keras-hub-nightly 0.16.1.dev202410170342__py3-none-any.whl → 0.16.1.dev202410180341__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,7 +1,7 @@
1
1
  """DeepLabV3 preset configurations."""
2
2
 
3
3
  backbone_presets = {
4
- "deeplabv3_plus_resnet50_pascalvoc": {
4
+ "deeplab_v3_plus_resnet50_pascalvoc": {
5
5
  "metadata": {
6
6
  "description": (
7
7
  "DeepLabV3+ model with ResNet50 as image encoder and trained on "
@@ -10,9 +10,9 @@ backbone_presets = {
10
10
  ),
11
11
  "params": 39190656,
12
12
  "official_name": "DeepLabV3",
13
- "path": "deeplabv3",
13
+ "path": "deeplab_v3",
14
14
  "model_card": "https://arxiv.org/abs/1802.02611",
15
15
  },
16
- "kaggle_handle": "kaggle://keras/deeplabv3/keras/deeplab_v3_plus_resnet50_pascalvoc/3",
16
+ "kaggle_handle": "kaggle://keras/deeplabv3plus/keras/deeplab_v3_plus_resnet50_pascalvoc/3",
17
17
  },
18
18
  }
@@ -12,7 +12,7 @@ backbone_presets = {
12
12
  "path": "densenet",
13
13
  "model_card": "https://arxiv.org/abs/1608.06993",
14
14
  },
15
- "kaggle_handle": "kaggle://keras/densenet/keras/densenet_121_imagenet/1",
15
+ "kaggle_handle": "kaggle://keras/densenet/keras/densenet_121_imagenet/2",
16
16
  },
17
17
  "densenet_169_imagenet": {
18
18
  "metadata": {
@@ -25,7 +25,7 @@ backbone_presets = {
25
25
  "path": "densenet",
26
26
  "model_card": "https://arxiv.org/abs/1608.06993",
27
27
  },
28
- "kaggle_handle": "kaggle://keras/densenet/keras/densenet_169_imagenet/1",
28
+ "kaggle_handle": "kaggle://keras/densenet/keras/densenet_169_imagenet/2",
29
29
  },
30
30
  "densenet_201_imagenet": {
31
31
  "metadata": {
@@ -38,6 +38,6 @@ backbone_presets = {
38
38
  "path": "densenet",
39
39
  "model_card": "https://arxiv.org/abs/1608.06993",
40
40
  },
41
- "kaggle_handle": "kaggle://keras/densenet/keras/densenet_201_imagenet/1",
41
+ "kaggle_handle": "kaggle://keras/densenet/keras/densenet_201_imagenet/2",
42
42
  },
43
43
  }
@@ -61,8 +61,6 @@ class PaliGemmaBackbone(Backbone):
61
61
  vit_classifier_activation: activation function. The activation that
62
62
  is used for final output classification in the vision transformer.
63
63
  vit_name: string. The name used for vision transformer layers.
64
- include_rescaling: bool. If true, the image input will be rescaled from
65
- the range `[0, 255]`, to the range `[0, 1]`.
66
64
  layer_norm_epsilon: float. The epsilon value user for every layer norm
67
65
  in all transformer blocks.
68
66
  dropout: float. Dropout probability for the Transformer decoder blocks.
