keras-hub-nightly 0.16.1.dev202410170342__py3-none-any.whl → 0.16.1.dev202410180341__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +3 -3
- keras_hub/src/models/densenet/densenet_presets.py +3 -3
- keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -6
- keras_hub/src/models/pali_gemma/pali_gemma_presets.py +5 -5
- keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -13
- keras_hub/src/models/preprocessor.py +16 -0
- keras_hub/src/models/resnet/resnet_presets.py +6 -6
- keras_hub/src/models/task.py +5 -2
- keras_hub/src/utils/timm/preset_loader.py +3 -1
- keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.16.1.dev202410170342.dist-info → keras_hub_nightly-0.16.1.dev202410180341.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.16.1.dev202410170342.dist-info → keras_hub_nightly-0.16.1.dev202410180341.dist-info}/RECORD +14 -14
- {keras_hub_nightly-0.16.1.dev202410170342.dist-info → keras_hub_nightly-0.16.1.dev202410180341.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.16.1.dev202410170342.dist-info → keras_hub_nightly-0.16.1.dev202410180341.dist-info}/top_level.txt +0 -0
@@ -1,7 +1,7 @@
|
|
1
1
|
"""DeepLabV3 preset configurations."""
|
2
2
|
|
3
3
|
backbone_presets = {
|
4
|
-
"
|
4
|
+
"deeplab_v3_plus_resnet50_pascalvoc": {
|
5
5
|
"metadata": {
|
6
6
|
"description": (
|
7
7
|
"DeepLabV3+ model with ResNet50 as image encoder and trained on "
|
@@ -10,9 +10,9 @@ backbone_presets = {
|
|
10
10
|
),
|
11
11
|
"params": 39190656,
|
12
12
|
"official_name": "DeepLabV3",
|
13
|
-
"path": "
|
13
|
+
"path": "deeplab_v3",
|
14
14
|
"model_card": "https://arxiv.org/abs/1802.02611",
|
15
15
|
},
|
16
|
-
"kaggle_handle": "kaggle://keras/
|
16
|
+
"kaggle_handle": "kaggle://keras/deeplabv3plus/keras/deeplab_v3_plus_resnet50_pascalvoc/3",
|
17
17
|
},
|
18
18
|
}
|
@@ -12,7 +12,7 @@ backbone_presets = {
|
|
12
12
|
"path": "densenet",
|
13
13
|
"model_card": "https://arxiv.org/abs/1608.06993",
|
14
14
|
},
|
15
|
-
"kaggle_handle": "kaggle://keras/densenet/keras/densenet_121_imagenet/
|
15
|
+
"kaggle_handle": "kaggle://keras/densenet/keras/densenet_121_imagenet/2",
|
16
16
|
},
|
17
17
|
"densenet_169_imagenet": {
|
18
18
|
"metadata": {
|
@@ -25,7 +25,7 @@ backbone_presets = {
|
|
25
25
|
"path": "densenet",
|
26
26
|
"model_card": "https://arxiv.org/abs/1608.06993",
|
27
27
|
},
|
28
|
-
"kaggle_handle": "kaggle://keras/densenet/keras/densenet_169_imagenet/
|
28
|
+
"kaggle_handle": "kaggle://keras/densenet/keras/densenet_169_imagenet/2",
|
29
29
|
},
|
30
30
|
"densenet_201_imagenet": {
|
31
31
|
"metadata": {
|
@@ -38,6 +38,6 @@ backbone_presets = {
|
|
38
38
|
"path": "densenet",
|
39
39
|
"model_card": "https://arxiv.org/abs/1608.06993",
|
40
40
|
},
|
41
|
-
"kaggle_handle": "kaggle://keras/densenet/keras/densenet_201_imagenet/
|
41
|
+
"kaggle_handle": "kaggle://keras/densenet/keras/densenet_201_imagenet/2",
|
42
42
|
},
|
43
43
|
}
|
@@ -61,8 +61,6 @@ class PaliGemmaBackbone(Backbone):
|
|
61
61
|
vit_classifier_activation: activation function. The activation that
|
62
62
|
is used for final output classification in the vision transformer.
