converter import ImageConverter
|
3
|
+
from keras_hub.src.models.vgg.vgg_backbone import VGGBackbone
|
4
|
+
|
5
|
+
|
6
|
+
@keras_hub_export("keras_hub.layers.VGGImageConverter")
|
7
|
+
class VGGImageConverter(ImageConverter):
|
8
|
+
backbone_cls = VGGBackbone
|
@@ -31,7 +31,7 @@ class ViTDetBackbone(Backbone):
|
|
31
31
|
global_attention_layer_indices (list): Indexes for blocks using
|
32
32
|
global attention.
|
33
33
|
image_shape (tuple[int], optional): The size of the input image in
|
34
|
-
`(H, W, C)` format. Defaults to `(
|
34
|
+
`(H, W, C)` format. Defaults to `(None, None, 3)`.
|
35
35
|
patch_size (int, optional): the patch size to be supplied to the
|
36
36
|
Patching layer to turn input images into a flattened sequence of
|
37
37
|
patches. Defaults to `16`.
|
@@ -79,7 +79,7 @@ class ViTDetBackbone(Backbone):
|
|
79
79
|
intermediate_dim,
|
80
80
|
num_heads,
|
81
81
|
global_attention_layer_indices,
|
82
|
-
image_shape=(
|
82
|
+
image_shape=(None, None, 3),
|
83
83
|
patch_size=16,
|
84
84
|
num_output_channels=256,
|
85
85
|
use_bias=True,
|
@@ -232,7 +232,7 @@ class PipelineModel(keras.Model):
|
|
232
232
|
):
|
233
233
|
data = self.preprocess_samples(x, y, sample_weight)
|
234
234
|
x, y, sample_weight = keras.utils.unpack_x_y_sample_weight(data)
|
235
|
-
x = ops.convert_to_tensor
|
235
|
+
x = tree.map_structure(ops.convert_to_tensor, x)
|
236
236
|
if y is not None:
|
237
237
|
y = ops.convert_to_tensor(y)
|
238
238
|
if sample_weight is not None:
|
@@ -253,7 +253,7 @@ class PipelineModel(keras.Model):
|
|
253
253
|
):
|
254
254
|
data = self.preprocess_samples(x, y, sample_weight)
|
255
255
|
x, y, sample_weight = keras.utils.unpack_x_y_sample_weight(data)
|
256
|
-
x = ops.convert_to_tensor
|
256
|
+
x = tree.map_structure(ops.convert_to_tensor, x)
|
257
257
|
if y is not None:
|
258
258
|
y = ops.convert_to_tensor(y)
|
259
259
|
if sample_weight is not None:
|
@@ -272,7 +272,7 @@ class PipelineModel(keras.Model):
|
|
272
272
|
):
|
273
273
|
data = self.preprocess_samples(x)
|
274
274
|
x, _, _ = keras.utils.unpack_x_y_sample_weight(data)
|
275
|
-
x = ops.convert_to_tensor
|
275
|
+
x = tree.map_structure(ops.convert_to_tensor, x)
|
276
276
|
return super().predict_on_batch(
|
277
277
|
x=x,
|
278
278
|
**kwargs,
|
keras_hub/src/version_utils.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: keras-hub-nightly
|
3
|
-
Version: 0.16.1.