@@ -121,7 +119,6 @@ class PaliGemmaBackbone(Backbone):
121
119
  vit_pooling=None,
122
120
  vit_classifier_activation=None,
123
121
  vit_name=None,
124
- include_rescaling=True,
125
122
  layer_norm_epsilon=1e-6,
126
123
  dropout=0,
127
124
  dtype=None,
@@ -145,7 +142,6 @@ class PaliGemmaBackbone(Backbone):
145
142
  vit_intermediate_dim = vit_intermediate_dim or 4304
146
143
  self.vit_encoder = PaliGemmaVit(
147
144
  image_size=image_size,
148
- include_rescaling=include_rescaling,
149
145
  patch_size=vit_patch_size,
150
146
  num_heads=vit_num_heads,
151
147
  hidden_dim=vit_hidden_dim,
@@ -215,7 +211,6 @@ class PaliGemmaBackbone(Backbone):
215
211
  # === Config ===
216
212
  self.vocabulary_size = vocabulary_size
217
213
  self.image_size = image_size
218
- self.include_rescaling = include_rescaling
219
214
  self.num_layers = num_layers
220
215
  self.num_query_heads = num_query_heads
221
216
  self.num_key_value_heads = num_key_value_heads
@@ -242,7 +237,6 @@ class PaliGemmaBackbone(Backbone):
242
237
  {
243
238
  "vocabulary_size": self.vocabulary_size,
244
239
  "image_size": self.image_size,
245
- "include_rescaling": self.include_rescaling,
246
240
  "num_layers": self.num_layers,
247
241
  "num_query_heads": self.num_query_heads,
248
242
  "num_key_value_heads": self.num_key_value_heads,
@@ -12,7 +12,7 @@ backbone_presets = {
12
12
  "path": "pali_gemma",
13
13
  "model_card": "https://www.kaggle.com/models/google/paligemma",
14
14
  },
15
- "kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_mix_224/2",
15
+ "kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_mix_224/3",
16
16
  },
17
17
  "pali_gemma_3b_mix_448": {
18
18
  "metadata": {
@@ -24,7 +24,7 @@ backbone_presets = {
24
24
  "path": "pali_gemma",
25
25
  "model_card": "https://www.kaggle.com/models/google/paligemma",
26
26
  },
27
- "kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_mix_448/2",
27
+ "kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_mix_448/3",
28
28
  },
29
29
  "pali_gemma_3b_224": {
30
30
  "metadata": {
@@ -36,7 +36,7 @@ backbone_presets = {
36
36
  "path": "pali_gemma",
37
37
  "model_card": "https://www.kaggle.com/models/google/paligemma",
38
38
  },
39
- "kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_224/2",
39
+ "kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_224/3",
40
40
  },
41
41
  "pali_gemma_3b_448": {
42
42
  "metadata": {
@@ -48,7 +48,7 @@ backbone_presets = {
48
48
  "path": "pali_gemma",
49
49
  "model_card": "https://www.kaggle.com/models/google/paligemma",
50
50
  },
51
- "kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_448/2",
51
+ "kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_448/3",
52
52
  },
53
53
  "pali_gemma_3b_896": {
54
54
  "metadata": {
@@ -60,6 +60,6 @@ backbone_presets = {
60
60
  "path": "pali_gemma",
61
61
  "model_card": "https://www.kaggle.com/models/google/paligemma",
62
62
  },
63
- "kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_896/2",
63
+ "kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_896/3",
64
64
  },
65
65
  }
@@ -410,8 +410,6 @@ class PaliGemmaVit(keras.Model):
410
410
  Args:
411
411
  image_size: int. The height/width of the image. Both height and width is
412
412
  expected to be the same.
413
- include_rescaling: bool. If true, the image input will be rescaled from
414
- the range `[0, 255]`, to the range `[0, 1]`.
415
413
  patch_size: int. The size of each square patch in the input image.
416
414
  num_heads: int. The number of attention heads for the vision(image)
417
415
  transformer encoder.
@@ -452,7 +450,6 @@ class PaliGemmaVit(keras.Model):
452
450
  num_layers,
453
451
  intermediate_dim,
454
452
  num_classes,
455
- include_rescaling=True,
456
453
  pooling=None,
457
454
  classifier_activation=None,
458
455
  dtype=None,
@@ -463,14 +460,6 @@ class PaliGemmaVit(keras.Model):
463
460
  shape=(image_size, image_size, 3), name="images"
464
461
  )
465
462
  x = image_input # Intermediate result.
466
- # TODO we have moved this rescaling to preprocessing layers for most
467
- # models. We should consider removing it here, though it would break
468
- # compatibility.