|
63
63
|
vit_name: string. The name used for vision transformer layers.
|
64
|
-
include_rescaling: bool. If true, the image input will be rescaled from
|
65
|
-
the range `[0, 255]`, to the range `[0, 1]`.
|
66
64
|
layer_norm_epsilon: float. The epsilon value user for every layer norm
|
67
65
|
in all transformer blocks.
|
68
66
|
dropout: float. Dropout probability for the Transformer decoder blocks.
|
@@ -121,7 +119,6 @@ class PaliGemmaBackbone(Backbone):
|
|
121
119
|
vit_pooling=None,
|
122
120
|
vit_classifier_activation=None,
|
123
121
|
vit_name=None,
|
124
|
-
include_rescaling=True,
|
125
122
|
layer_norm_epsilon=1e-6,
|
126
123
|
dropout=0,
|
127
124
|
dtype=None,
|
@@ -145,7 +142,6 @@ class PaliGemmaBackbone(Backbone):
|
|
145
142
|
vit_intermediate_dim = vit_intermediate_dim or 4304
|
146
143
|
self.vit_encoder = PaliGemmaVit(
|
147
144
|
image_size=image_size,
|
148
|
-
include_rescaling=include_rescaling,
|
149
145
|
patch_size=vit_patch_size,
|
150
146
|
num_heads=vit_num_heads,
|
151
147
|
hidden_dim=vit_hidden_dim,
|
@@ -215,7 +211,6 @@ class PaliGemmaBackbone(Backbone):
|
|
215
211
|
# === Config ===
|
216
212
|
self.vocabulary_size = vocabulary_size
|
217
213
|
self.image_size = image_size
|
218
|
-
self.include_rescaling = include_rescaling
|
219
214
|
self.num_layers = num_layers
|
220
215
|
self.num_query_heads = num_query_heads
|
221
216
|
self.num_key_value_heads = num_key_value_heads
|
@@ -242,7 +237,6 @@ class PaliGemmaBackbone(Backbone):
|
|
242
237
|
{
|
243
238
|
"vocabulary_size": self.vocabulary_size,
|
244
239
|
"image_size": self.image_size,
|
245
|
-
"include_rescaling": self.include_rescaling,
|
246
240
|
"num_layers": self.num_layers,
|
247
241
|
"num_query_heads": self.num_query_heads,
|
248
242
|
"num_key_value_heads": self.num_key_value_heads,
|
@@ -12,7 +12,7 @@ backbone_presets = {
|
|
12
12
|
"path": "pali_gemma",
|
13
13
|
"model_card": "https://www.kaggle.com/models/google/paligemma",
|
14
14
|
},
|
15
|
-
"kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_mix_224/
|
15
|
+
"kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_mix_224/3",
|
16
16
|
},
|
17
17
|
"pali_gemma_3b_mix_448": {
|
18
18
|
"metadata": {
|
@@ -24,7 +24,7 @@ backbone_presets = {
|
|
24
24
|
"path": "pali_gemma",
|
25
25
|
"model_card": "https://www.kaggle.com/models/google/paligemma",
|
26
26
|
},
|
27
|
-
"kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_mix_448/
|
27
|
+
"kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_mix_448/3",
|
28
28
|
},
|
29
29
|
"pali_gemma_3b_224": {
|
30
30
|
"metadata": {
|
@@ -36,7 +36,7 @@ backbone_presets = {
|
|
36
36
|
"path": "pali_gemma",
|
37
37
|
"model_card": "https://www.kaggle.com/models/google/paligemma",
|
38
38
|
},
|
39
|
-
"kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_224/
|
39
|
+
"kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_224/3",
|
40
40
|
},
|
41
41
|
"pali_gemma_3b_448": {
|
42
42
|
"metadata": {
|
@@ -48,7 +48,7 @@ backbone_presets = {
|
|
48
48
|
"path": "pali_gemma",
|
49
49
|
"model_card": "https://www.kaggle.com/models/google/paligemma",
|
50
50
|
},
|
51
|
-
"kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_448/
|
51
|
+
"kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_448/3",
|
52
52
|
},
|
53
53
|
"pali_gemma_3b_896": {
|
54
54
|
"metadata": {
|
@@ -60,6 +60,6 @@ backbone_presets = {
|
|
60
60
|
"path": "pali_gemma",
|
61
61
|
"model_card": "https://www.kaggle.com/models/google/paligemma",
|
62
62
|
},
|
63
|
-
"kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_896/
|
63
|
+
"kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_896/3",
|
64
64
|
},
|
65
65
|
}
|
@@ -410,8 +410,6 @@ class PaliGemmaVit(keras.Model):
|
|
410
410
|
Args:
|
411
411
|
image_size: int. The height/width of the image. Both height and width is
|
412
412
|
expected to be the same.
