keras-hub-nightly 0.16.1.dev202410030339__py3-none-any.whl → 0.16.1.dev202410040340__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (24) hide show
  1. keras_hub/api/layers/__init__.py +3 -0
  2. keras_hub/api/models/__init__.py +9 -0
  3. keras_hub/src/models/deeplab_v3/__init__.py +7 -0
  4. keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +196 -0
  5. keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +10 -0
  6. keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +16 -0
  7. keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +215 -0
  8. keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +4 -0
  9. keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +109 -0
  10. keras_hub/src/models/image_segmenter_preprocessor.py +29 -4
  11. keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +8 -1
  12. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +57 -93
  13. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +3 -3
  14. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +5 -3
  15. keras_hub/src/models/task.py +20 -15
  16. keras_hub/src/models/vae/__init__.py +1 -0
  17. keras_hub/src/models/vae/vae_backbone.py +172 -0
  18. keras_hub/src/models/vae/vae_layers.py +740 -0
  19. keras_hub/src/version_utils.py +1 -1
  20. {keras_hub_nightly-0.16.1.dev202410030339.dist-info → keras_hub_nightly-0.16.1.dev202410040340.dist-info}/METADATA +1 -1
  21. {keras_hub_nightly-0.16.1.dev202410030339.dist-info → keras_hub_nightly-0.16.1.dev202410040340.dist-info}/RECORD +23 -14
  22. keras_hub/src/models/stable_diffusion_3/vae_image_decoder.py +0 -320
  23. {keras_hub_nightly-0.16.1.dev202410030339.dist-info → keras_hub_nightly-0.16.1.dev202410040340.dist-info}/WHEEL +0 -0
  24. {keras_hub_nightly-0.16.1.dev202410030339.dist-info → keras_hub_nightly-0.16.1.dev202410040340.dist-info}/top_level.txt +0 -0
@@ -34,6 +34,9 @@ from keras_hub.src.layers.preprocessing.multi_segment_packer import (
34
34
  from keras_hub.src.layers.preprocessing.random_deletion import RandomDeletion
35
35
  from keras_hub.src.layers.preprocessing.random_swap import RandomSwap
36
36
  from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
37
+ from keras_hub.src.models.deeplab_v3.deeplab_v3_image_converter import (
38
+ DeepLabV3ImageConverter,
39
+ )
37
40
  from keras_hub.src.models.densenet.densenet_image_converter import (
38
41
  DenseNetImageConverter,
39
42
  )
@@ -85,6 +85,15 @@ from keras_hub.src.models.deberta_v3.deberta_v3_text_classifier_preprocessor imp
85
85
  from keras_hub.src.models.deberta_v3.deberta_v3_tokenizer import (
86
86
  DebertaV3Tokenizer,
87
87
  )
88
+ from keras_hub.src.models.deeplab_v3.deeplab_v3_backbone import (
89
+ DeepLabV3Backbone,
90
+ )
91
+ from keras_hub.src.models.deeplab_v3.deeplab_v3_image_segmeter_preprocessor import (
92
+ DeepLabV3ImageSegmenterPreprocessor,
93
+ )
94
+ from keras_hub.src.models.deeplab_v3.deeplab_v3_segmenter import (
95
+ DeepLabV3ImageSegmenter,
96
+ )
88
97
  from keras_hub.src.models.densenet.densenet_backbone import DenseNetBackbone
89
98
  from keras_hub.src.models.densenet.densenet_image_classifier import (
90
99
  DenseNetImageClassifier,
@@ -0,0 +1,7 @@
1
+ from keras_hub.src.models.deeplab_v3.deeplab_v3_backbone import (
2
+ DeepLabV3Backbone,
3
+ )
4
+ from keras_hub.src.models.deeplab_v3.deeplab_v3_presets import backbone_presets
5
+ from keras_hub.src.utils.preset_utils import register_presets
6
+
7
+ register_presets(backbone_presets, DeepLabV3Backbone)
@@ -0,0 +1,196 @@
1
+ import keras
2
+
3
+ from keras_hub.src.api_export import keras_hub_export
4
+ from keras_hub.src.models.backbone import Backbone
5
+ from keras_hub.src.models.deeplab_v3.deeplab_v3_layers import (
6
+ SpatialPyramidPooling,
7
+ )
8
+
9
+
10
+ @keras_hub_export("keras_hub.models.DeepLabV3Backbone")
11
+ class DeepLabV3Backbone(Backbone):
12
+ """DeepLabV3 & DeepLabV3Plus architecture for semantic segmentation.