469
- if include_rescaling:
470
- rescaling = keras.layers.Rescaling(
471
- scale=1.0 / 127.5, offset=-1.0, name="rescaling"
472
- )
473
- x = rescaling(image_input)
474
463
  x = PaliGemmaVitEncoder(
475
464
  hidden_dim=hidden_dim,
476
465
  num_layers=num_layers,
@@ -520,7 +509,6 @@ class PaliGemmaVit(keras.Model):
520
509
  self.pooling = pooling
521
510
  self.num_classes = num_classes
522
511
  self.image_size = image_size
523
- self.include_rescaling = include_rescaling
524
512
  self.patch_size = patch_size
525
513
  self.classifier_activation = keras.activations.get(
526
514
  classifier_activation
@@ -549,7 +537,6 @@ class PaliGemmaVit(keras.Model):
549
537
  self.classifier_activation
550
538
  ),
551
539
  "image_size": self.image_size,
552
- "include_rescaling": self.include_rescaling,
553
540
  "patch_size": self.patch_size,
554
541
  }
555
542
  )
@@ -71,6 +71,22 @@ class Preprocessor(PreprocessingLayer):
71
71
  def image_converter(self, value):
72
72
  self._image_converter = value
73
73
 
74
+ @property
75
+ def image_size(self):
76
+ """Shortcut to get/set the image size of the image converter."""
77
+ if self.image_converter is None:
78
+ return None
79
+ return self.image_converter.image_size
80
+
81
+ @image_size.setter
82
+ def image_size(self, value):
83
+ if self.image_converter is None:
84
+ raise ValueError(
85
+ "Cannot set `image_size` on preprocessor if `image_converter` "
86
+ " is `None`."
87
+ )
88
+ self.image_converter.image_size = value
89
+
74
90
  def get_config(self):
75
91
  config = super().get_config()
76
92
  if self.tokenizer:
@@ -12,7 +12,7 @@ backbone_presets = {
12
12
  "path": "resnet",
13
13
  "model_card": "https://arxiv.org/abs/2110.00476",
14
14
  },
15
- "kaggle_handle": "kaggle://keras/resnetv1/keras/resnet_18_imagenet/1",
15
+ "kaggle_handle": "kaggle://keras/resnetv1/keras/resnet_18_imagenet/2",
16
16
  },
17
17
  "resnet_50_imagenet": {
18
18
  "metadata": {
@@ -25,7 +25,7 @@ backbone_presets = {
25
25
  "path": "resnet",
26
26
  "model_card": "https://arxiv.org/abs/2110.00476",
27
27
  },
28
- "kaggle_handle": "kaggle://keras/resnetv1/keras/resnet_50_imagenet/1",
28
+ "kaggle_handle": "kaggle://keras/resnetv1/keras/resnet_50_imagenet/2",
29
29
  },
30
30
  "resnet_101_imagenet": {
31
31
  "metadata": {
@@ -38,7 +38,7 @@ backbone_presets = {
38
38
  "path": "resnet",
39
39
  "model_card": "https://arxiv.org/abs/2110.00476",
40
40
  },
41
- "kaggle_handle": "kaggle://keras/resnetv1/keras/resnet_101_imagenet/1",
41
+ "kaggle_handle": "kaggle://keras/resnetv1/keras/resnet_101_imagenet/2",
42
42
  },
43
43
  "resnet_152_imagenet": {
44
44
  "metadata": {
@@ -51,7 +51,7 @@ backbone_presets = {
51
51
  "path": "resnet",
52
52
  "model_card": "https://arxiv.org/abs/2110.00476",
53
53
  },
54
- "kaggle_handle": "kaggle://keras/resnetv1/keras/resnet_152_imagenet/1",
54
+ "kaggle_handle": "kaggle://keras/resnetv1/keras/resnet_152_imagenet/2",
55
55
  },
56
56
  "resnet_v2_50_imagenet": {
57
57
  "metadata": {
@@ -64,7 +64,7 @@ backbone_presets = {
64
64
  "path": "resnet",
65
65
  "model_card": "https://arxiv.org/abs/2110.00476",
66
66
  },
67
- "kaggle_handle": "kaggle://keras/resnetv2/keras/resnet_v2_50_imagenet/1",
67
+ "kaggle_handle": "kaggle://keras/resnetv2/keras/resnet_v2_50_imagenet/2",
68
68
  },
69
69
  "resnet_v2_101_imagenet": {
70
70
  "metadata": {
@@ -77,6 +77,6 @@ backbone_presets = {
77
77
  "path": "resnet",
78
78
  "model_card": "https://arxiv.org/abs/2110.00476",
79
79
  },
80
- "kaggle_handle": "kaggle://keras/resnetv2/keras/resnet_v2_101_imagenet/1",
80
+ "kaggle_handle": "kaggle://keras/resnetv2/keras/resnet_v2_101_imagenet/2",
81
81
  },
82
82
  }
@@ -280,7 +280,7 @@ class Task(PipelineModel):
280
280
 
281
281
  def highlight_number(x):
282
282
  if x is None:
283
- f"[color(45)]{x}[/]"
283
+ return f"[color(45)]{x}[/]"
284
284
  return f"[color(34)]{x:,}[/]" # Format number with commas.
