keras-hub-nightly 0.16.1.dev202410130343__py3-none-any.whl → 0.16.1.dev202410150342__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +16 -2
- keras_hub/src/models/densenet/densenet_presets.py +3 -3
- keras_hub/src/models/mix_transformer/mix_transformer_presets.py +12 -12
- keras_hub/src/models/resnet/resnet_presets.py +6 -6
- keras_hub/src/models/sam/sam_presets.py +3 -3
- keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +1 -1
- keras_hub/src/models/vgg/vgg_presets.py +56 -0
- keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.16.1.dev202410130343.dist-info → keras_hub_nightly-0.16.1.dev202410150342.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.16.1.dev202410130343.dist-info → keras_hub_nightly-0.16.1.dev202410150342.dist-info}/RECORD +12 -11
- {keras_hub_nightly-0.16.1.dev202410130343.dist-info → keras_hub_nightly-0.16.1.dev202410150342.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.16.1.dev202410130343.dist-info → keras_hub_nightly-0.16.1.dev202410150342.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,18 @@
|
|
1
1
|
"""DeepLabV3 preset configurations."""
|
2
2
|
|
3
|
-
|
4
|
-
|
3
|
+
backbone_presets = {
|
4
|
+
"deeplabv3_plus_resnet50_pascalvoc": {
|
5
|
+
"metadata": {
|
6
|
+
"description": (
|
7
|
+
"DeepLabV3+ model with ResNet50 as image encoder and trained on "
|
8
|
+
"augmented Pascal VOC dataset by Semantic Boundaries Dataset(SBD)"
|
9
|
+
"which is having categorical accuracy of 90.01 and 0.63 Mean IoU."
|
10
|
+
),
|
11
|
+
"params": 39190656,
|
12
|
+
"official_name": "DeepLabV3",
|
13
|
+
"path": "deeplabv3",
|
14
|
+
"model_card": "https://arxiv.org/abs/1802.02611",
|
15
|
+
},
|
16
|
+
"kaggle_handle": "kaggle://keras/deeplabv3/keras/deeplabv3_plus_resnet50_pascalvoc/3",
|
17
|
+
},
|
18
|
+
}
|
@@ -12,7 +12,7 @@ backbone_presets = {
|
|
12
12
|
"path": "densenet",
|
13
13
|
"model_card": "https://arxiv.org/abs/1608.06993",
|
14
14
|
},
|
15
|
-
"kaggle_handle": "kaggle://
|
15
|
+
"kaggle_handle": "kaggle://keras/densenet/keras/densenet_121_imagenet/1",
|
16
16
|
},
|
17
17
|
"densenet_169_imagenet": {
|
18
18
|
"metadata": {
|
@@ -25,7 +25,7 @@ backbone_presets = {
|
|
25
25
|
"path": "densenet",
|
26
26
|
"model_card": "https://arxiv.org/abs/1608.06993",
|
27
27
|
},
|
28
|
-
"kaggle_handle": "kaggle://
|
28
|
+
"kaggle_handle": "kaggle://keras/densenet/keras/densenet_169_imagenet/1",
|
29
29
|
},
|
30
30
|
"densenet_201_imagenet": {
|
31
31
|
"metadata": {
|
@@ -38,6 +38,6 @@ backbone_presets = {
|
|
38
38
|
"path": "densenet",
|
39
39
|
"model_card": "https://arxiv.org/abs/1608.06993",
|
40
40
|
},
|
41
|
-
"kaggle_handle": "kaggle://
|
41
|
+
"kaggle_handle": "kaggle://keras/densenet/keras/densenet_201_imagenet/1",
|
42
42
|
},
|
43
43
|
}
|
@@ -21,7 +21,7 @@ backbone_presets_with_weights = {
|
|
21
21
|
"official_name": "MiT",
|
22
22
|
"path": "mit",
|
23
23
|
},
|
24
|
-
"kaggle_handle": "kaggle://
|
24
|
+