|
3
|
+
Version: 0.16.1.dev202410200345
|
4
4
|
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
5
|
Home-page: https://github.com/keras-team/keras-hub
|
6
6
|
Author: Keras team
|
@@ -1,15 +1,15 @@
|
|
1
1
|
keras_hub/__init__.py,sha256=QGdXyHgYt6cMUAP1ebxwc6oR86dE0dkMxNy2eOCQtFo,855
|
2
2
|
keras_hub/api/__init__.py,sha256=spMxsgqzjpeuC8rY4WP-2kAZ2qwwKRSbFwddXgUjqQE,524
|
3
3
|
keras_hub/api/bounding_box/__init__.py,sha256=T8R_X7BPm0et1xaZq8565uJmid7dylsSFSj4V-rGuFQ,1097
|
4
|
-
keras_hub/api/layers/__init__.py,sha256=
|
4
|
+
keras_hub/api/layers/__init__.py,sha256=OpXnXktkkpTjlufy1u2hLPqV0cidG2B40x30jQGiy9U,2481
|
5
5
|
keras_hub/api/metrics/__init__.py,sha256=So8Ec-lOcTzn_UUMmAdzDm8RKkPu2dbRUm2px8gpUEI,381
|
6
|
-
keras_hub/api/models/__init__.py,sha256=
|
6
|
+
keras_hub/api/models/__init__.py,sha256=5EfZDUOnHStK8UE6f6ih7cQZo2ZyFeUO15T45TC1uNA,14819
|
7
7
|
keras_hub/api/samplers/__init__.py,sha256=n-_SEXxr2LNUzK2FqVFN7alsrkx1P_HOVTeLZKeGCdE,730
|
8
8
|
keras_hub/api/tokenizers/__init__.py,sha256=_f-r_cyUM2fjBB7iO84ThOdqqsAxHNIewJ2EBDlM0cA,2524
|
9
9
|
keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
|
10
10
|
keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
11
11
|
keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
|
12
|
-
keras_hub/src/version_utils.py,sha256=
|
12
|
+
keras_hub/src/version_utils.py,sha256=vhdVfxhBYNF9KstNciGcRjXgFBojRjbm2hO-HcHlQ0E,222
|
13
13
|
keras_hub/src/bounding_box/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
14
14
|
keras_hub/src/bounding_box/converters.py,sha256=a5po8DBm87oz2EXfi-0uEZHCMlCJPIb4-MaZIdYx3Dg,17865
|
15
15
|
keras_hub/src/bounding_box/formats.py,sha256=YmskOz2BOSat7NaE__J9VfpSNGPJJR0znSzA4lp8MMI,3868
|
@@ -209,15 +209,15 @@ keras_hub/src/models/mistral/mistral_layer_norm.py,sha256=nimMZ5CTPK8v9eflfrGuzq
|
|
209
209
|
keras_hub/src/models/mistral/mistral_presets.py,sha256=gucgdaFAiU-vRDS1g9zWGHjbDF_jaCiljPibCF4yVqY,1329
|
210
210
|
keras_hub/src/models/mistral/mistral_tokenizer.py,sha256=wyzR_Y2XwrDiBV3jIeBChSPiaOkVVaxFuLxMH2F6EYA,2005
|
211
211
|
keras_hub/src/models/mistral/mistral_transformer_decoder.py,sha256=RDIIB3FhneHZP11tNUFQT9DcWawCMnrtVxtSvtnP3ts,9542
|
212
|
-
keras_hub/src/models/
|
213
|
-
keras_hub/src/models/
|
214
|
-
keras_hub/src/models/
|
215
|
-
keras_hub/src/models/
|
216
|
-
keras_hub/src/models/
|
217
|
-
keras_hub/src/models/
|
218
|
-
keras_hub/src/models/
|
212
|
+
keras_hub/src/models/mit/__init__.py,sha256=F70_0PR_nPzPdMI8XOpXDRR_nxclGjcHv3iWSWUX3w8,316
|
213
|
+
keras_hub/src/models/mit/mit_backbone.py,sha256=0lsWM7TkwmFE3euYbI5Xe808_ua9UDPOV4hOPlCBrOo,5984
|
214
|
+
keras_hub/src/models/mit/mit_image_classifier.py,sha256=HKj6u6AqPbxinGYPRsz_ZdW2pEHAcFsKenrGHpRMobM,480
|
215
|
+
keras_hub/src/models/mit/mit_image_classifier_preprocessor.py,sha256=oNYs-pUK8VnzNEPcq5beYX0qfnnlbJcxY8o5s7bVQes,504
|
216
|
+
keras_hub/src/models/mit/mit_image_converter.py,sha256=Mw7nV-OzyBveGuZUNFsPPKyq9jXJVW2_cVH024CNkXM,311
|
217
|
+
keras_hub/src/models/mit/mit_layers.py,sha256=9AbA4kCJkjeV7fAwbRns8VGn0l1pgQ3CqFPjY-99VGA,9695
|
218
|
+