|
413
|
-
include_rescaling: bool. If true, the image input will be rescaled from
|
414
|
-
the range `[0, 255]`, to the range `[0, 1]`.
|
415
413
|
patch_size: int. The size of each square patch in the input image.
|
416
414
|
num_heads: int. The number of attention heads for the vision(image)
|
417
415
|
transformer encoder.
|
@@ -452,7 +450,6 @@ class PaliGemmaVit(keras.Model):
|
|
452
450
|
num_layers,
|
453
451
|
intermediate_dim,
|
454
452
|
num_classes,
|
455
|
-
include_rescaling=True,
|
456
453
|
pooling=None,
|
457
454
|
classifier_activation=None,
|
458
455
|
dtype=None,
|
@@ -463,14 +460,6 @@ class PaliGemmaVit(keras.Model):
|
|
463
460
|
shape=(image_size, image_size, 3), name="images"
|
464
461
|
)
|
465
462
|
x = image_input # Intermediate result.
|
466
|
-
# TODO we have moved this rescaling to preprocessing layers for most
|
467
|
-
# models. We should consider removing it here, though it would break
|
468
|
-
# compatibility.
|
469
|
-
if include_rescaling:
|
470
|
-
rescaling = keras.layers.Rescaling(
|
471
|
-
scale=1.0 / 127.5, offset=-1.0, name="rescaling"
|
472
|
-
)
|
473
|
-
x = rescaling(image_input)
|
474
463
|
x = PaliGemmaVitEncoder(
|
475
464
|
hidden_dim=hidden_dim,
|
476
465
|
num_layers=num_layers,
|
@@ -520,7 +509,6 @@ class PaliGemmaVit(keras.Model):
|
|
520
509
|
self.pooling = pooling
|
521
510
|
self.num_classes = num_classes
|
522
511
|
self.image_size = image_size
|
523
|
-
self.include_rescaling = include_rescaling
|
524
512
|
self.patch_size = patch_size
|
525
513
|
self.classifier_activation = keras.activations.get(
|
526
514
|
classifier_activation
|
@@ -549,7 +537,6 @@ class PaliGemmaVit(keras.Model):
|
|
549
537
|
self.classifier_activation
|
550
538
|
),
|
551
539
|
"image_size": self.image_size,
|
552
|
-
"include_rescaling": self.include_rescaling,
|
553
540
|
"patch_size": self.patch_size,
|
554
541
|
}
|
555
542
|
)
|
@@ -71,6 +71,22 @@ class Preprocessor(PreprocessingLayer):
|
|
71
71
|
def image_converter(self, value):
|
72
72
|
self._image_converter = value
|
73
73
|
|
74
|
+
@property
|
75
|
+
def image_size(self):
|
76
|
+
"""Shortcut to get/set the image size of the image converter."""
|
77
|
+
if self.image_converter is None:
|
78
|
+
return None
|
79
|
+
return self.image_converter.image_size
|
80
|
+
|
81
|
+
@image_size.setter
|
82
|
+
def image_size(self, value):
|
83
|
+
if self.image_converter is None:
|
84
|
+
raise ValueError(
|
85
|
+
"Cannot set `image_size` on preprocessor if `image_converter` "
|
86
|
+
" is `None`."