13
+
14
+ This class implements a DeepLabV3 & DeepLabV3Plus architecture as described
15
+ in [Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation](
16
+ https://arxiv.org/abs/1802.02611)(ECCV 2018)
17
+ and [Rethinking Atrous Convolution for Semantic Image Segmentation](
18
+ https://arxiv.org/abs/1706.05587)(CVPR 2017)
19
+
20
+ Args:
21
+ image_encoder: `keras.Model`. An instance that is used as a feature
22
+ extractor for the Encoder. Should either be a
23
+ `keras_hub.models.Backbone` or a `keras.Model` that implements the
24
+ `pyramid_outputs` property with keys "P2", "P3" etc as values.
25
+ A somewhat sensible backbone to use in many cases is
26
+ the `keras_hub.models.ResNetBackbone.from_preset("resnet_v2_50")`.
27
+ projection_filters: int. Number of filters in the convolution layer
28
+ projecting low-level features from the `image_encoder`.
29
+ spatial_pyramid_pooling_key: str. A layer level to extract and perform
30
+ `spatial_pyramid_pooling`, one of the key from the `image_encoder`
31
+ `pyramid_outputs` property such as "P4", "P5" etc.
32
+ upsampling_size: int or tuple of 2 integers. The upsampling factors for
33
+ rows and columns of `spatial_pyramid_pooling` layer.
34
+ If `low_level_feature_key` is given then `spatial_pyramid_pooling`s
35
+ layer resolution should match with the `low_level_feature`s layer
36
+ resolution to concatenate both the layers for combined encoder
37
+ outputs.
38
+ dilation_rates: list. A `list` of integers for parallel dilated conv applied to
39
+ `SpatialPyramidPooling`. Usually a
40
+ sample choice of rates are `[6, 12, 18]`.
41
+ low_level_feature_key: str optional. A layer level to extract the feature
42
+ from one of the key from the `image_encoder`s `pyramid_outputs`
43
+ property such as "P2", "P3" etc which will be the Decoder block.
44
+ Required only when the DeepLabV3Plus architecture needs to be applied.
45
+ image_shape: tuple. The input shape without the batch size.
46
+ Defaults to `(None, None, 3)`.
47
+
48
+ Example:
49
+ ```python
50
+ # Load a trained backbone to extract features from it's `pyramid_outputs`.
51
+ image_encoder = keras_hub.models.ResNetBackbone.from_preset("resnet_50_imagenet")
52
+
53
+ model = keras_hub.models.DeepLabV3Backbone(
54
+ image_encoder=image_encoder,
55
+ projection_filters=48,
56
+ low_level_feature_key="P2",
57
+ spatial_pyramid_pooling_key="P5",
58
+ upsampling_size = 8,
59
+ dilation_rates = [6, 12, 18]
60
+ )
61
+ ```
62
+ """
63
+
64
+ def __init__(
65
+ self,
66
+ image_encoder,
67
+ spatial_pyramid_pooling_key,
68
+ upsampling_size,
69
+ dilation_rates,
70
+ low_level_feature_key=None,
71
+ projection_filters=48,
72
+ image_shape=(None, None, 3),
73
+ **kwargs,
74
+ ):
75
+ if not isinstance(image_encoder, keras.Model):
76
+ raise ValueError(
77
+ "Argument `image_encoder` must be a `keras.Model` instance. Received instead "
78
+ f"{image_encoder} (of type {type(image_encoder)})."