285
285
 
286
286
  def highlight_symbol(x):
@@ -339,7 +339,10 @@ class Task(PipelineModel):
339
339
  add_layer(layer, info)
340
340
  elif isinstance(layer, ImageConverter):
341
341
  info = "Image size: "
342
- info += highlight_shape(layer.image_size)
342
+ image_size = layer.image_size
343
+ if image_size is None:
344
+ image_size = (None, None)
345
+ info += highlight_shape(image_size)
343
346
  add_layer(layer, info)
344
347
  elif isinstance(layer, AudioConverter):
345
348
  info = "Audio shape: "
@@ -53,10 +53,11 @@ class TimmPresetLoader(PresetLoader):
53
53
 
54
54
  def load_image_converter(self, cls, **kwargs):
55
55
  pretrained_cfg = self.config.get("pretrained_cfg", None)
56
- if not pretrained_cfg:
56
+ if not pretrained_cfg or "input_size" not in pretrained_cfg:
57
57
  return None
58
58
  # This assumes the same basic setup for all timm preprocessing, We may
59
59
  # need to extend this as we cover more model types.
60
+ input_size = pretrained_cfg["input_size"]
60
61
  mean = pretrained_cfg["mean"]
61
62
  std = pretrained_cfg["std"]
62
63
  scale = [1.0 / 255.0 / s for s in std]
@@ -65,6 +66,7 @@ class TimmPresetLoader(PresetLoader):
65
66
  if interpolation not in ("bilinear", "nearest", "bicubic"):
66
67
  interpolation = "bilinear" # Unsupported interpolation type.
67
68
  return cls(
69
+ image_size=input_size[1:],
68
70
  scale=scale,
69
71
  offset=offset,
70
72
  interpolation=interpolation,
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.16.1.dev202410170342"
4
+ __version__ = "0.16.1.dev202410180341"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: keras-hub-nightly
3
- Version: 0.16.1.dev202410170342
3
+ Version: 0.16.1.dev202410180341
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -9,7 +9,7 @@ keras_hub/api/tokenizers/__init__.py,sha256=_f-r_cyUM2fjBB7iO84ThOdqqsAxHNIewJ2E
9
9
  keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
10
10
  keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
11
  keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
12
- keras_hub/src/version_utils.py,sha256=JKhHcqjvch67-7KPLpPGS3nhs1bP6bpaXaMsSpxp0p4,222
12
+ keras_hub/src/version_utils.py,sha256=u4lRruStAMtT-Vd1NqG2WDfk_hI_aY5rRtlyOLK2wBo,222
13
13
  keras_hub/src/bounding_box/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
14
14
  keras_hub/src/bounding_box/converters.py,sha256=a5po8DBm87oz2EXfi-0uEZHCMlCJPIb4-MaZIdYx3Dg,17865
15
15
  keras_hub/src/bounding_box/formats.py,sha256=YmskOz2BOSat7NaE__J9VfpSNGPJJR0znSzA4lp8MMI,3868
@@ -61,10 +61,10 @@ keras_hub/src/models/image_to_image.py,sha256=z2TfFh9DiaEj9u6hEY8May3B0etxhptttg
61
61
  keras_hub/src/models/inpaint.py,sha256=8TTusRRS7ntPoAd0BsuhEZjedtaoljI4ZbgKQ_bnF34,20411
62
62
  keras_hub/src/models/masked_lm.py,sha256=uXO_dE_hILlOC9jNr6oK6IHi9IGUqLyNGvr6nMt8Rk0,3576