|
87
|
+
)
|
88
|
+
self.image_converter.image_size = value
|
89
|
+
|
74
90
|
def get_config(self):
|
75
91
|
config = super().get_config()
|
76
92
|
if self.tokenizer:
|
@@ -12,7 +12,7 @@ backbone_presets = {
|
|
12
12
|
"path": "resnet",
|
13
13
|
"model_card": "https://arxiv.org/abs/2110.00476",
|
14
14
|
},
|
15
|
-
"kaggle_handle": "kaggle://keras/resnetv1/keras/resnet_18_imagenet/
|
15
|
+
"kaggle_handle": "kaggle://keras/resnetv1/keras/resnet_18_imagenet/2",
|
16
16
|
},
|
17
17
|
"resnet_50_imagenet": {
|
18
18
|
"metadata": {
|
@@ -25,7 +25,7 @@ backbone_presets = {
|
|
25
25
|
"path": "resnet",
|
26
26
|
"model_card": "https://arxiv.org/abs/2110.00476",
|
27
27
|
},
|
28
|
-
"kaggle_handle": "kaggle://keras/resnetv1/keras/resnet_50_imagenet/
|
28
|
+
"kaggle_handle": "kaggle://keras/resnetv1/keras/resnet_50_imagenet/2",
|
29
29
|
},
|
30
30
|
"resnet_101_imagenet": {
|
31
31
|
"metadata": {
|
@@ -38,7 +38,7 @@ backbone_presets = {
|
|
38
38
|
"path": "resnet",
|
39
39
|
"model_card": "https://arxiv.org/abs/2110.00476",
|
40
40
|
},
|
41
|
-
"kaggle_handle": "kaggle://keras/resnetv1/keras/resnet_101_imagenet/
|
41
|
+
"kaggle_handle": "kaggle://keras/resnetv1/keras/resnet_101_imagenet/2",
|
42
42
|
},
|
43
43
|
"resnet_152_imagenet": {
|
44
44
|
"metadata": {
|
@@ -51,7 +51,7 @@ backbone_presets = {
|
|
51
51
|
"path": "resnet",
|
52
52
|
"model_card": "https://arxiv.org/abs/2110.00476",
|
53
53
|
},
|
54
|
-
"kaggle_handle": "kaggle://keras/resnetv1/keras/resnet_152_imagenet/
|
54
|
+
"kaggle_handle": "kaggle://keras/resnetv1/keras/resnet_152_imagenet/2",
|
55
55
|
},
|
56
56
|
"resnet_v2_50_imagenet": {
|
57
57
|
"metadata": {
|
@@ -64,7 +64,7 @@ backbone_presets = {
|
|
64
64
|
"path": "resnet",
|
65
65
|
"model_card": "https://arxiv.org/abs/2110.00476",
|
66
66
|
},
|
67
|
-
"kaggle_handle": "kaggle://keras/resnetv2/keras/resnet_v2_50_imagenet/
|
67
|
+
"kaggle_handle": "kaggle://keras/resnetv2/keras/resnet_v2_50_imagenet/2",
|
68
68
|
},
|
69
69
|
"resnet_v2_101_imagenet": {
|
70
70
|
"metadata": {
|
@@ -77,6 +77,6 @@ backbone_presets = {
|
|
77
77
|
"path": "resnet",
|
78
78
|
"model_card": "https://arxiv.org/abs/2110.00476",
|
79
79
|
},
|
80
|
-
"kaggle_handle": "kaggle://keras/resnetv2/keras/resnet_v2_101_imagenet/
|
80
|
+
"kaggle_handle": "kaggle://keras/resnetv2/keras/resnet_v2_101_imagenet/2",
|
81
81
|
},
|
82
82
|
}
|
keras_hub/src/models/task.py
CHANGED
@@ -280,7 +280,7 @@ class Task(PipelineModel):
|
|
280
280
|
|
281
281
|
def highlight_number(x):
|
282
282
|
if x is None:
|
283
|
-
f"[color(45)]{x}[/]"
|
283
|
+
return f"[color(45)]{x}[/]"
|
284
284
|
return f"[color(34)]{x:,}[/]" # Format number with commas.