"kaggle_handle": "kaggle://keras/mit/keras/mit_b0_ade20k_512/1",
|
25
25
|
},
|
26
26
|
"mit_b1_ade20k_512": {
|
27
27
|
"metadata": {
|
@@ -32,7 +32,7 @@ backbone_presets_with_weights = {
|
|
32
32
|
"official_name": "MiT",
|
33
33
|
"path": "mit",
|
34
34
|
},
|
35
|
-
"kaggle_handle": "kaggle://
|
35
|
+
"kaggle_handle": "kaggle://keras/mit/keras/mit_b1_ade20k_512/1",
|
36
36
|
},
|
37
37
|
"mit_b2_ade20k_512": {
|
38
38
|
"metadata": {
|
@@ -43,7 +43,7 @@ backbone_presets_with_weights = {
|
|
43
43
|
"official_name": "MiT",
|
44
44
|
"path": "mit",
|
45
45
|
},
|
46
|
-
"kaggle_handle": "kaggle://
|
46
|
+
"kaggle_handle": "kaggle://keras/mit/keras/mit_b2_ade20k_512/1",
|
47
47
|
},
|
48
48
|
"mit_b3_ade20k_512": {
|
49
49
|
"metadata": {
|
@@ -54,7 +54,7 @@ backbone_presets_with_weights = {
|
|
54
54
|
"official_name": "MiT",
|
55
55
|
"path": "mit",
|
56
56
|
},
|
57
|
-
"kaggle_handle": "kaggle://
|
57
|
+
"kaggle_handle": "kaggle://keras/mit/keras/mit_b3_ade20k_512/1",
|
58
58
|
},
|
59
59
|
"mit_b4_ade20k_512": {
|
60
60
|
"metadata": {
|
@@ -65,7 +65,7 @@ backbone_presets_with_weights = {
|
|
65
65
|
"official_name": "MiT",
|
66
66
|
"path": "mit",
|
67
67
|
},
|
68
|
-
"kaggle_handle": "kaggle://
|
68
|
+
"kaggle_handle": "kaggle://keras/mit/keras/mit_b4_ade20k_512/1",
|
69
69
|
},
|
70
70
|
"mit_b5_ade20k_640": {
|
71
71
|
"metadata": {
|
@@ -76,7 +76,7 @@ backbone_presets_with_weights = {
|
|
76
76
|
"official_name": "MiT",
|
77
77
|
"path": "mit",
|
78
78
|
},
|
79
|
-
"kaggle_handle": "kaggle://
|
79
|
+
"kaggle_handle": "kaggle://keras/mit/keras/mit_b5_ade20k_512/1",
|
80
80
|
},
|
81
81
|
"mit_b0_cityscapes_1024": {
|
82
82
|
"metadata": {
|
@@ -87,7 +87,7 @@ backbone_presets_with_weights = {
|
|
87
87
|
"official_name": "MiT",
|
88
88
|
"path": "mit",
|
89
89
|
},
|
90
|
-
"kaggle_handle": "kaggle://
|
90
|
+
"kaggle_handle": "kaggle://keras/mit/keras/mit_b0_cityscapes_1024/1",
|
91
91
|
},
|
92
92
|
"mit_b1_cityscapes_1024": {
|
93
93
|
"metadata": {
|
@@ -98,7 +98,7 @@ backbone_presets_with_weights = {
|
|
98
98
|
"official_name": "MiT",
|
99
99
|
"path": "mit",
|
100
100
|
},
|
101
|
-
"kaggle_handle": "kaggle://
|
101
|
+
"kaggle_handle": "kaggle://keras/mit/keras/mit_b1_cityscapes_1024/1",
|
102
102
|
},
|
103
103
|
"mit_b2_cityscapes_1024": {
|
104
104
|
"metadata": {
|
@@ -109,7 +109,7 @@ backbone_presets_with_weights = {
|
|
109
109
|
"official_name": "MiT",
|
110
110
|
"path": "mit",
|
111
111
|
},
|
112
|
-
"kaggle_handle": "kaggle://
|
112
|
+
"kaggle_handle": "kaggle://keras/mit/keras/mit_b2_cityscapes_1024/1",
|
113
113
|
},
|
114
114
|
"mit_b3_cityscapes_1024": {
|
115
115
|
"metadata": {
|
@@ -120,7 +120,7 @@ backbone_presets_with_weights = {
|
|
120
120
|
"official_name": "MiT",
|
121
121
|
"path": "mit",
|
122
122
|
},
|
123
|
-
"kaggle_handle": "kaggle://
|
123
|
+
"kaggle_handle": "kaggle://keras/mit/keras/mit_b3_cityscapes_1024/1",
|
124