79
+ )
80
+ data_format = keras.config.image_data_format()
81
+ channel_axis = -1 if data_format == "channels_last" else 1
82
+
83
+ # === Layers ===
84
+ inputs = keras.layers.Input(image_shape, name="inputs")
85
+
86
+ fpn_model = keras.Model(
87
+ image_encoder.inputs, image_encoder.pyramid_outputs
88
+ )
89
+
90
+ fpn_outputs = fpn_model(inputs)
91
+
92
+ spatial_pyramid_pooling = SpatialPyramidPooling(
93
+ dilation_rates=dilation_rates
94
+ )
95
+ spatial_backbone_features = fpn_outputs[spatial_pyramid_pooling_key]
96
+ spp_outputs = spatial_pyramid_pooling(spatial_backbone_features)
97
+
98
+ encoder_outputs = keras.layers.UpSampling2D(
99
+ size=upsampling_size,
100
+ interpolation="bilinear",
101
+ name="encoder_output_upsampling",
102
+ data_format=data_format,
103
+ )(spp_outputs)
104
+
105
+ if low_level_feature_key:
106
+ decoder_feature = fpn_outputs[low_level_feature_key]
107
+ low_level_projected_features = apply_low_level_feature_network(
108
+ decoder_feature, projection_filters, channel_axis
109
+ )
110
+
111
+ encoder_outputs = keras.layers.Concatenate(
112
+ axis=channel_axis, name="encoder_decoder_concat"
113
+ )([encoder_outputs, low_level_projected_features])
114
+ # upsampling to the original image size
115
+ upsampling = (2 ** int(spatial_pyramid_pooling_key[-1])) // (
116
+ int(upsampling_size[0])
117
+ if isinstance(upsampling_size, tuple)
118
+ else upsampling_size
119
+ )
120
+ # === Functional Model ===
121
+ x = keras.layers.Conv2D(
122
+ name="segmentation_head_conv",
123
+ filters=256,
124
+ kernel_size=1,
125
+ padding="same",
126
+ use_bias=False,
127
+ data_format=data_format,
128
+ )(encoder_outputs)
129
+ x = keras.layers.BatchNormalization(
130
+ name="segmentation_head_norm", axis=channel_axis
131
+ )(x)
132
+ x = keras.layers.ReLU(name="segmentation_head_relu")(x)
133
+ x = keras.layers.UpSampling2D(
134
+ size=upsampling,
135
+ interpolation="bilinear",
136
+ data_format=data_format,
137
+ name="backbone_output_upsampling",
138
+ )(x)
139
+
140
+ super().__init__(inputs=inputs, outputs=x, **kwargs)
141
+
142
+ # === Config ===
143
+ self.image_shape = image_shape
144
+ self.image_encoder = image_encoder
145
+ self.projection_filters = projection_filters
146
+ self.upsampling_size = upsampling_size
147
+ self.dilation_rates = dilation_rates
148
+ self.low_level_feature_key = low_level_feature_key
149
+ self.spatial_pyramid_pooling_key = spatial_pyramid_pooling_key
150
+
151
+ def get_config(self):
152
+ config = super().get_config()
153
+ config.update(
154
+ {
155
+ "image_encoder": keras.saving.serialize_keras_object(
156
+ self.image_encoder
157
+ ),
158
+ "projection_filters": self.projection_filters,
159
+ "dilation_rates": self.dilation_rates,
160
+ "upsampling_size": self.upsampling_size,
161
+ "low_level_feature_key": self.low_level_feature_key,
162
+ "spatial_pyramid_pooling_key": self.spatial_pyramid_pooling_key,
163
+ "image_shape": self.image_shape,
164
+ }
165
+ )
166
+ return config
167
+
168
+ @classmethod
169
+ def from_config(cls, config):
170
+ if "image_encoder" in config and isinstance(
171
+ config["image_encoder"], dict
172
+ ):
173
+ config["image_encoder"] = keras.layers.deserialize(
174
+ config["image_encoder"]
175
+ )
176
+ return super().from_config(config)
177
+
178
+
179
+ def apply_low_level_feature_network(
180
+ input_tensor, projection_filters, channel_axis
181
+ ):
182
+ data_format = keras.config.image_data_format()
183