63
63
  keras_hub/src/models/masked_lm_preprocessor.py,sha256=g8vrnyYwqdnSw5xppROM1Gzo_jmMWKYZoQCsKdfrFKk,5656
64
- keras_hub/src/models/preprocessor.py,sha256=3CWLsMpQC77w7GzM3fU3Jf-G62ldJjufKyzPVvnGdeI,7970
64
+ keras_hub/src/models/preprocessor.py,sha256=KqUJrF24h_6h2CnkuyneqOioCa1Sd3ZA0qzq3BdLqUA,8496
65
65
  keras_hub/src/models/seq_2_seq_lm.py,sha256=w0gX-5YZjatfvAJmFAgSHyqS_BLqc8FF8DPLGK8mrgI,1864
66
66
  keras_hub/src/models/seq_2_seq_lm_preprocessor.py,sha256=HUHRbWRG5SF1pPpotGzBhXlrMh4pLFxgAoFk05FIrB4,9687
67
- keras_hub/src/models/task.py,sha256=VN-CClNw3EB5Byb7HyyI3CqaS140od7-dmQInmYFSKg,14414
67
+ keras_hub/src/models/task.py,sha256=06ISrWbn7ab-H1uszIPogpt6PuM90xiXKvwrAIEsC-o,14570
68
68
  keras_hub/src/models/text_classifier.py,sha256=VBDvQUHTpJPqKp7A4VAtm35FOmJ3yMo0DW6GdX67xG0,4159
69
69
  keras_hub/src/models/text_classifier_preprocessor.py,sha256=EoWp-GHnaLnAKTdAzDmC-soAV92ATF3QozdubdV2WXI,4722
70
70
  keras_hub/src/models/text_to_image.py,sha256=7s6rB1To46A7l9ItqRw3Pe4DGRm7YnqbHJ-RyNAlLPE,12973
@@ -122,14 +122,14 @@ keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py,sha256=WyFhuLcjFPFVuNL09b
122
122
  keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py,sha256=mRkH3HdhpV0fCcQcVXEvIX7SNk-bAMb3SAHzgK-FD5c,371
123
123
  keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py,sha256=hR9S6lNYamY0EBDBo3e1qTCiwtftmLXrN-UYuzfw5Io,581
124
124
  keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py,sha256=qmEiolOOriLAojXB67xXW9IOo717kaCGeDVZJLaGY98,7834
125
- keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py,sha256=lbkP16g-w2-4RKSnISwW-RfvI6qqbE8yZzjRwgiXUIU,703
125
+ keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py,sha256=jdSycE_H2Dm1z2WHYu0WtpEJBMiAoioHgJL1gMEGLDI,709
126
126
  keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py,sha256=tiMDcCFANHMUx3IVtW3r1P_JTazgPPsbW4IktIytKEU,3650
127
127
  keras_hub/src/models/densenet/__init__.py,sha256=r7StyamnWeeZxOk9r4ZYNbS_YVhu9YGPyXhNxljvdPg,269
128
128
  keras_hub/src/models/densenet/densenet_backbone.py,sha256=dN9lUwKzO3E2HthNV2x54ozeBEQ0ilNs5uYHshFQpT0,6723
129
129
  keras_hub/src/models/densenet/densenet_image_classifier.py,sha256=ptuV6PwgoUpmrSPqX7-a85IpWsElwcCv_G5IVkP9E_Q,530
130
130
  keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py,sha256=xDZbTw_h6pjLDzf8QmbDyMnMsFzgh-dPX1ldg9kddhg,563
131
131
  keras_hub/src/models/densenet/densenet_image_converter.py,sha256=DoxYlJVZ9uaabFhVjWOmzvhONoc8KNcQj2vQ6Z1AUpU,354
132
- keras_hub/src/models/densenet/densenet_presets.py,sha256=2emOQuwcWo2i1MhvXwi081S55Z7vHkQ0r6h6Z9Yn68Q,1531
132
+ keras_hub/src/models/densenet/densenet_presets.py,sha256=QoluKQJnV391K6hoIX5X8UquD8f647u_8Ygta-UxmwE,1531
133
133