124
|
},
|
125
125
|
"mit_b4_cityscapes_1024": {
|
126
126
|
"metadata": {
|
@@ -131,7 +131,7 @@ backbone_presets_with_weights = {
|
|
131
131
|
"official_name": "MiT",
|
132
132
|
"path": "mit",
|
133
133
|
},
|
134
|
-
"kaggle_handle": "kaggle://
|
134
|
+
"kaggle_handle": "kaggle://keras/mit/keras/mit_b4_cityscapes_1024/1",
|
135
135
|
},
|
136
136
|
"mit_b5_cityscapes_1024": {
|
137
137
|
"metadata": {
|
@@ -142,7 +142,7 @@ backbone_presets_with_weights = {
|
|
142
142
|
"official_name": "MiT",
|
143
143
|
"path": "mit",
|
144
144
|
},
|
145
|
-
"kaggle_handle": "kaggle://
|
145
|
+
"kaggle_handle": "kaggle://keras/mit/keras/mit_b5_cityscapes_1024/1",
|
146
146
|
},
|
147
147
|
}
|
148
148
|
|
@@ -12,7 +12,7 @@ backbone_presets = {
|
|
12
12
|
"path": "resnet",
|
13
13
|
"model_card": "https://arxiv.org/abs/2110.00476",
|
14
14
|
},
|
15
|
-
"kaggle_handle": "kaggle://
|
15
|
+
"kaggle_handle": "kaggle://keras/resnetv1/keras/resnet_18_imagenet/1",
|
16
16
|
},
|
17
17
|
"resnet_50_imagenet": {
|
18
18
|
"metadata": {
|
@@ -25,7 +25,7 @@ backbone_presets = {
|
|
25
25
|
"path": "resnet",
|
26
26
|
"model_card": "https://arxiv.org/abs/2110.00476",
|
27
27
|
},
|
28
|
-
"kaggle_handle": "kaggle://
|
28
|
+
"kaggle_handle": "kaggle://keras/resnetv1/keras/resnet_50_imagenet/1",
|
29
29
|
},
|
30
30
|
"resnet_101_imagenet": {
|
31
31
|
"metadata": {
|
@@ -38,7 +38,7 @@ backbone_presets = {
|
|
38
38
|
"path": "resnet",
|
39
39
|
"model_card": "https://arxiv.org/abs/2110.00476",
|
40
40
|
},
|
41
|
-
"kaggle_handle": "kaggle://
|
41
|
+
"kaggle_handle": "kaggle://keras/resnetv1/keras/resnet_101_imagenet/1",
|
42
42
|
},
|
43
43
|
"resnet_152_imagenet": {
|
44
44
|
"metadata": {
|
@@ -51,7 +51,7 @@ backbone_presets = {
|
|
51
51
|
"path": "resnet",
|
52
52
|
"model_card": "https://arxiv.org/abs/2110.00476",
|
53
53
|
},
|
54
|
-
"kaggle_handle": "kaggle://
|
54
|
+
"kaggle_handle": "kaggle://keras/resnetv1/keras/resnet_152_imagenet/1",
|
55
55
|
},
|
56
56
|
"resnet_v2_50_imagenet": {
|
57
57
|
"metadata": {
|
@@ -64,7 +64,7 @@ backbone_presets = {
|
|
64
64
|
"path": "resnet",
|
65
65
|
"model_card": "https://arxiv.org/abs/2110.00476",
|
66
66
|
},
|
67
|
-
"kaggle_handle": "kaggle://
|
67
|
+
"kaggle_handle": "kaggle://keras/resnetv2/keras/resnet_v2_50_imagenet/1",
|
68
68
|
},
|
69
69
|
"resnet_v2_101_imagenet": {
|
70
70
|
"metadata": {
|
@@ -77,6 +77,6 @@ backbone_presets = {
|
|
77
77
|
"path": "resnet",
|
78
78
|
"model_card": "https://arxiv.org/abs/2110.00476",
|
79
79
|
},
|
80
|
-
"kaggle_handle": "kaggle://
|
80
|
+
"kaggle_handle": "kaggle://keras/resnetv2/keras/resnet_v2_101_imagenet/1",
|
81
81
|
},
|
82
82
|
}
|
@@ -9,7 +9,7 @@ backbone_presets = {
|
|
9
9
|
"path": "sam",
|
10
10
|
"model_card": "https://arxiv.org/abs/2304.02643",
|
11
11
|
},
|
12
|
-
"kaggle_handle": "kaggle://
|
12
|
+
"kaggle_handle": "kaggle://keras/sam/keras/sam_base_sa1b/2",
|
13
13
|
},
|