keras_hub/src/models/mit/mit_presets.py,sha256=9bxWVOLhmBdoq2I4uZfZb7wZAB-3YjuMq0T_-JJzr2w,4960
|
219
219
|
keras_hub/src/models/mobilenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
220
|
-
keras_hub/src/models/mobilenet/mobilenet_backbone.py,sha256=
|
220
|
+
keras_hub/src/models/mobilenet/mobilenet_backbone.py,sha256=fFqEH3WTspEBYnF9LEdsX7RGHEEL3CVoVDPWG1ZnqBk,18193
|
221
221
|
keras_hub/src/models/mobilenet/mobilenet_image_classifier.py,sha256=l5jo99I0fLlbwLub5jHw07CjC-NnmuV-ySJwXGI20Ek,351
|
222
222
|
keras_hub/src/models/opt/__init__.py,sha256=6Ybj8etxNaPsVcuZvaeHnKB3As92Px--dbiFAqOCIT0,239
|
223
223
|
keras_hub/src/models/opt/opt_backbone.py,sha256=mK5z_E5mSiIX5s0w4hr4IVQpT7K46W2ajZBmuMjxwaY,5873
|
@@ -245,11 +245,11 @@ keras_hub/src/models/phi3/phi3_presets.py,sha256=DNyPTDA7PzFC8Ys2QmR2-mxUDa8Y8Id
|
|
245
245
|
keras_hub/src/models/phi3/phi3_rotary_embedding.py,sha256=WTPCN8IKq3R7kMzsES1b8JEKV-8iNi_49WkhNTXoNUk,5012
|
246
246
|
keras_hub/src/models/phi3/phi3_tokenizer.py,sha256=bOPH14wTVVHJHq8mgzXLjsgvKMNhfO8eayevAPpjYVA,1992
|
247
247
|
keras_hub/src/models/resnet/__init__.py,sha256=C5UqlQ6apm8WSp1bnrxB6Bi3BGaknxRQs-r3b2wpaGA,257
|
248
|
-
keras_hub/src/models/resnet/resnet_backbone.py,sha256=
|
248
|
+
keras_hub/src/models/resnet/resnet_backbone.py,sha256=3acTjdWbnos8l_TPxYLgoV3Y4V_vJ_o1AqGhiQu459k,31274
|
249
249
|
keras_hub/src/models/resnet/resnet_image_classifier.py,sha256=nf35EKDzvBkfhHsK-s6Ks0nbhvKO7HEOYZm94YckyWE,510
|
250
250
|
keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py,sha256=fM7gyQ0qB-RRuI4USJkRD6q9-HVfuC71e-BLTo-UhHQ,543
|
251
251
|
keras_hub/src/models/resnet/resnet_image_converter.py,sha256=fgTxihJznGFss-y3Z-jp0JE3X1gaaB2y-f2KMwrT8Pk,342
|
252
|
-
keras_hub/src/models/resnet/resnet_presets.py,sha256=
|
252
|
+
keras_hub/src/models/resnet/resnet_presets.py,sha256=kgEZQtJKnK37bSKy4Ny0GdE70P71z6OOdR_H--1pYGI,8563
|
253
253
|
keras_hub/src/models/retinanet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
254
254
|
keras_hub/src/models/retinanet/anchor_generator.py,sha256=43NoI7djbRudH98hUm-9fw5OEGQNRXOUYzypIZhLYhE,6750
|
255
255
|
keras_hub/src/models/retinanet/box_matcher.py,sha256=l820r1R-ByqiyVgmZ0YFjjz0njchDda-wItzLn1X84o,10834
|
@@ -267,11 +267,11 @@ keras_hub/src/models/roberta/roberta_tokenizer.py,sha256=VKPrgXVT9aMKP7et2DIWKlT
|
|
267
267
|
keras_hub/src/models/sam/__init__.py,sha256=fp71Q288xeE81tIOZkkudec4Acs8v4aO5WdyzCD9x-c,239
|
268
268
|
keras_hub/src/models/sam/sam_backbone.py,sha256=fbvtGG6du7tnkcGtEsRyT9TRwPBUJ99GBolGkWR5pkc,4351
|
269
269
|
keras_hub/src/models/sam/sam_image_converter.py,sha256=5POp3aYFu6CK3R0NNfeUBbjhguBkincSMNvlcIJXarE,324
|
270
|
-
keras_hub/src/models/sam/sam_image_segmenter.py,sha256=
|
270
|
+
keras_hub/src/models/sam/sam_image_segmenter.py,sha256=2OIowfl7cF298gIlqQlOJUsx_BcI2mCDntbXR8uohZc,7680
|
271
271
|
keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py,sha256=7slvyhGoMHmSigagqIcjDJ3gX8fUJbuMBwmozC4FlCg,849
|
272
272
|
keras_hub/src/models/sam/sam_layers.py,sha256=SE5e6tYc-lsIVfMp9khewvuA1jY-dEHQmLT00YUok4M,13862
|
273
273
|
keras_hub/src/models/sam/sam_mask_decoder.py,sha256=9RfjoNL7GSY6I9LZ3ulUa5cIoYSPJNP4KnHvq16lnM4,9549
