keras-hub-nightly 0.16.1.dev202410130343__py3-none-any.whl → 0.16.1.dev202410150342__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,4 +1,18 @@
1
1
  """DeepLabV3 preset configurations."""
2
2
 
3
- # TODO https://github.com/keras-team/keras-hub/issues/1896,
4
- backbone_presets = {}
3
+ backbone_presets = {
4
+ "deeplabv3_plus_resnet50_pascalvoc": {
5
+ "metadata": {
6
+ "description": (
7
+ "DeepLabV3+ model with ResNet50 as image encoder and trained on "
8
+ "augmented Pascal VOC dataset by Semantic Boundaries Dataset(SBD)"
9
+ "which is having categorical accuracy of 90.01 and 0.63 Mean IoU."
10
+ ),
11
+ "params": 39190656,
12
+ "official_name": "DeepLabV3",
13
+ "path": "deeplabv3",
14
+ "model_card": "https://arxiv.org/abs/1802.02611",
15
+ },
16
+ "kaggle_handle": "kaggle://keras/deeplabv3/keras/deeplabv3_plus_resnet50_pascalvoc/3",
17
+ },
18
+ }
@@ -12,7 +12,7 @@ backbone_presets = {
12
12
  "path": "densenet",
13
13
  "model_card": "https://arxiv.org/abs/1608.06993",
14
14
  },
15
- "kaggle_handle": "kaggle://kerashub/densenet/keras/densenet_121_imagenet",
15
+ "kaggle_handle": "kaggle://keras/densenet/keras/densenet_121_imagenet/1",
16
16
  },
17
17
  "densenet_169_imagenet": {
18
18
  "metadata": {
@@ -25,7 +25,7 @@ backbone_presets = {
25
25
  "path": "densenet",
26
26
  "model_card": "https://arxiv.org/abs/1608.06993",
27
27
  },
28
- "kaggle_handle": "kaggle://kerashub/densenet/keras/densenet_169_imagenet",
28
+ "kaggle_handle": "kaggle://keras/densenet/keras/densenet_169_imagenet/1",
29
29
  },
30
30
  "densenet_201_imagenet": {
31
31
  "metadata": {
@@ -38,6 +38,6 @@ backbone_presets = {
38
38
  "path": "densenet",
39
39
  "model_card": "https://arxiv.org/abs/1608.06993",
40
40
  },
41
- "kaggle_handle": "kaggle://kerashub/densenet/keras/densenet_201_imagenet",
41
+ "kaggle_handle": "kaggle://keras/densenet/keras/densenet_201_imagenet/1",
42
42
  },
43
43
  }
@@ -21,7 +21,7 @@ backbone_presets_with_weights = {
21
21
  "official_name": "MiT",
22
22
  "path": "mit",
23
23
  },
24
- "kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b0_ade20k_512",
24
+ "kaggle_handle": "kaggle://keras/mit/keras/mit_b0_ade20k_512/1",
25
25
  },
26
26
  "mit_b1_ade20k_512": {
27
27
  "metadata": {
@@ -32,7 +32,7 @@ backbone_presets_with_weights = {
32
32
  "official_name": "MiT",
33
33
  "path": "mit",
34
34
  },
35
- "kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b1_ade20k_512",
35
+ "kaggle_handle": "kaggle://keras/mit/keras/mit_b1_ade20k_512/1",
36
36
  },
37
37
  "mit_b2_ade20k_512": {
38
38
  "metadata": {
@@ -43,7 +43,7 @@ backbone_presets_with_weights = {
43
43
  "official_name": "MiT",
44
44
  "path": "mit",
45
45
  },
46
- "kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b2_ade20k_512",
46
+ "kaggle_handle": "kaggle://keras/mit/keras/mit_b2_ade20k_512/1",
47
47
  },
48
48
  "mit_b3_ade20k_512": {
49
49
  "metadata": {
@@ -54,7 +54,7 @@ backbone_presets_with_weights = {
54
54
  "official_name": "MiT",
55
55
  "path": "mit",
56
56
  },
57
- "kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b3_ade20k_512",
57
+ "kaggle_handle": "kaggle://keras/mit/keras/mit_b3_ade20k_512/1",