14
14
|
"sam_large_sa1b": {
|
15
15
|
"metadata": {
|
@@ -19,7 +19,7 @@ backbone_presets = {
|
|
19
19
|
"path": "sam",
|
20
20
|
"model_card": "https://arxiv.org/abs/2304.02643",
|
21
21
|
},
|
22
|
-
"kaggle_handle": "kaggle://
|
22
|
+
"kaggle_handle": "kaggle://keras/sam/keras/sam_large_sa1b/3",
|
23
23
|
},
|
24
24
|
"sam_huge_sa1b": {
|
25
25
|
"metadata": {
|
@@ -29,6 +29,6 @@ backbone_presets = {
|
|
29
29
|
"path": "sam",
|
30
30
|
"model_card": "https://arxiv.org/abs/2304.02643",
|
31
31
|
},
|
32
|
-
"kaggle_handle": "kaggle://
|
32
|
+
"kaggle_handle": "kaggle://keras/sam/keras/sam_huge_sa1b/3",
|
33
33
|
},
|
34
34
|
}
|
@@ -13,6 +13,6 @@ backbone_presets = {
|
|
13
13
|
"path": "stablediffusion3",
|
14
14
|
"model_card": "https://arxiv.org/abs/2110.00476",
|
15
15
|
},
|
16
|
-
"kaggle_handle": "kaggle://
|
16
|
+
"kaggle_handle": "kaggle://keras/stablediffusion3/keras/stable_diffusion_3_medium/1",
|
17
17
|
}
|
18
18
|
}
|
@@ -0,0 +1,56 @@
|
|
1
|
+
"""vgg preset configurations."""
|
2
|
+
|
3
|
+
backbone_presets = {
|
4
|
+
"vgg_11_imagenet": {
|
5
|
+
"metadata": {
|
6
|
+
"description": (
|
7
|
+
"11-layer vgg model pre-trained on the ImageNet 1k dataset "
|
8
|
+
"at a 224x224 resolution."
|
9
|
+
),
|
10
|
+
"params": 9220480,
|
11
|
+
"official_name": "vgg",
|
12
|
+
"path": "vgg",
|
13
|
+
"model_card": "https://arxiv.org/abs/1409.1556",
|
14
|
+
},
|
15
|
+
"kaggle_handle": "kaggle://keras/vgg/keras/vgg_11_imagenet/1",
|
16
|
+
},
|
17
|
+
"vgg_13_imagenet": {
|
18
|
+
"metadata": {
|
19
|
+
"description": (
|
20
|
+
"13-layer vgg model pre-trained on the ImageNet 1k dataset "
|
21
|
+
"at a 224x224 resolution."
|
22
|
+
),
|
23
|
+
"params": 9404992,
|
24
|
+
"official_name": "vgg",
|
25
|
+
"path": "vgg",
|
26
|
+
"model_card": "https://arxiv.org/abs/1409.1556",
|
27
|
+
},
|
28
|
+
"kaggle_handle": "kaggle://keras/vgg/keras/vgg_13_imagenet/1",
|
29
|
+
},
|
30
|
+
"vgg_16_imagenet": {
|
31
|
+
"metadata": {
|
32
|
+
"description": (
|
33
|
+
"16-layer vgg model pre-trained on the ImageNet 1k dataset "
|
34
|
+
"at a 224x224 resolution."
|
35
|
+
),
|
36
|
+
"params": 14714688,
|
37
|
+
"official_name": "vgg",
|
38
|
+
"path": "vgg",
|
39
|
+
"model_card": "https://arxiv.org/abs/1409.1556",
|
40
|
+
},
|
41
|
+
"kaggle_handle": "kaggle://keras/vgg/keras/vgg_16_imagenet/1",
|
42
|
+
},
|
43
|
+
"vgg_19_imagenet": {
|
44
|
+
"metadata": {
|
45
|
+
"description": (
|
46
|
+
"19-layer vgg model pre-trained on the ImageNet 1k dataset "
|
47
|
+
"at a 224x224 resolution."
|
48
|
+
),
|
49
|
+
"params": 20024384,
|
50
|
+
"official_name": "vgg",
|
51
|
+
"path": "vgg",
|
52
|
+
"model_card": "https://arxiv.org/abs/1409.1556",
|
53
|
+
},
|
54
|
+
"kaggle_handle": "kaggle://keras/vgg/keras/vgg_19_imagenet/1",
|
55
|
+
},
|
56
|
+
}
|
keras_hub/src/version_utils.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: keras-hub-nightly
|
3
|
-
Version: 0.16.1.