+ x = keras.layers.Conv2D(
184
+ name="decoder_conv",
185
+ filters=projection_filters,
186
+ kernel_size=1,
187
+ padding="same",
188
+ use_bias=False,
189
+ data_format=data_format,
190
+ )(input_tensor)
191
+
192
+ x = keras.layers.BatchNormalization(name="decoder_norm", axis=channel_axis)(
193
+ x
194
+ )
195
+ x = keras.layers.ReLU(name="decoder_relu")(x)
196
+ return x
@@ -0,0 +1,10 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.layers.preprocessing.image_converter import ImageConverter
3
+ from keras_hub.src.models.deeplab_v3.deeplab_v3_backbone import (
4
+ DeepLabV3Backbone,
5
+ )
6
+
7
+
8
+ @keras_hub_export("keras_hub.layers.DeepLabV3ImageConverter")
9
+ class DeepLabV3ImageConverter(ImageConverter):
10
+ backbone_cls = DeepLabV3Backbone
@@ -0,0 +1,16 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.models.deeplab_v3.deeplab_v3_backbone import (
3
+ DeepLabV3Backbone,
4
+ )
5
+ from keras_hub.src.models.deeplab_v3.deeplab_v3_image_converter import (
6
+ DeepLabV3ImageConverter,
7
+ )
8
+ from keras_hub.src.models.image_segmenter_preprocessor import (
9
+ ImageSegmenterPreprocessor,
10
+ )
11
+
12
+
13
+ @keras_hub_export("keras_hub.models.DeepLabV3ImageSegmenterPreprocessor")
14
+ class DeepLabV3ImageSegmenterPreprocessor(ImageSegmenterPreprocessor):
15
+ backbone_cls = DeepLabV3Backbone
16
+ image_converter_cls = DeepLabV3ImageConverter
@@ -0,0 +1,215 @@
1
+ import keras
2
+ from keras import ops
3
+
4
+
5
+ class SpatialPyramidPooling(keras.layers.Layer):
6
+ """Implements the Atrous Spatial Pyramid Pooling.
7
+
8
+ Reference for Atrous Spatial Pyramid Pooling [Rethinking Atrous Convolution
9
+ for Semantic Image Segmentation](https://arxiv.org/pdf/1706.05587.pdf) and
10
+ [Encoder-Decoder with Atrous Separable Convolution for Semantic Image
11
+ Segmentation](https://arxiv.org/pdf/1802.02611.pdf)
12
+
13
+ Args:
14
+ dilation_rates: list of ints. The dilation rate for parallel dilated conv.
15
+ Usually a sample choice of rates are `[6, 12, 18]`.
16
+ num_channels: int. The number of output channels, defaults to `256`.
17
+ activation: str. Activation to be used, defaults to `relu`.
18
+ dropout: float. The dropout rate of the final projection output after the
19
+ activations and batch norm, defaults to `0.0`, which means no dropout is
20
+ applied to the output.
21
+
22
+ Example:
23
+ ```python
24
+ inp = keras.layers.Input((384, 384, 3))
25
+ backbone = keras.applications.EfficientNetB0(
26
+ input_tensor=inp,
27
+ include_top=False)
28
+ output = backbone(inp)
29
+ output = SpatialPyramidPooling(
30
+ dilation_rates=[6, 12, 18])(output)
31
+ ```
32
+ """
33
+
34
+ def __init__(
35
+ self,
36
+ dilation_rates,
37
+ num_channels=256,
38
+ activation="relu",
39
+ dropout=0.0,
40
+ **kwargs,
41
+ ):
42
+ super().__init__(**kwargs)
43
+ self.dilation_rates = dilation_rates
44
+ self.num_channels = num_channels
45
+ self.activation = activation
46
+ self.dropout = dropout
47
+ self.data_format = keras.config.image_data_format()
48
+ self.channel_axis = -1 if self.data_format == "channels_last" else 1
49
+
50
+ def build(self, input_shape):
51
+ channels = input_shape[self.channel_axis]
52
+
53
+ # This is the parallel networks that process the input features with
54
+ # different dilation rates. The output from each channel will be merged
55
+ # together and feed to the output.
56
+ self.aspp_parallel_channels = []
57
+
58
+ # Channel1 with Conv2D and 1x1 kernel size.