|
285
285
|
|
286
286
|
def highlight_symbol(x):
|
@@ -339,7 +339,10 @@ class Task(PipelineModel):
|
|
339
339
|
add_layer(layer, info)
|
340
340
|
elif isinstance(layer, ImageConverter):
|
341
341
|
info = "Image size: "
|
342
|
-
|
342
|
+
image_size = layer.image_size
|
343
|
+
if image_size is None:
|
344
|
+
image_size = (None, None)
|
345
|
+
info += highlight_shape(image_size)
|
343
346
|
add_layer(layer, info)
|
344
347
|
elif isinstance(layer, AudioConverter):
|
345
348
|
info = "Audio shape: "
|
@@ -53,10 +53,11 @@ class TimmPresetLoader(PresetLoader):
|
|
53
53
|
|
54
54
|
def load_image_converter(self, cls, **kwargs):
|
55
55
|
pretrained_cfg = self.config.get("pretrained_cfg", None)
|
56
|
-
if not pretrained_cfg:
|
56
|
+
if not pretrained_cfg or "input_size" not in pretrained_cfg:
|
57
57
|
return None
|
58
58
|
# This assumes the same basic setup for all timm preprocessing, We may
|
59
59
|
# need to extend this as we cover more model types.
|
60
|
+
input_size = pretrained_cfg["input_size"]
|
60
61
|
mean = pretrained_cfg["mean"]
|
61
62
|
std = pretrained_cfg["std"]
|
62
63
|
scale = [1.0 / 255.0 / s for s in std]
|
@@ -65,6 +66,7 @@ class TimmPresetLoader(PresetLoader):
|
|
65
66
|
if interpolation not in ("bilinear", "nearest", "bicubic"):
|
66
67
|
interpolation = "bilinear" # Unsupported interpolation type.
|
67
68
|
return cls(
|
69
|
+
image_size=input_size[1:],
|
68
70
|
scale=scale,
|
69
71
|
offset=offset,
|
70
72
|
interpolation=interpolation,
|
keras_hub/src/version_utils.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: keras-hub-nightly
|
3
|
-
Version: 0.16.1.
|
3
|
+
Version: 0.16.1.dev202410180341
|
4
4
|
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
5
|
Home-page: https://github.com/keras-team/keras-hub
|
6
6
|
Author: Keras team
|
@@ -9,7 +9,7 @@ keras_hub/api/tokenizers/__init__.py,sha256=_f-r_cyUM2fjBB7iO84ThOdqqsAxHNIewJ2E
|
|
9
9
|
keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
|
10
10
|
keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
11
11
|
keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
|
12
|
-
keras_hub/src/version_utils.py,sha256=
|
12
|
+
keras_hub/src/version_utils.py,sha256=u4lRruStAMtT-Vd1NqG2WDfk_hI_aY5rRtlyOLK2wBo,222
|
13
13
|
keras_hub/src/bounding_box/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
14
14
|
keras_hub/src/bounding_box/converters.py,sha256=a5po8DBm87oz2EXfi-0uEZHCMlCJPIb4-MaZIdYx3Dg,17865
|
15
15
|
keras_hub/src/bounding_box/formats.py,sha256=YmskOz2BOSat7NaE__J9VfpSNGPJJR0znSzA4lp8MMI,3868
|
@@ -61,10 +61,10 @@ keras_hub/src/models/image_to_image.py,sha256=z2TfFh9DiaEj9u6hEY8May3B0etxhptttg
|
|
61
61
|