|
3
|
+
Version: 0.16.1.dev202410150342
|
4
4
|
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
5
|
Home-page: https://github.com/keras-team/keras-hub
|
6
6
|
Author: Keras team
|
@@ -9,7 +9,7 @@ keras_hub/api/tokenizers/__init__.py,sha256=_f-r_cyUM2fjBB7iO84ThOdqqsAxHNIewJ2E
|
|
9
9
|
keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
|
10
10
|
keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
11
11
|
keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
|
12
|
-
keras_hub/src/version_utils.py,sha256=
|
12
|
+
keras_hub/src/version_utils.py,sha256=rY0OztXmBo2_0LAdO10JpHYw9H8oOtH9eTkj7k4SVno,222
|
13
13
|
keras_hub/src/bounding_box/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
14
14
|
keras_hub/src/bounding_box/converters.py,sha256=a5po8DBm87oz2EXfi-0uEZHCMlCJPIb4-MaZIdYx3Dg,17865
|
15
15
|
keras_hub/src/bounding_box/formats.py,sha256=YmskOz2BOSat7NaE__J9VfpSNGPJJR0znSzA4lp8MMI,3868
|
@@ -122,14 +122,14 @@ keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py,sha256=WyFhuLcjFPFVuNL09b
|
|
122
122
|
keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py,sha256=mRkH3HdhpV0fCcQcVXEvIX7SNk-bAMb3SAHzgK-FD5c,371
|
123
123
|
keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py,sha256=hR9S6lNYamY0EBDBo3e1qTCiwtftmLXrN-UYuzfw5Io,581
|
124
124
|
keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py,sha256=qmEiolOOriLAojXB67xXW9IOo717kaCGeDVZJLaGY98,7834
|
125
|
-
keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py,sha256=
|
125
|
+
keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py,sha256=tfTOz0H_XX1o-0oM7O3j7OyKxPDIesrV8FMO4IfbbBk,702
|
126
126
|
keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py,sha256=tiMDcCFANHMUx3IVtW3r1P_JTazgPPsbW4IktIytKEU,3650
|
127
127
|
keras_hub/src/models/densenet/__init__.py,sha256=r7StyamnWeeZxOk9r4ZYNbS_YVhu9YGPyXhNxljvdPg,269
|
128
128
|
keras_hub/src/models/densenet/densenet_backbone.py,sha256=dN9lUwKzO3E2HthNV2x54ozeBEQ0ilNs5uYHshFQpT0,6723
|
129
129
|
keras_hub/src/models/densenet/densenet_image_classifier.py,sha256=ptuV6PwgoUpmrSPqX7-a85IpWsElwcCv_G5IVkP9E_Q,530
|
130
130
|
keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py,sha256=xDZbTw_h6pjLDzf8QmbDyMnMsFzgh-dPX1ldg9kddhg,563
|
131
131
|
keras_hub/src/models/densenet/densenet_image_converter.py,sha256=DoxYlJVZ9uaabFhVjWOmzvhONoc8KNcQj2vQ6Z1AUpU,354
|
132
|
-
keras_hub/src/models/densenet/densenet_presets.py,sha256=
|
132
|
+
keras_hub/src/models/densenet/densenet_presets.py,sha256=2emOQuwcWo2i1MhvXwi081S55Z7vHkQ0r6h6Z9Yn68Q,1531
|
133
133
|
keras_hub/src/models/distil_bert/__init__.py,sha256=3Z0w-Mt3aOR0u9RGzjHQ7B3J3qBF2pGjupDGQ9yyzoc,303
|
134
134
|
keras_hub/src/models/distil_bert/distil_bert_backbone.py,sha256=rnAf_GokB3wAeJwVZtgUKQO_bKJIa8RavhL_ykTJpNw,6440
|
135
135
|
keras_hub/src/models/distil_bert/distil_bert_masked_lm.py,sha256=L0DvOl01MIwqc2f6H_E8si9qVUXPd0OKknJ5Rha33TA,4275
|
@@ -215,7 +215,7 @@ keras_hub/src/models/mix_transformer/mix_transformer_classifier.py,sha256=pVfbbT