|
274
|
-
keras_hub/src/models/sam/sam_presets.py,sha256=
|
274
|
+
keras_hub/src/models/sam/sam_presets.py,sha256=IzpNyhxa3s5zqQFPTZOuqU75I7DU6y-TvMM27gKXLAs,1211
|
275
275
|
keras_hub/src/models/sam/sam_prompt_encoder.py,sha256=2foB7900QbzQfZjBo335XYsdjmhOnVT8fKD1CubJNVE,11801
|
276
276
|
keras_hub/src/models/sam/sam_transformer.py,sha256=L2bdxdc2RUF1juRZ0F0Z6r0gTva1sUwEdjItJmKKf6w,5730
|
277
277
|
keras_hub/src/models/stable_diffusion_3/__init__.py,sha256=ZKYQuaRObyhKq8GVAHmoRvlXp6FpU8ChvutVCHyXKuc,343
|
@@ -280,7 +280,7 @@ keras_hub/src/models/stable_diffusion_3/mmdit.py,sha256=ByFot4_I1Z6woOBYvPcbkUtY
|
|
280
280
|
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py,sha256=QuggvAy1yvtIXFcwyXOmE_aUdhLcCEUw4FnTuqekys0,22497
|
281
281
|
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py,sha256=6_IXkxAv588lAKEasJrXgCjQePSXs-54XrvVIlYOT60,5483
|
282
282
|
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py,sha256=tKVAQVbKOt3lWkWsQLKN9KK3WYem0-u5fonq2uBAPrc,6367
|
283
|
-
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py,sha256=
|
283
|
+
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py,sha256=9LcbF9Okin9ba6XJd9EQJKW5AVWdrfvW8r6F6TCx7X8,661
|
284
284
|
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py,sha256=pQOC7xMJfJHZxZRiYFtjrbjx0GXb94cNyOr9NELoXo8,4488
|
285
285
|
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py,sha256=TB0KESt5dnFYiS292PbzB0LdiH23AD6aTSTGmQEuzGM,2742
|
286
286
|
keras_hub/src/models/stable_diffusion_3/t5_encoder.py,sha256=oV7P1uwCKdGiD93zXq7kmqX0elMZQU4UvBa8wg6P1hs,5113
|
@@ -293,14 +293,16 @@ keras_hub/src/models/t5/t5_presets.py,sha256=95zU4cTNEZMH2yiCLptA9zhu2D4mE1Cay18
|
|
293
293
|
keras_hub/src/models/t5/t5_tokenizer.py,sha256=pLTu15JeYSpVmy-2600vBc-Mxn_uHyTKts4PI2MxxBM,2517
|
294
294
|
keras_hub/src/models/t5/t5_transformer_layer.py,sha256=uDeP84F1x7xJxki5iKe12Zn6eWD_4yVjoFXMuod-a3A,5347
|
295
295
|
keras_hub/src/models/vae/__init__.py,sha256=i3UaSW4IJf76O7lSPE1dyxOVjuHx8iAYKivqvUbDHOw,62
|
296
|
-
keras_hub/src/models/vae/vae_backbone.py,sha256=
|
296
|
+
keras_hub/src/models/vae/vae_backbone.py,sha256=Yk0srJhB-zfxQeAoyZdNzvxfxPxPMVie0nqKU7cp-2M,7033
|
297
297
|
keras_hub/src/models/vae/vae_layers.py,sha256=N83CYM1zgbl1EIjAOs3cFCkJEdxvbXkgM9ghKyljFAg,27752
|
298
|
-
keras_hub/src/models/vgg/__init__.py,sha256=
|
299
|
-
keras_hub/src/models/vgg/vgg_backbone.py,sha256=
|
300
|
-
keras_hub/src/models/vgg/vgg_image_classifier.py,sha256=
|
298
|
+
keras_hub/src/models/vgg/__init__.py,sha256=5ktFtITvvYja4Jg3q1LqPvGH-fMicx5wxCCpXT8aVKQ,239
|
299
|
+
keras_hub/src/models/vgg/vgg_backbone.py,sha256=yzzindEMO1rDgf3eAv9K0rhpg4NgfGZLgxaAv5CyGM8,3699
|
300
|
+
keras_hub/src/models/vgg/vgg_image_classifier.py,sha256=d-hlgvwbNhzR6r3q2oqEmRmuAuCpKzUwNC2JUwdzruI,7460
|
301
|
+
keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py,sha256=M7hBbDPws5Z7oDQPigBx-upHssul7Q_p0QIv3E4yOwo,504
|
302
|
+
keras_hub/src/models/vgg/vgg_image_converter.py,sha256=FKVrSNNBxIkiKvApzf4TZxidBb1z917Xs9nooHCcRLM,324
|
301
303
|
keras_hub/src/models/vgg/vgg_presets.py,sha256=ltKExQdrR3E30kZPZD53tXVOsc8Gj7Krj6pzHP1UYVU,1879