  keras_hub/src/models/distil_bert/__init__.py,sha256=3Z0w-Mt3aOR0u9RGzjHQ7B3J3qBF2pGjupDGQ9yyzoc,303
134
134
  keras_hub/src/models/distil_bert/distil_bert_backbone.py,sha256=rnAf_GokB3wAeJwVZtgUKQO_bKJIa8RavhL_ykTJpNw,6440
135
135
  keras_hub/src/models/distil_bert/distil_bert_masked_lm.py,sha256=L0DvOl01MIwqc2f6H_E8si9qVUXPd0OKknJ5Rha33TA,4275
@@ -226,14 +226,14 @@ keras_hub/src/models/opt/opt_causal_lm_preprocessor.py,sha256=xHfslVMOZlAIj2V2jI
226
226
  keras_hub/src/models/opt/opt_presets.py,sha256=J1IJ5VRcZZ6UZJSLrxpbWXw39YmbRd_WQujX1a6dxHo,2329
227
227
  keras_hub/src/models/opt/opt_tokenizer.py,sha256=oDHeed4xf07tm14hj_C78BkzMuuRwRP2cRHmqYnObrs,2557
228
228
  keras_hub/src/models/pali_gemma/__init__.py,sha256=uODWTlttOOchcTLpiYHCEWMXnDxIz8ZVIeYFQN2bd8o,288
229
- keras_hub/src/models/pali_gemma/pali_gemma_backbone.py,sha256=srZyBsA5tulO_Fb03g9FE-vaw2j9ftfxnAy4P8cYB6o,10916
229
+ keras_hub/src/models/pali_gemma/pali_gemma_backbone.py,sha256=Rrl7nof_gAZL2Nge1cFymCsRdwqxQjwmEEhucGspUr0,10586
230
230
  keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py,sha256=AViEs6YltUqWnIVo7J02JkXcanBgLSdwZwF56TVr8gc,11345
231
231
  keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py,sha256=F57y0fZ0wYYxfGIjfrJc1W9uQpViYFx5bvFjj5CqUbI,4814
232
232
  keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py,sha256=Q_sPAULiSo_ZJeXklZjCLhvOMXk8MrPZhEXtL5yNOiI,5175
233
233
  keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=5yM_jUtrFsWIieiwfFBoP7mtPmQAwywkeLKbd7fhmzk,371
234
- keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=4D6qfWuxJtY-tyo31gxAaUlhV6wF7BhL1_FgiPmTQT0,2401
234
+ keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=yLLuPwhIDE7HuMNJwLw1_yhHGz3w3mvYCxVcgAtSydc,2401
235
235
  keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=ljTiADHo0Ok88q-jVzwJIle2C8xcxnudLTsBLzIySaM,2415
236
- keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=wP1UtW0WnlRmga-JQRxWTfAZNt_q-vaF1Qy4siJDpyY,18685
236
+ keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=UpmymNkwuN9iuTV2I4M6lvHnlqpZIDmPb5pAADKs-Vg,18029
237
237
  keras_hub/src/models/phi3/__init__.py,sha256=zIbf1MU-ks91mEkjTRJAsk51N3BBnXDF2JM1vO-13PQ,245
238
238
  keras_hub/src/models/phi3/phi3_attention.py,sha256=dN8QwwTP9TxPBDv0MCvObLF3nHm1H6xbYr3T1K0nmg8,9243
239
239
  keras_hub/src/models/phi3/phi3_backbone.py,sha256=fY-OY2ZrqxDHglYjTM0OCacBdEQHwj-XNmU0MnXL7iU,8885
@@ -249,7 +249,7 @@ keras_hub/src/models/resnet/resnet_backbone.py,sha256=mqVdGUj8YtjZ3zIhAQXgNqu8Sq
249
249
  keras_hub/src/models/resnet/resnet_image_classifier.py,sha256=nf35EKDzvBkfhHsK-s6Ks0nbhvKO7HEOYZm94YckyWE,510
250
250
  keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py,sha256=fM7gyQ0qB-RRuI4USJkRD6q9-HVfuC71e-BLTo-UhHQ,543
251
251
  keras_hub/src/models/resnet/resnet_image_converter.py,sha256=fgTxihJznGFss-y3Z-jp0JE3X1gaaB2y-f2KMwrT8Pk,342