|
|
215
215
|
keras_hub/src/models/mix_transformer/mix_transformer_classifier_preprocessor.py,sha256=lSUuMAJiyWDVH0AVjG2y684bU3msxI3_UTa_xWyLLKQ,570
|
216
216
|
keras_hub/src/models/mix_transformer/mix_transformer_image_converter.py,sha256=WG2LjuagCxSYXkFgqd4bHyUoMLFCzTj9QjJBoptW6WM,323
|
217
217
|
keras_hub/src/models/mix_transformer/mix_transformer_layers.py,sha256=9AbA4kCJkjeV7fAwbRns8VGn0l1pgQ3CqFPjY-99VGA,9695
|
218
|
-
keras_hub/src/models/mix_transformer/mix_transformer_presets.py,sha256=
|
218
|
+
keras_hub/src/models/mix_transformer/mix_transformer_presets.py,sha256=9bxWVOLhmBdoq2I4uZfZb7wZAB-3YjuMq0T_-JJzr2w,4960
|
219
219
|
keras_hub/src/models/mobilenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
220
220
|
keras_hub/src/models/mobilenet/mobilenet_backbone.py,sha256=nlXdMqcj18iahy60aew4ON79EHUEuNIgvKY9dToH284,18191
|
221
221
|
keras_hub/src/models/mobilenet/mobilenet_image_classifier.py,sha256=l5jo99I0fLlbwLub5jHw07CjC-NnmuV-ySJwXGI20Ek,351
|
@@ -249,7 +249,7 @@ keras_hub/src/models/resnet/resnet_backbone.py,sha256=mqVdGUj8YtjZ3zIhAQXgNqu8Sq
|
|
249
249
|
keras_hub/src/models/resnet/resnet_image_classifier.py,sha256=nf35EKDzvBkfhHsK-s6Ks0nbhvKO7HEOYZm94YckyWE,510
|
250
250
|
keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py,sha256=fM7gyQ0qB-RRuI4USJkRD6q9-HVfuC71e-BLTo-UhHQ,543
|
251
251
|
keras_hub/src/models/resnet/resnet_image_converter.py,sha256=fgTxihJznGFss-y3Z-jp0JE3X1gaaB2y-f2KMwrT8Pk,342
|
252
|
-
keras_hub/src/models/resnet/resnet_presets.py,sha256=
|
252
|
+
keras_hub/src/models/resnet/resnet_presets.py,sha256=fqyA7rXB6IwD_x7TMq40RyArzjdDbD4jLxH5OaPjWIs,2947
|
253
253
|
keras_hub/src/models/retinanet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
254
254
|
keras_hub/src/models/retinanet/anchor_generator.py,sha256=43NoI7djbRudH98hUm-9fw5OEGQNRXOUYzypIZhLYhE,6750
|
255
255
|
keras_hub/src/models/retinanet/box_matcher.py,sha256=l820r1R-ByqiyVgmZ0YFjjz0njchDda-wItzLn1X84o,10834
|
@@ -271,7 +271,7 @@ keras_hub/src/models/sam/sam_image_segmenter.py,sha256=gJ-O7XaSvn9KTI-QPguhAiGfv
|
|
271
271
|
keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py,sha256=7slvyhGoMHmSigagqIcjDJ3gX8fUJbuMBwmozC4FlCg,849
|
272
272
|
keras_hub/src/models/sam/sam_layers.py,sha256=SE5e6tYc-lsIVfMp9khewvuA1jY-dEHQmLT00YUok4M,13862
|
273
273
|
keras_hub/src/models/sam/sam_mask_decoder.py,sha256=9RfjoNL7GSY6I9LZ3ulUa5cIoYSPJNP4KnHvq16lnM4,9549
|
274
|
-
keras_hub/src/models/sam/sam_presets.py,sha256=
|
274
|
+
keras_hub/src/models/sam/sam_presets.py,sha256=oAv_VmRiSE4dtJRp0ue_5hP7zoXeL9ykjHwECV-dzyY,1211
|
275
275
|
keras_hub/src/models/sam/sam_prompt_encoder.py,sha256=2foB7900QbzQfZjBo335XYsdjmhOnVT8fKD1CubJNVE,11801
|
276
276
|
keras_hub/src/models/sam/sam_transformer.py,sha256=L2bdxdc2RUF1juRZ0F0Z6r0gTva1sUwEdjItJmKKf6w,5730
|
277
277
|
keras_hub/src/models/stable_diffusion_3/__init__.py,sha256=ZKYQuaRObyhKq8GVAHmoRvlXp6FpU8ChvutVCHyXKuc,343