keras_hub/src/models/inpaint.py,sha256=8TTusRRS7ntPoAd0BsuhEZjedtaoljI4ZbgKQ_bnF34,20411
|
62
62
|
keras_hub/src/models/masked_lm.py,sha256=uXO_dE_hILlOC9jNr6oK6IHi9IGUqLyNGvr6nMt8Rk0,3576
|
63
63
|
keras_hub/src/models/masked_lm_preprocessor.py,sha256=g8vrnyYwqdnSw5xppROM1Gzo_jmMWKYZoQCsKdfrFKk,5656
|
64
|
-
keras_hub/src/models/preprocessor.py,sha256=
|
64
|
+
keras_hub/src/models/preprocessor.py,sha256=KqUJrF24h_6h2CnkuyneqOioCa1Sd3ZA0qzq3BdLqUA,8496
|
65
65
|
keras_hub/src/models/seq_2_seq_lm.py,sha256=w0gX-5YZjatfvAJmFAgSHyqS_BLqc8FF8DPLGK8mrgI,1864
|
66
66
|
keras_hub/src/models/seq_2_seq_lm_preprocessor.py,sha256=HUHRbWRG5SF1pPpotGzBhXlrMh4pLFxgAoFk05FIrB4,9687
|
67
|
-
keras_hub/src/models/task.py,sha256=
|
67
|
+
keras_hub/src/models/task.py,sha256=06ISrWbn7ab-H1uszIPogpt6PuM90xiXKvwrAIEsC-o,14570
|
68
68
|
keras_hub/src/models/text_classifier.py,sha256=VBDvQUHTpJPqKp7A4VAtm35FOmJ3yMo0DW6GdX67xG0,4159
|
69
69
|
keras_hub/src/models/text_classifier_preprocessor.py,sha256=EoWp-GHnaLnAKTdAzDmC-soAV92ATF3QozdubdV2WXI,4722
|
70
70
|
keras_hub/src/models/text_to_image.py,sha256=7s6rB1To46A7l9ItqRw3Pe4DGRm7YnqbHJ-RyNAlLPE,12973
|
@@ -122,14 +122,14 @@ keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py,sha256=WyFhuLcjFPFVuNL09b
|
|
122
122
|
keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py,sha256=mRkH3HdhpV0fCcQcVXEvIX7SNk-bAMb3SAHzgK-FD5c,371
|
123
123
|
keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py,sha256=hR9S6lNYamY0EBDBo3e1qTCiwtftmLXrN-UYuzfw5Io,581
|
124
124
|
keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py,sha256=qmEiolOOriLAojXB67xXW9IOo717kaCGeDVZJLaGY98,7834
|
125
|
-
keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py,sha256=
|
125
|
+
keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py,sha256=jdSycE_H2Dm1z2WHYu0WtpEJBMiAoioHgJL1gMEGLDI,709
|
126
126
|
keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py,sha256=tiMDcCFANHMUx3IVtW3r1P_JTazgPPsbW4IktIytKEU,3650
|
127
127
|
keras_hub/src/models/densenet/__init__.py,sha256=r7StyamnWeeZxOk9r4ZYNbS_YVhu9YGPyXhNxljvdPg,269
|
128
128
|
keras_hub/src/models/densenet/densenet_backbone.py,sha256=dN9lUwKzO3E2HthNV2x54ozeBEQ0ilNs5uYHshFQpT0,6723
|
129
129
|
keras_hub/src/models/densenet/densenet_image_classifier.py,sha256=ptuV6PwgoUpmrSPqX7-a85IpWsElwcCv_G5IVkP9E_Q,530
|
130
130
|
keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py,sha256=xDZbTw_h6pjLDzf8QmbDyMnMsFzgh-dPX1ldg9kddhg,563
|
131
131
|
keras_hub/src/models/densenet/densenet_image_converter.py,sha256=DoxYlJVZ9uaabFhVjWOmzvhONoc8KNcQj2vQ6Z1AUpU,354
|
132
|
-
keras_hub/src/models/densenet/densenet_presets.py,sha256=
|
132
|
+