58
58
  },
59
59
  "mit_b4_ade20k_512": {
60
60
  "metadata": {
@@ -65,7 +65,7 @@ backbone_presets_with_weights = {
65
65
  "official_name": "MiT",
66
66
  "path": "mit",
67
67
  },
68
- "kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b4_ade20k_512",
68
+ "kaggle_handle": "kaggle://keras/mit/keras/mit_b4_ade20k_512/1",
69
69
  },
70
70
  "mit_b5_ade20k_640": {
71
71
  "metadata": {
@@ -76,7 +76,7 @@ backbone_presets_with_weights = {
76
76
  "official_name": "MiT",
77
77
  "path": "mit",
78
78
  },
79
- "kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b5_ade20k_512",
79
+ "kaggle_handle": "kaggle://keras/mit/keras/mit_b5_ade20k_512/1",
80
80
  },
81
81
  "mit_b0_cityscapes_1024": {
82
82
  "metadata": {
@@ -87,7 +87,7 @@ backbone_presets_with_weights = {
87
87
  "official_name": "MiT",
88
88
  "path": "mit",
89
89
  },
90
- "kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b0_cityscapes_1024",
90
+ "kaggle_handle": "kaggle://keras/mit/keras/mit_b0_cityscapes_1024/1",
91
91
  },
92
92
  "mit_b1_cityscapes_1024": {
93
93
  "metadata": {
@@ -98,7 +98,7 @@ backbone_presets_with_weights = {
98
98
  "official_name": "MiT",
99
99
  "path": "mit",
100
100
  },
101
- "kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b1_cityscapes_1024",
101
+ "kaggle_handle": "kaggle://keras/mit/keras/mit_b1_cityscapes_1024/1",
102
102
  },
103
103
  "mit_b2_cityscapes_1024": {
104
104
  "metadata": {
@@ -109,7 +109,7 @@ backbone_presets_with_weights = {
109
109
  "official_name": "MiT",
110
110
  "path": "mit",
111
111
  },
112
- "kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b2_cityscapes_1024",
112
+ "kaggle_handle": "kaggle://keras/mit/keras/mit_b2_cityscapes_1024/1",
113
113
  },
114
114
  "mit_b3_cityscapes_1024": {
115
115
  "metadata": {
@@ -120,7 +120,7 @@ backbone_presets_with_weights = {
120
120
  "official_name": "MiT",
121
121
  "path": "mit",
122
122
  },
123
- "kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b3_cityscapes_1024",
123
+ "kaggle_handle": "kaggle://keras/mit/keras/mit_b3_cityscapes_1024/1",
124
124
  },
125
125
  "mit_b4_cityscapes_1024": {
126
126
  "metadata": {
@@ -131,7 +131,7 @@ backbone_presets_with_weights = {
131
131
  "official_name": "MiT",
132
132
  "path": "mit",
133
133
  },
134
- "kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b4_cityscapes_1024",
134
+ "kaggle_handle": "kaggle://keras/mit/keras/mit_b4_cityscapes_1024/1",
135
135
  },
136
136
  "mit_b5_cityscapes_1024": {
137
137
  "metadata": {
@@ -142,7 +142,7 @@ backbone_presets_with_weights = {
142
142
  "official_name": "MiT",
143
143
  "path": "mit",
144
144
  },
145
- "kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b5_cityscapes_1024",
145
+ "kaggle_handle": "kaggle://keras/mit/keras/mit_b5_cityscapes_1024/1",
146
146
  },
147
147
  }
148
148
 
@@ -12,7 +12,7 @@ backbone_presets = {
12
12
  "path": "resnet",
13
13
  "model_card": "https://arxiv.org/abs/2110.00476",
14
14
  },
15
- "kaggle_handle": "kaggle://kerashub/resnetv1/keras/resnet_18_imagenet/3",
15
+ "kaggle_handle": "kaggle://keras/resnetv1/keras/resnet_18_imagenet/1",
16
16
  },
17
17