59
+ conv_sequential = keras.Sequential(
60
+ [
61
+ keras.layers.Conv2D(
62
+ filters=self.num_channels,
63
+ kernel_size=(1, 1),
64
+ use_bias=False,
65
+ data_format=self.data_format,
66
+ name="aspp_conv_1",
67
+ ),
68
+ keras.layers.BatchNormalization(
69
+ axis=self.channel_axis, name="aspp_bn_1"
70
+ ),
71
+ keras.layers.Activation(
72
+ self.activation, name="aspp_activation_1"
73
+ ),
74
+ ]
75
+ )
76
+ conv_sequential.build(input_shape)
77
+ self.aspp_parallel_channels.append(conv_sequential)
78
+
79
+ # Channel 2 and afterwards are based on self.dilation_rates, and each of
80
+ # them will have conv2D with 3x3 kernel size.
81
+ for i, dilation_rate in enumerate(self.dilation_rates):
82
+ conv_sequential = keras.Sequential(
83
+ [
84
+ keras.layers.Conv2D(
85
+ filters=self.num_channels,
86
+ kernel_size=(3, 3),
87
+ padding="same",
88
+ dilation_rate=dilation_rate,
89
+ use_bias=False,
90
+ data_format=self.data_format,
91
+ name=f"aspp_conv_{i+2}",
92
+ ),
93
+ keras.layers.BatchNormalization(
94
+ axis=self.channel_axis, name=f"aspp_bn_{i+2}"
95
+ ),
96
+ keras.layers.Activation(
97
+ self.activation, name=f"aspp_activation_{i+2}"
98
+ ),
99
+ ]
100
+ )
101
+ conv_sequential.build(input_shape)
102
+ self.aspp_parallel_channels.append(conv_sequential)
103
+
104
+ # Last channel is the global average pooling with conv2D 1x1 kernel.
105
+ if self.channel_axis == -1:
106
+ reshape = keras.layers.Reshape((1, 1, channels), name="reshape")
107
+ else:
108
+ reshape = keras.layers.Reshape((channels, 1, 1), name="reshape")
109
+ pool_sequential = keras.Sequential(
110
+ [
111
+ keras.layers.GlobalAveragePooling2D(
112
+ data_format=self.data_format, name="average_pooling"
113
+ ),
114
+ reshape,
115
+ keras.layers.Conv2D(
116
+ filters=self.num_channels,
117
+ kernel_size=(1, 1),
118
+ use_bias=False,
119
+ data_format=self.data_format,
120
+ name="conv_pooling",
121
+ ),
122
+ keras.layers.BatchNormalization(
123
+ axis=self.channel_axis, name="bn_pooling"
124
+ ),
125
+ keras.layers.Activation(
126
+ self.activation, name="activation_pooling"
127
+ ),
128
+ ]
129
+ )
130
+ pool_sequential.build(input_shape)
131
+ self.aspp_parallel_channels.append(pool_sequential)
132
+
133
+ # Final projection layers
134
+ projection = keras.Sequential(
135
+ [
136
+ keras.layers.Conv2D(
137
+ filters=self.num_channels,
138
+ kernel_size=(1, 1),
139
+ use_bias=False,
140
+ data_format=self.data_format,
141
+ name="conv_projection",
142
+ ),
143
+ keras.layers.BatchNormalization(
144
+ axis=self.channel_axis, name="bn_projection"
145
+ ),
146
+ keras.layers.Activation(
147
+ self.activation, name="activation_projection"
148
+ ),
149
+ keras.layers.Dropout(rate=self.dropout, name="dropout"),
150
+ ],
151
+ )
152
+ projection_input_channels = (
153
+ 2 + len(self.dilation_rates)
154
+ ) * self.num_channels
155
+ if self.data_format == "channels_first":
156
+ projection.build(
157
+ (input_shape[0],)
158
+ + (projection_input_channels,)
159
+ + (input_shape[2:])
160
+ )
161
+ else:
162
+ projection.build((input_shape[:-1]) + (projection_input_channels,))
163
+ self.projection = projection
164
+ self.built = True
165
+
166
+ def call(self, inputs):
167
+ """Calls the Atrous Spatial Pyramid Pooling layer on an input.