|
302
304
|
keras_hub/src/models/vit_det/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
303
|
-
keras_hub/src/models/vit_det/vit_det_backbone.py,sha256
|
305
|
+
keras_hub/src/models/vit_det/vit_det_backbone.py,sha256=-ZSvfL_XSjYK_qpo5fDGY-UOI38_rqU4fD9XszK2yxU,7656
|
304
306
|
keras_hub/src/models/vit_det/vit_layers.py,sha256=oCKeUw5ckyUAGvmFPuxIiIAqgmC3uqh85LfZcgyh964,19852
|
305
307
|
keras_hub/src/models/whisper/__init__.py,sha256=45vTF01_e-7VzD-zvXPw1NiA9SCgDE8w0cI-6peG9cA,263
|
306
308
|
keras_hub/src/models/whisper/whisper_audio_converter.py,sha256=aXqQ6uPI9fBSjuYbo7bMr4C0avPh3iDwrVXHEJ7W_zo,8386
|
@@ -345,7 +347,7 @@ keras_hub/src/tokenizers/word_piece_tokenizer.py,sha256=vP6AZgbzsRiuPCt3W_n94nsF
|
|
345
347
|
keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=xUhc9EMswarzghNfrDLUFYQBExZOQxbMlfKp9G6A63k,6549
|
346
348
|
keras_hub/src/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
347
349
|
keras_hub/src/utils/keras_utils.py,sha256=lrZuC8HL2lmQfbHaS_t1JUyJann_ji2iTYE0Fzos8PU,1969
|
348
|
-
keras_hub/src/utils/pipeline_model.py,sha256=
|
350
|
+
keras_hub/src/utils/pipeline_model.py,sha256=jgzB6NQPSl0KOu08N-TazfOnXnUJbZjH2EXXhx25Ftg,9084
|
349
351
|
keras_hub/src/utils/preset_utils.py,sha256=w45mluy4bhPPWB68waWpXFQ4MAKvSXS6llVw4rAE70s,30119
|
350
352
|
keras_hub/src/utils/python_utils.py,sha256=N8nWeO3san4YnGkffRXG3Ix7VEIMTKSN21FX5TuL7G8,202
|
351
353
|
keras_hub/src/utils/tensor_utils.py,sha256=JipeJUDnnvLuT-ToVQC0t9dmSzebwPG6XiZgEwGEGI4,14646
|
@@ -368,7 +370,7 @@ keras_hub/src/utils/transformers/convert_mistral.py,sha256=kVhN9h1ZFVhwkNW8p3wnS
|
|
368
370
|
keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYumf66hIid07k5NLqoeWAJgPnaLs,10649
|
369
371
|
keras_hub/src/utils/transformers/preset_loader.py,sha256=GS44hZUuGQCtzsyn8z44ZpHdftd3DFemwV2hx2bQa-U,2738
|
370
372
|
keras_hub/src/utils/transformers/safetensor_utils.py,sha256=rPK-Uw1CG0DX0d_UAD-r2cG9fw8GI8bvAlrcXfQ9g4c,3323
|
371
|
-
keras_hub_nightly-0.16.1.
|
372
|
-
keras_hub_nightly-0.16.1.
|
373
|
-
keras_hub_nightly-0.16.1.
|
374
|
-
keras_hub_nightly-0.16.1.
|
373
|
+
keras_hub_nightly-0.16.1.dev202410200345.dist-info/METADATA,sha256=NriUPiepBw1bkQefKH4n_O5T-8UMx8pKwN6WQeKE7-s,7458
|
374
|
+
keras_hub_nightly-0.16.1.dev202410200345.dist-info/WHEEL,sha256=OVMc5UfuAQiSplgO0_WdW7vXVGAt9Hdd6qtN4HotdyA,91
|
375
|
+
keras_hub_nightly-0.16.1.dev202410200345.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
376
|
+
keras_hub_nightly-0.16.1.dev202410200345.dist-info/RECORD,,
|
@@ -1,12 +0,0 @@
|
|
1
|
-
from keras_hub.src.models.mix_transformer.mix_transformer_backbone import (
|
2
|
-
MiTBackbone,
|
3
|
-
)
|
4
|
-
from keras_hub.src.models.mix_transformer.mix_transformer_classifier import (
|
5
|
-
MiTImageClassifier,
|
6
|
-
)
|
7
|
-
from keras_hub.src.models.mix_transformer.mix_transformer_presets import (
|
8
|
-
backbone_presets,
|
9
|
-
)
|
10
|
-
from keras_hub.src.utils.preset_utils import register_presets
|
11
|
-
|
12
|
-
register_presets(backbone_presets, MiTBackbone)
|
File without changes
|
File without changes
|
File without changes
|