252
- keras_hub/src/models/resnet/resnet_presets.py,sha256=fqyA7rXB6IwD_x7TMq40RyArzjdDbD4jLxH5OaPjWIs,2947
252
+ keras_hub/src/models/resnet/resnet_presets.py,sha256=FwQuCH9IZM0c7eRnbqxviQcfypbA_lg0-yVvnsGY1Dc,2947
253
253
  keras_hub/src/models/retinanet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
254
254
  keras_hub/src/models/retinanet/anchor_generator.py,sha256=43NoI7djbRudH98hUm-9fw5OEGQNRXOUYzypIZhLYhE,6750
255
255
  keras_hub/src/models/retinanet/box_matcher.py,sha256=l820r1R-ByqiyVgmZ0YFjjz0njchDda-wItzLn1X84o,10834
@@ -355,7 +355,7 @@ keras_hub/src/utils/timm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZ
355
355
  keras_hub/src/utils/timm/convert_densenet.py,sha256=V-GRjWuDnlh3b1EMxqahwZ3GMwSgOa3v0HOfb2ZZ-d0,3342
356
356
  keras_hub/src/utils/timm/convert_resnet.py,sha256=ee8eTml0ffJKE8avzGoLFcpjPF63DsvoIUArAGa8Ngg,5832
357
357
  keras_hub/src/utils/timm/convert_vgg.py,sha256=MT5jGnLrzenPpe66Af_Lp1IdR9KGtsSrcmn6_UPqHvQ,2419
358
- keras_hub/src/utils/timm/preset_loader.py,sha256=2GJI2YeKGVovtDqc930uGta12yiyuCL9YrsTyGhqt9Y,3094
358
+ keras_hub/src/utils/timm/preset_loader.py,sha256=PBqmnEj-fash_-GH-_ulb9YYaHAIESlOsI3wXCwKGRo,3221
359
359
  keras_hub/src/utils/transformers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
360
360
  keras_hub/src/utils/transformers/convert_albert.py,sha256=VdKclZpCxtDWq3UbUUQZf4fR9DJK_JYZ73B4O_G9skg,7695
361
361
  keras_hub/src/utils/transformers/convert_bart.py,sha256=Tk4h9Md9rwN5wjQbGIVrC7qzDpF8kI8qm-FKL8HlUok,14411
@@ -368,7 +368,7 @@ keras_hub/src/utils/transformers/convert_mistral.py,sha256=kVhN9h1ZFVhwkNW8p3wnS
368
368
  keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYumf66hIid07k5NLqoeWAJgPnaLs,10649
369
369
  keras_hub/src/utils/transformers/preset_loader.py,sha256=GS44hZUuGQCtzsyn8z44ZpHdftd3DFemwV2hx2bQa-U,2738
370
370
  keras_hub/src/utils/transformers/safetensor_utils.py,sha256=rPK-Uw1CG0DX0d_UAD-r2cG9fw8GI8bvAlrcXfQ9g4c,3323
371
- keras_hub_nightly-0.16.1.dev202410170342.dist-info/METADATA,sha256=SEFjDxUxSNwbNsZtCnanXay7BQFJrNDM1zgriF55ATQ,7458
372
- keras_hub_nightly-0.16.1.dev202410170342.dist-info/WHEEL,sha256=OVMc5UfuAQiSplgO0_WdW7vXVGAt9Hdd6qtN4HotdyA,91
373
- keras_hub_nightly-0.16.1.dev202410170342.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
374
- keras_hub_nightly-0.16.1.dev202410170342.dist-info/RECORD,,
371
+ keras_hub_nightly-0.16.1.dev202410180341.dist-info/METADATA,sha256=I3yyfeBrwqtrZvH5HpEzkgeAs0iwD05aUdSbwxlTKy0,7458
372
+ keras_hub_nightly-0.16.1.dev202410180341.dist-info/WHEEL,sha256=OVMc5UfuAQiSplgO0_WdW7vXVGAt9Hdd6qtN4HotdyA,91
373
+ keras_hub_nightly-0.16.1.dev202410180341.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
374
+ keras_hub_nightly-0.16.1.dev202410180341.dist-info/RECORD,,