168
+
169
+ Args:
170
+ inputs: A tensor of shape [batch, height, width, channels]
171
+
172
+ Returns:
173
+ A tensor of shape [batch, height, width, num_channels]
174
+ """
175
+ result = []
176
+
177
+ for channel in self.aspp_parallel_channels:
178
+ temp = ops.cast(channel(inputs), inputs.dtype)
179
+ result.append(temp)
180
+
181
+ image_shape = ops.shape(inputs)
182
+ if self.channel_axis == -1:
183
+ height, width = image_shape[1], image_shape[2]
184
+ else:
185
+ height, width = image_shape[2], image_shape[3]
186
+ result[-1] = keras.layers.Resizing(
187
+ height,
188
+ width,
189
+ interpolation="bilinear",
190
+ data_format=self.data_format,
191
+ name="resizing",
192
+ )(result[-1])
193
+
194
+ result = ops.concatenate(result, axis=self.channel_axis)
195
+ return self.projection(result)
196
+
197
+ def compute_output_shape(self, inputs_shape):
198
+ if self.data_format == "channels_first":
199
+ return tuple(
200
+ (inputs_shape[0],) + (self.num_channels,) + (inputs_shape[2:])
201
+ )
202
+ else:
203
+ return tuple((inputs_shape[:-1]) + (self.num_channels,))
204
+
205
+ def get_config(self):
206
+ config = super().get_config()
207
+ config.update(
208
+ {
209
+ "dilation_rates": self.dilation_rates,
210
+ "num_channels": self.num_channels,
211
+ "activation": self.activation,
212
+ "dropout": self.dropout,
213
+ }
214
+ )
215
+ return config
@@ -0,0 +1,4 @@
1
+ """DeepLabV3 preset configurations."""
2
+
3
+ # TODO https://github.com/keras-team/keras-hub/issues/1896,
4
+ backbone_presets = {}
@@ -0,0 +1,109 @@
1
+ import keras
2
+
3
+ from keras_hub.src.api_export import keras_hub_export
4
+ from keras_hub.src.models.deeplab_v3.deeplab_v3_backbone import (
5
+ DeepLabV3Backbone,
6
+ )
7
+ from keras_hub.src.models.deeplab_v3.deeplab_v3_image_segmeter_preprocessor import (
8
+ DeepLabV3ImageSegmenterPreprocessor,
9
+ )
10
+ from keras_hub.src.models.image_segmenter import ImageSegmenter
11
+
12
+
13
+ @keras_hub_export("keras_hub.models.DeepLabV3ImageSegmenter")
14
+ class DeepLabV3ImageSegmenter(ImageSegmenter):
15
+ """DeepLabV3 and DeeplabV3 and DeeplabV3Plus segmentation task.
16
+
17
+ Args:
18
+ backbone: A `keras_hub.models.DeepLabV3` instance.
19
+ num_classes: int. The number of classes for the detection model. Note
20
+ that the `num_classes` contains the background class, and the
21
+ classes from the data should be represented by integers with range
22
+ `[0, num_classes]`.
23
+ activation: str or callable. The activation function to use on
24
+ the `Dense` layer. Set `activation=None` to return the output
25
+ logits. Defaults to `None`.
26
+ preprocessor: A `keras_hub.models.DeepLabV3ImageSegmenterPreprocessor`
27
+ or `None`. If `None`, this model will not apply preprocessing, and
28
+ inputs should be preprocessed before calling the model.
29
+
30
+ Example:
31
+ Load a DeepLabV3 preset with all the 21 class, pretrained segmentation head.
32
+ ```python
33
+ images = np.ones(shape=(1, 96, 96, 3))
34
+ labels = np.zeros(shape=(1, 96, 96, 1))
35
+ segmenter = keras_hub.models.DeepLabV3ImageSegmenter.from_preset(
36
+ "deeplabv3_resnet50_pascalvoc",
37
+ )
38
+ segmenter.predict(images)
39
+ ```
40
+
41
+ Specify `num_classes` to load randomly initialized segmentation head.
42
+ ```python
43
+ segmenter = keras_hub.models.DeepLabV3ImageSegmenter.from_preset(
44
+ "deeplabv3_resnet50_pascalvoc",
45
+ num_classes=2,
46
+ )
47
+ segmenter.fit(images, labels, epochs=3)
48
+ segmenter.predict(images) # Trained 2 class segmentation.
49
+ ```
50
+ Load DeepLabv3+ presets a extension of DeepLabv3 by adding a simple yet
51
+ effective decoder module to refine the segmentation results especially
52
+ along object boundaries.