  "resnet_50_imagenet": {
18
18
  "metadata": {
@@ -25,7 +25,7 @@ backbone_presets = {
25
25
  "path": "resnet",
26
26
  "model_card": "https://arxiv.org/abs/2110.00476",
27
27
  },
28
- "kaggle_handle": "kaggle://kerashub/resnetv1/keras/resnet_50_imagenet/3",
28
+ "kaggle_handle": "kaggle://keras/resnetv1/keras/resnet_50_imagenet/1",
29
29
  },
30
30
  "resnet_101_imagenet": {
31
31
  "metadata": {
@@ -38,7 +38,7 @@ backbone_presets = {
38
38
  "path": "resnet",
39
39
  "model_card": "https://arxiv.org/abs/2110.00476",
40
40
  },
41
- "kaggle_handle": "kaggle://kerashub/resnetv1/keras/resnet_101_imagenet/3",
41
+ "kaggle_handle": "kaggle://keras/resnetv1/keras/resnet_101_imagenet/1",
42
42
  },
43
43
  "resnet_152_imagenet": {
44
44
  "metadata": {
@@ -51,7 +51,7 @@ backbone_presets = {
51
51
  "path": "resnet",
52
52
  "model_card": "https://arxiv.org/abs/2110.00476",
53
53
  },
54
- "kaggle_handle": "kaggle://kerashub/resnetv1/keras/resnet_152_imagenet/3",
54
+ "kaggle_handle": "kaggle://keras/resnetv1/keras/resnet_152_imagenet/1",
55
55
  },
56
56
  "resnet_v2_50_imagenet": {
57
57
  "metadata": {
@@ -64,7 +64,7 @@ backbone_presets = {
64
64
  "path": "resnet",
65
65
  "model_card": "https://arxiv.org/abs/2110.00476",
66
66
  },
67
- "kaggle_handle": "kaggle://kerashub/resnetv2/keras/resnet_v2_50_imagenet/3",
67
+ "kaggle_handle": "kaggle://keras/resnetv2/keras/resnet_v2_50_imagenet/1",
68
68
  },
69
69
  "resnet_v2_101_imagenet": {
70
70
  "metadata": {
@@ -77,6 +77,6 @@ backbone_presets = {
77
77
  "path": "resnet",
78
78
  "model_card": "https://arxiv.org/abs/2110.00476",
79
79
  },
80
- "kaggle_handle": "kaggle://kerashub/resnetv2/keras/resnet_v2_101_imagenet/3",
80
+ "kaggle_handle": "kaggle://keras/resnetv2/keras/resnet_v2_101_imagenet/1",
81
81
  },
82
82
  }
@@ -9,7 +9,7 @@ backbone_presets = {
9
9
  "path": "sam",
10
10
  "model_card": "https://arxiv.org/abs/2304.02643",
11
11
  },
12
- "kaggle_handle": "kaggle://kerashub/sam/keras/sam_base_sa1b/2",
12
+ "kaggle_handle": "kaggle://keras/sam/keras/sam_base_sa1b/2",
13
13
  },
14
14
  "sam_large_sa1b": {
15
15
  "metadata": {
@@ -19,7 +19,7 @@ backbone_presets = {
19
19
  "path": "sam",
20
20
  "model_card": "https://arxiv.org/abs/2304.02643",
21
21
  },
22
- "kaggle_handle": "kaggle://kerashub/sam/keras/sam_large_sa1b/2",
22
+ "kaggle_handle": "kaggle://keras/sam/keras/sam_large_sa1b/3",
23
23
  },
24
24
  "sam_huge_sa1b": {
25
25
  "metadata": {
@@ -29,6 +29,6 @@ backbone_presets = {
29
29
  "path": "sam",
30
30
  "model_card": "https://arxiv.org/abs/2304.02643",
31
31
  },
32
- "kaggle_handle": "kaggle://kerashub/sam/keras/sam_huge_sa1b/2",
32
+ "kaggle_handle": "kaggle://keras/sam/keras/sam_huge_sa1b/3",
33
33
  },
34
34
  }
@@ -13,6 +13,6 @@ backbone_presets = {
13
13
  "path": "stablediffusion3",
14
14
  "model_card": "https://arxiv.org/abs/2110.00476",
15
15
  },
16
- "kaggle_handle": "kaggle://kerashub/stablediffusion3/keras/stable_diffusion_3_medium/4",
16
+ "kaggle_handle": "kaggle://keras/stablediffusion3/keras/stable_diffusion_3_medium/1",
17
17
  }
18
18
  }
@@ -0,0 +1,56 @@
1
+ """vgg preset configurations."""