|
@@ -280,7 +280,7 @@ keras_hub/src/models/stable_diffusion_3/mmdit.py,sha256=ByFot4_I1Z6woOBYvPcbkUtY
|
|
280
280
|
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py,sha256=QuggvAy1yvtIXFcwyXOmE_aUdhLcCEUw4FnTuqekys0,22497
|
281
281
|
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py,sha256=6_IXkxAv588lAKEasJrXgCjQePSXs-54XrvVIlYOT60,5483
|
282
282
|
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py,sha256=tKVAQVbKOt3lWkWsQLKN9KK3WYem0-u5fonq2uBAPrc,6367
|
283
|
-
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py,sha256=
|
283
|
+
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py,sha256=EP8hQHj8yqP3q26kwpNnDbrbTH7UeWL8GS5Xwo4nSCE,659
|
284
284
|
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py,sha256=pQOC7xMJfJHZxZRiYFtjrbjx0GXb94cNyOr9NELoXo8,4488
|
285
285
|
keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py,sha256=TB0KESt5dnFYiS292PbzB0LdiH23AD6aTSTGmQEuzGM,2742
|
286
286
|
keras_hub/src/models/stable_diffusion_3/t5_encoder.py,sha256=oV7P1uwCKdGiD93zXq7kmqX0elMZQU4UvBa8wg6P1hs,5113
|
@@ -298,6 +298,7 @@ keras_hub/src/models/vae/vae_layers.py,sha256=N83CYM1zgbl1EIjAOs3cFCkJEdxvbXkgM9
|
|
298
298
|
keras_hub/src/models/vgg/__init__.py,sha256=1ydFmkTOix2kOnDHie3srD4XD0dQ_7iR8OYbJzBM_YM,62
|
299
299
|
keras_hub/src/models/vgg/vgg_backbone.py,sha256=qes1AsKwBDI7eQ3aC1uRievMkVNGXM9TNhtKLb9eZiU,3697
|
300
300
|
keras_hub/src/models/vgg/vgg_image_classifier.py,sha256=bl6XM7l9fnOTGFreqOO3Z1jreusjhA4l7G0xjimfUKA,7829
|
301
|
+
keras_hub/src/models/vgg/vgg_presets.py,sha256=ltKExQdrR3E30kZPZD53tXVOsc8Gj7Krj6pzHP1UYVU,1879
|
301
302
|
keras_hub/src/models/vit_det/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
302
303
|
keras_hub/src/models/vit_det/vit_det_backbone.py,sha256=GzwHXAfttExqDaGU4R2LAvng1gzjuvO3HMqUPwNUy9g,7656
|
303
304
|
keras_hub/src/models/vit_det/vit_layers.py,sha256=oCKeUw5ckyUAGvmFPuxIiIAqgmC3uqh85LfZcgyh964,19852
|
@@ -367,7 +368,7 @@ keras_hub/src/utils/transformers/convert_mistral.py,sha256=kVhN9h1ZFVhwkNW8p3wnS
|
|
367
368
|
keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYumf66hIid07k5NLqoeWAJgPnaLs,10649
|
368
369
|
keras_hub/src/utils/transformers/preset_loader.py,sha256=GS44hZUuGQCtzsyn8z44ZpHdftd3DFemwV2hx2bQa-U,2738
|
369
370
|
keras_hub/src/utils/transformers/safetensor_utils.py,sha256=rPK-Uw1CG0DX0d_UAD-r2cG9fw8GI8bvAlrcXfQ9g4c,3323
|
370
|
-
keras_hub_nightly-0.16.1.
|
371
|
-
keras_hub_nightly-0.16.1.
|
372
|
-
keras_hub_nightly-0.16.1.
|
373
|
-
keras_hub_nightly-0.16.1.
|
371
|
+
keras_hub_nightly-0.16.1.dev202410150342.dist-info/METADATA,sha256=Tj8fIeiKR1xN6oFPr7bWgB_jGSpMm8ZiyE5baY9IC6U,7458
|
372
|
+
keras_hub_nightly-0.16.1.dev202410150342.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
|
373
|
+
keras_hub_nightly-0.16.1.dev202410150342.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
374
|
+
keras_hub_nightly-0.16.1.dev202410150342.dist-info/RECORD,,
|
File without changes
|