keras_hub/src/models/densenet/densenet_presets.py,sha256=QoluKQJnV391K6hoIX5X8UquD8f647u_8Ygta-UxmwE,1531
|
133
133
|
keras_hub/src/models/distil_bert/__init__.py,sha256=3Z0w-Mt3aOR0u9RGzjHQ7B3J3qBF2pGjupDGQ9yyzoc,303
|
134
134
|
keras_hub/src/models/distil_bert/distil_bert_backbone.py,sha256=rnAf_GokB3wAeJwVZtgUKQO_bKJIa8RavhL_ykTJpNw,6440
|
135
135
|
keras_hub/src/models/distil_bert/distil_bert_masked_lm.py,sha256=L0DvOl01MIwqc2f6H_E8si9qVUXPd0OKknJ5Rha33TA,4275
|
@@ -226,14 +226,14 @@ keras_hub/src/models/opt/opt_causal_lm_preprocessor.py,sha256=xHfslVMOZlAIj2V2jI
|
|
226
226
|
keras_hub/src/models/opt/opt_presets.py,sha256=J1IJ5VRcZZ6UZJSLrxpbWXw39YmbRd_WQujX1a6dxHo,2329
|
227
227
|
keras_hub/src/models/opt/opt_tokenizer.py,sha256=oDHeed4xf07tm14hj_C78BkzMuuRwRP2cRHmqYnObrs,2557
|
228
228
|
keras_hub/src/models/pali_gemma/__init__.py,sha256=uODWTlttOOchcTLpiYHCEWMXnDxIz8ZVIeYFQN2bd8o,288
|
229
|
-
keras_hub/src/models/pali_gemma/pali_gemma_backbone.py,sha256=
|
229
|
+
keras_hub/src/models/pali_gemma/pali_gemma_backbone.py,sha256=Rrl7nof_gAZL2Nge1cFymCsRdwqxQjwmEEhucGspUr0,10586
|
230
230
|
keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py,sha256=AViEs6YltUqWnIVo7J02JkXcanBgLSdwZwF56TVr8gc,11345
|
231
231
|
keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py,sha256=F57y0fZ0wYYxfGIjfrJc1W9uQpViYFx5bvFjj5CqUbI,4814
|
232
232
|
keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py,sha256=Q_sPAULiSo_ZJeXklZjCLhvOMXk8MrPZhEXtL5yNOiI,5175
|
233
233
|
keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=5yM_jUtrFsWIieiwfFBoP7mtPmQAwywkeLKbd7fhmzk,371
|
234
|
-
keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=
|
234
|
+
keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=yLLuPwhIDE7HuMNJwLw1_yhHGz3w3mvYCxVcgAtSydc,2401
|
235
235
|
keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=ljTiADHo0Ok88q-jVzwJIle2C8xcxnudLTsBLzIySaM,2415
|
236
|
-
keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=
|
236
|
+
keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=UpmymNkwuN9iuTV2I4M6lvHnlqpZIDmPb5pAADKs-Vg,18029
|
237
237
|
keras_hub/src/models/phi3/__init__.py,sha256=zIbf1MU-ks91mEkjTRJAsk51N3BBnXDF2JM1vO-13PQ,245
|
238
238
|
keras_hub/src/models/phi3/phi3_attention.py,sha256=dN8QwwTP9TxPBDv0MCvObLF3nHm1H6xbYr3T1K0nmg8,9243
|
239
239
|
keras_hub/src/models/phi3/phi3_backbone.py,sha256=fY-OY2ZrqxDHglYjTM0OCacBdEQHwj-XNmU0MnXL7iU,8885
|
@@ -249,7 +249,7 @@ keras_hub/src/models/resnet/resnet_backbone.py,sha256=mqVdGUj8YtjZ3zIhAQXgNqu8Sq
|
|
249
249
|
keras_hub/src/models/resnet/resnet_image_classifier.py,sha256=nf35EKDzvBkfhHsK-s6Ks0nbhvKO7HEOYZm94YckyWE,510
|
250
250
|
keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py,sha256=fM7gyQ0qB-RRuI4USJkRD6q9-HVfuC71e-BLTo-UhHQ,543
|
251
251
|
keras_hub/src/models/resnet/resnet_image_converter.py,sha256=fgTxihJznGFss-y3Z-jp0JE3X1gaaB2y-f2KMwrT8Pk,342
|
252
|
-
keras_hub/src/models/resnet/resnet_presets.py,sha256=
|
252
|
+
keras_hub/src/models/resnet/resnet_presets.py,sha256=FwQuCH9IZM0c7eRnbqxviQcfypbA_lg0-yVvnsGY1Dc,2947
|
253
253
|
keras_hub/src/models/retinanet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
254
254
|
keras_hub/src/models/retinanet/anchor_generator.py,sha256=43NoI7djbRudH98hUm-9fw5OEGQNRXOUYzypIZhLYhE,6750
|
255
255
|
keras_hub/src/models/retinanet/box_matcher.py,sha256=l820r1R-ByqiyVgmZ0YFjjz0njchDda-wItzLn1X84o,10834
|
@@ -355,7 +355,7 @@ keras_hub/src/utils/timm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZ
|
|
355
355
|
keras_hub/src/utils/timm/convert_densenet.py,sha256=V-GRjWuDnlh3b1EMxqahwZ3GMwSgOa3v0HOfb2ZZ-d0,3342
|
356
356
|
keras_hub/src/utils/timm/convert_resnet.py,sha256=ee8eTml0ffJKE8avzGoLFcpjPF63DsvoIUArAGa8Ngg,5832
|
357
357
|
keras_hub/src/utils/timm/convert_vgg.py,sha256=MT5jGnLrzenPpe66Af_Lp1IdR9KGtsSrcmn6_UPqHvQ,2419
|
358
|
-
keras_hub/src/utils/timm/preset_loader.py,sha256=
|
358
|
+
keras_hub/src/utils/timm/preset_loader.py,sha256=PBqmnEj-fash_-GH-_ulb9YYaHAIESlOsI3wXCwKGRo,3221
|
359
359
|
keras_hub/src/utils/transformers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
360
360
|
keras_hub/src/utils/transformers/convert_albert.py,sha256=VdKclZpCxtDWq3UbUUQZf4fR9DJK_JYZ73B4O_G9skg,7695
|
361
361
|
keras_hub/src/utils/transformers/convert_bart.py,sha256=Tk4h9Md9rwN5wjQbGIVrC7qzDpF8kI8qm-FKL8HlUok,14411
|
@@ -368,7 +368,7 @@ keras_hub/src/utils/transformers/convert_mistral.py,sha256=kVhN9h1ZFVhwkNW8p3wnS
|
|
368
368
|
keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYumf66hIid07k5NLqoeWAJgPnaLs,10649
|
369
369
|
keras_hub/src/utils/transformers/preset_loader.py,sha256=GS44hZUuGQCtzsyn8z44ZpHdftd3DFemwV2hx2bQa-U,2738
|
370
370
|
keras_hub/src/utils/transformers/safetensor_utils.py,sha256=rPK-Uw1CG0DX0d_UAD-r2cG9fw8GI8bvAlrcXfQ9g4c,3323
|
371
|
-
keras_hub_nightly-0.16.1.
|
372
|
-
keras_hub_nightly-0.16.1.
|
373
|
-
keras_hub_nightly-0.16.1.
|
374
|
-
keras_hub_nightly-0.16.1.
|
371
|
+
keras_hub_nightly-0.16.1.dev202410180341.dist-info/METADATA,sha256=I3yyfeBrwqtrZvH5HpEzkgeAs0iwD05aUdSbwxlTKy0,7458
|
372
|
+
keras_hub_nightly-0.16.1.dev202410180341.dist-info/WHEEL,sha256=OVMc5UfuAQiSplgO0_WdW7vXVGAt9Hdd6qtN4HotdyA,91
|
373
|
+
keras_hub_nightly-0.16.1.dev202410180341.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
374
|
+
keras_hub_nightly-0.16.1.dev202410180341.dist-info/RECORD,,
|
File without changes
|