2
+
3
+ backbone_presets = {
4
+ "vgg_11_imagenet": {
5
+ "metadata": {
6
+ "description": (
7
+ "11-layer vgg model pre-trained on the ImageNet 1k dataset "
8
+ "at a 224x224 resolution."
9
+ ),
10
+ "params": 9220480,
11
+ "official_name": "vgg",
12
+ "path": "vgg",
13
+ "model_card": "https://arxiv.org/abs/1409.1556",
14
+ },
15
+ "kaggle_handle": "kaggle://keras/vgg/keras/vgg_11_imagenet/1",
16
+ },
17
+ "vgg_13_imagenet": {
18
+ "metadata": {
19
+ "description": (
20
+ "13-layer vgg model pre-trained on the ImageNet 1k dataset "
21
+ "at a 224x224 resolution."
22
+ ),
23
+ "params": 9404992,
24
+ "official_name": "vgg",
25
+ "path": "vgg",
26
+ "model_card": "https://arxiv.org/abs/1409.1556",
27
+ },
28
+ "kaggle_handle": "kaggle://keras/vgg/keras/vgg_13_imagenet/1",
29
+ },
30
+ "vgg_16_imagenet": {
31
+ "metadata": {
32
+ "description": (
33
+ "16-layer vgg model pre-trained on the ImageNet 1k dataset "
34
+ "at a 224x224 resolution."
35
+ ),
36
+ "params": 14714688,
37
+ "official_name": "vgg",
38
+ "path": "vgg",
39
+ "model_card": "https://arxiv.org/abs/1409.1556",
40
+ },
41
+ "kaggle_handle": "kaggle://keras/vgg/keras/vgg_16_imagenet/1",
42
+ },
43
+ "vgg_19_imagenet": {
44
+ "metadata": {
45
+ "description": (
46
+ "19-layer vgg model pre-trained on the ImageNet 1k dataset "
47
+ "at a 224x224 resolution."
48
+ ),
49
+ "params": 20024384,
50
+ "official_name": "vgg",
51
+ "path": "vgg",
52
+ "model_card": "https://arxiv.org/abs/1409.1556",
53
+ },
54
+ "kaggle_handle": "kaggle://keras/vgg/keras/vgg_19_imagenet/1",
55
+ },
56
+ }
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.16.1.dev202410130343"
4
+ __version__ = "0.16.1.dev202410150342"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: keras-hub-nightly
3
- Version: 0.16.1.dev202410130343
3
+ Version: 0.16.1.dev202410150342
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -9,7 +9,7 @@ keras_hub/api/tokenizers/__init__.py,sha256=_f-r_cyUM2fjBB7iO84ThOdqqsAxHNIewJ2E
9
9
  keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
10
10
  keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
11
  keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
12
- keras_hub/src/version_utils.py,sha256=78gzxve7cteU623YlEbWgWW_QqPsIww3MBgBwVSD5Lo,222
12
+ keras_hub/src/version_utils.py,sha256=rY0OztXmBo2_0LAdO10JpHYw9H8oOtH9eTkj7k4SVno,222
13
13
  keras_hub/src/bounding_box/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
14
14
  keras_hub/src/bounding_box/converters.py,sha256=a5po8DBm87oz2EXfi-0uEZHCMlCJPIb4-MaZIdYx3Dg,17865
15
15
  keras_hub/src/bounding_box/formats.py,sha256=YmskOz2BOSat7NaE__J9VfpSNGPJJR0znSzA4lp8MMI,3868
@@ -122,14 +122,14 @@ keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py,sha256=WyFhuLcjFPFVuNL09b
122
122
  keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py,sha256=mRkH3HdhpV0fCcQcVXEvIX7SNk-bAMb3SAHzgK-FD5c,371
123
123
  keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py,sha256=hR9S6lNYamY0EBDBo3e1qTCiwtftmLXrN-UYuzfw5Io,581
124
124
  keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py,sha256=qmEiolOOriLAojXB67xXW9IOo717kaCGeDVZJLaGY98,7834
125
- keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py,sha256=JE-Uv_CXDVnwNkTcy5GtzrIQXvcXSP7fdVpfhmk8qhg,122
125
+ keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py,sha256=tfTOz0H_XX1o-0oM7O3j7OyKxPDIesrV8FMO4IfbbBk,702
126
126
  keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py,sha256=tiMDcCFANHMUx3IVtW3r1P_JTazgPPsbW4IktIytKEU,3650
127
127
  keras_hub/src/models/densenet/__init__.py,sha256=r7StyamnWeeZxOk9r4ZYNbS_YVhu9YGPyXhNxljvdPg,269
128
128
  keras_hub/src/models/densenet/densenet_backbone.py,sha256=dN9lUwKzO3E2HthNV2x54ozeBEQ0ilNs5uYHshFQpT0,6723
129
129
  keras_hub/src/models/densenet/densenet_image_classifier.py,sha256=ptuV6PwgoUpmrSPqX7-a85IpWsElwcCv_G5IVkP9E_Q,530
130
130
  keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py,sha256=xDZbTw_h6pjLDzf8QmbDyMnMsFzgh-dPX1ldg9kddhg,563
131
131
  keras_hub/src/models/densenet/densenet_image_converter.py,sha256=DoxYlJVZ9uaabFhVjWOmzvhONoc8KNcQj2vQ6Z1AUpU,354
132
- keras_hub/src/models/densenet/densenet_presets.py,sha256=GawLJOd_Kn_Kj_1ue7DYFLx7UPYvPGGOYKrNIqhQe2I,1534
132
+ keras_hub/src/models/densenet/densenet_presets.py,sha256=2emOQuwcWo2i1MhvXwi081S55Z7vHkQ0r6h6Z9Yn68Q,1531
133
133
  keras_hub/src/models/distil_bert/__init__.py,sha256=3Z0w-Mt3aOR0u9RGzjHQ7B3J3qBF2pGjupDGQ9yyzoc,303
134
134
  keras_hub/src/models/distil_bert/distil_bert_backbone.py,sha256=rnAf_GokB3wAeJwVZtgUKQO_bKJIa8RavhL_ykTJpNw,6440
135
135
  keras_hub/src/models/distil_bert/distil_bert_masked_lm.py,sha256=L0DvOl01MIwqc2f6H_E8si9qVUXPd0OKknJ5Rha33TA,4275
@@ -215,7 +215,7 @@ keras_hub/src/models/mix_transformer/mix_transformer_classifier.py,sha256=pVfbbT
215
215
  keras_hub/src/models/mix_transformer/mix_transformer_classifier_preprocessor.py,sha256=lSUuMAJiyWDVH0AVjG2y684bU3msxI3_UTa_xWyLLKQ,570
216
216
  keras_hub/src/models/mix_transformer/mix_transformer_image_converter.py,sha256=WG2LjuagCxSYXkFgqd4bHyUoMLFCzTj9QjJBoptW6WM,323
217
217
  keras_hub/src/models/mix_transformer/mix_transformer_layers.py,sha256=9AbA4kCJkjeV7fAwbRns8VGn0l1pgQ3CqFPjY-99VGA,9695
218
- keras_hub/src/models/mix_transformer/mix_transformer_presets.py,sha256=rWrjAAwc9Kmo0c66CNh5cuIpySzqqLKj_VI6hlI9d44,5116
218
+ keras_hub/src/models/mix_transformer/mix_transformer_presets.py,sha256=9bxWVOLhmBdoq2I4uZfZb7wZAB-3YjuMq0T_-JJzr2w,4960
219
219
  keras_hub/src/models/mobilenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
220
220
  keras_hub/src/models/mobilenet/mobilenet_backbone.py,sha256=nlXdMqcj18iahy60aew4ON79EHUEuNIgvKY9dToH284,18191
221
221
  keras_hub/src/models/mobilenet/mobilenet_image_classifier.py,sha256=l5jo99I0fLlbwLub5jHw07CjC-NnmuV-ySJwXGI20Ek,351
@@ -249,7 +249,7 @@ keras_hub/src/models/resnet/resnet_backbone.py,sha256=mqVdGUj8YtjZ3zIhAQXgNqu8Sq
249
249
  keras_hub/src/models/resnet/resnet_image_classifier.py,sha256=nf35EKDzvBkfhHsK-s6Ks0nbhvKO7HEOYZm94YckyWE,510
250
250
  keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py,sha256=fM7gyQ0qB-RRuI4USJkRD6q9-HVfuC71e-BLTo-UhHQ,543
251
251
  keras_hub/src/models/resnet/resnet_image_converter.py,sha256=fgTxihJznGFss-y3Z-jp0JE3X1gaaB2y-f2KMwrT8Pk,342
252
- keras_hub/src/models/resnet/resnet_presets.py,sha256=eYB6vrtoSd9xC2KzUToa3R9e5G6T-AyuFKZDOKOBbMI,2965
252
+ keras_hub/src/models/resnet/resnet_presets.py,sha256=fqyA7rXB6IwD_x7TMq40RyArzjdDbD4jLxH5OaPjWIs,2947
253
253
  keras_hub/src/models/retinanet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
254
254
  keras_hub/src/models/retinanet/anchor_generator.py,sha256=43NoI7djbRudH98hUm-9fw5OEGQNRXOUYzypIZhLYhE,6750
255
255
  keras_hub/src/models/retinanet/box_matcher.py,sha256=l820r1R-ByqiyVgmZ0YFjjz0njchDda-wItzLn1X84o,10834
@@ -271,7 +271,7 @@ keras_hub/src/models/sam/sam_image_segmenter.py,sha256=gJ-O7XaSvn9KTI-QPguhAiGfv
271
271
  keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py,sha256=7slvyhGoMHmSigagqIcjDJ3gX8fUJbuMBwmozC4FlCg,849
272
272
  keras_hub/src/models/sam/sam_layers.py,sha256=SE5e6tYc-lsIVfMp9khewvuA1jY-dEHQmLT00YUok4M,13862
273
273
  keras_hub/src/models/sam/sam_mask_decoder.py,sha256=9RfjoNL7GSY6I9LZ3ulUa5cIoYSPJNP4KnHvq16lnM4,9549
274
- keras_hub/src/models/sam/sam_presets.py,sha256=AfGUKNOkz0G11OMYqVebXKgEBar1qpIkA_f0u7akBU8,1220
274
+ keras_hub/src/models/sam/sam_presets.py,sha256=oAv_VmRiSE4dtJRp0ue_5hP7zoXeL9ykjHwECV-dzyY,1211
275
275
  keras_hub/src/models/sam/sam_prompt_encoder.py,sha256=2foB7900QbzQfZjBo335XYsdjmhOnVT8fKD1CubJNVE,11801
276
276
  keras_hub/src/models/sam/sam_transformer.py,sha256=L2bdxdc2RUF1juRZ0F0Z6r0gTva1sUwEdjItJmKKf6w,5730
277
277
  keras_hub/src/models/stable_diffusion_3/__init__.py,sha256=ZKYQuaRObyhKq8GVAHmoRvlXp6FpU8ChvutVCHyXKuc,343
@@ -280,7 +280,7 @@ keras_hub/src/models/stable_diffusion_3/mmdit.py,sha256=ByFot4_I1Z6woOBYvPcbkUtY
280
280
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py,sha256=QuggvAy1yvtIXFcwyXOmE_aUdhLcCEUw4FnTuqekys0,22497
281
281
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py,sha256=6_IXkxAv588lAKEasJrXgCjQePSXs-54XrvVIlYOT60,5483
282
282
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py,sha256=tKVAQVbKOt3lWkWsQLKN9KK3WYem0-u5fonq2uBAPrc,6367
283
- keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py,sha256=QSDCse8IhEwAWz_lHjAr2N8ygLaJ4ls3uNwvwjJTp5w,662
283
+ keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py,sha256=EP8hQHj8yqP3q26kwpNnDbrbTH7UeWL8GS5Xwo4nSCE,659
284
284
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py,sha256=pQOC7xMJfJHZxZRiYFtjrbjx0GXb94cNyOr9NELoXo8,4488
285
285
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py,sha256=TB0KESt5dnFYiS292PbzB0LdiH23AD6aTSTGmQEuzGM,2742
286
286
  keras_hub/src/models/stable_diffusion_3/t5_encoder.py,sha256=oV7P1uwCKdGiD93zXq7kmqX0elMZQU4UvBa8wg6P1hs,5113
@@ -298,6 +298,7 @@ keras_hub/src/models/vae/vae_layers.py,sha256=N83CYM1zgbl1EIjAOs3cFCkJEdxvbXkgM9
298
298
  keras_hub/src/models/vgg/__init__.py,sha256=1ydFmkTOix2kOnDHie3srD4XD0dQ_7iR8OYbJzBM_YM,62
299
299
  keras_hub/src/models/vgg/vgg_backbone.py,sha256=qes1AsKwBDI7eQ3aC1uRievMkVNGXM9TNhtKLb9eZiU,3697
300
300
  keras_hub/src/models/vgg/vgg_image_classifier.py,sha256=bl6XM7l9fnOTGFreqOO3Z1jreusjhA4l7G0xjimfUKA,7829
301
+ keras_hub/src/models/vgg/vgg_presets.py,sha256=ltKExQdrR3E30kZPZD53tXVOsc8Gj7Krj6pzHP1UYVU,1879
301
302
  keras_hub/src/models/vit_det/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
302
303
  keras_hub/src/models/vit_det/vit_det_backbone.py,sha256=GzwHXAfttExqDaGU4R2LAvng1gzjuvO3HMqUPwNUy9g,7656
303
304
  keras_hub/src/models/vit_det/vit_layers.py,sha256=oCKeUw5ckyUAGvmFPuxIiIAqgmC3uqh85LfZcgyh964,19852
@@ -367,7 +368,7 @@ keras_hub/src/utils/transformers/convert_mistral.py,sha256=kVhN9h1ZFVhwkNW8p3wnS
367
368
  keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYumf66hIid07k5NLqoeWAJgPnaLs,10649
368
369
  keras_hub/src/utils/transformers/preset_loader.py,sha256=GS44hZUuGQCtzsyn8z44ZpHdftd3DFemwV2hx2bQa-U,2738
369
370
  keras_hub/src/utils/transformers/safetensor_utils.py,sha256=rPK-Uw1CG0DX0d_UAD-r2cG9fw8GI8bvAlrcXfQ9g4c,3323
370
- keras_hub_nightly-0.16.1.dev202410130343.dist-info/METADATA,sha256=OZNt86V4iakOZ55xKZwa-tl7Bj7G3_lX32Tzh21WcYQ,7458
371
- keras_hub_nightly-0.16.1.dev202410130343.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
372
- keras_hub_nightly-0.16.1.dev202410130343.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
373
- keras_hub_nightly-0.16.1.dev202410130343.dist-info/RECORD,,
371
+ keras_hub_nightly-0.16.1.dev202410150342.dist-info/METADATA,sha256=Tj8fIeiKR1xN6oFPr7bWgB_jGSpMm8ZiyE5baY9IC6U,7458
372
+ keras_hub_nightly-0.16.1.dev202410150342.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
373
+ keras_hub_nightly-0.16.1.dev202410150342.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
374
+ keras_hub_nightly-0.16.1.dev202410150342.dist-info/RECORD,,