53
+ ```python
54
+ segmenter = keras_hub.models.DeepLabV3ImageSegmenter.from_preset(
55
+ "deeplabv3_plus_resnet50_pascalvoc",
56
+ )
57
+ segmenter.predict(images)
58
+ ```
59
+ """
60
+
61
+ backbone_cls = DeepLabV3Backbone
62
+ preprocessor_cls = DeepLabV3ImageSegmenterPreprocessor
63
+
64
+ def __init__(
65
+ self,
66
+ backbone,
67
+ num_classes,
68
+ activation=None,
69
+ preprocessor=None,
70
+ **kwargs,
71
+ ):
72
+ data_format = keras.config.image_data_format()
73
+ # === Layers ===
74
+ self.output_conv = keras.layers.Conv2D(
75
+ name="segmentation_output",
76
+ filters=num_classes,
77
+ kernel_size=1,
78
+ use_bias=False,
79
+ padding="same",
80
+ activation=activation,
81
+ data_format=data_format,
82
+ )
83
+
84
+ # === Functional Model ===
85
+ inputs = backbone.input
86
+ x = backbone(inputs)
87
+ outputs = self.output_conv(x)
88
+ super().__init__(
89
+ inputs=inputs,
90
+ outputs=outputs,
91
+ **kwargs,
92
+ )
93
+
94
+ # === Config ===
95
+ self.backbone = backbone
96
+ self.num_classes = num_classes
97
+ self.activation = activation
98
+ self.preprocessor = preprocessor
99
+
100
+ def get_config(self):
101
+ # Backbone serialized in `super`
102
+ config = super().get_config()
103
+ config.update(
104
+ {
105
+ "num_classes": self.num_classes,
106
+ "activation": self.activation,
107
+ }
108
+ )
109
+ return config
@@ -19,9 +19,11 @@ class ImageSegmenterPreprocessor(Preprocessor):
19
19
 
20
20
  - `x`: The first input, should always be included. It can be an image or
21
21
  a batch of images.
22
- - `y`: (Optional) Usually the segmentation mask(s), will be passed through
23
- unaltered.
22
+ - `y`: (Optional) Usually the segmentation mask(s), if `resize_output_mask`
23
+ is set to `True` this will be resized to input image shape else will be
24
+ passed through unaltered.
24
25
  - `sample_weight`: (Optional) Will be passed through unaltered.
26
+ - `resize_output_mask` bool: If set to `True` the output mask will be resized to the same size as the input image. Defaults to `False`.
25
27
 
26
28
  The layer will output either `x`, an `(x, y)` tuple if labels were provided,
27
29
  or an `(x, y, sample_weight)` tuple if labels and sample weight were
@@ -29,7 +31,7 @@ class ImageSegmenterPreprocessor(Preprocessor):
29
31
  been applied.
30
32
 
31
33
  All `ImageSegmenterPreprocessor` tasks include a `from_preset()`
32
- constructor which can be used to load a pre-trained config and vocabularies.
34
+ constructor which can be used to load a pre-trained config.
33
35
  You can call the `from_preset()` constructor directly on this base class, in
34
36
  which case the correct class for your model will be automatically
35
37
  instantiated.
@@ -49,7 +51,8 @@ class ImageSegmenterPreprocessor(Preprocessor):
49
51
  x, y = preprocessor(x, y)
50
52
 
51
53
  # Resize a batch of images and masks.
52
- x, y = [np.ones((512, 512, 3)), np.zeros((512, 512, 3))], [np.ones((512, 512, 1)), np.zeros((512, 512, 1))]
54
+ x, y = [np.ones((512, 512, 3)), np.zeros((512, 512, 3))],
55
+ [np.ones((512, 512, 1)), np.zeros((512, 512, 1))]
53
56
  x, y = preprocessor(x, y)
54
57
 
55
58
  # Use a `tf.data.Dataset`.
@@ -61,13 +64,35 @@ class ImageSegmenterPreprocessor(Preprocessor):
61
64
  def __init__(
62
65
  self,
63
66
  image_converter=None,
67
+ resize_output_mask=False,
64
68
  **kwargs,
65
69
  ):
66
70
  super().__init__(**kwargs)
67
71
  self.image_converter = image_converter
72
+ self.resize_output_mask = resize_output_mask
68
73
 
69
74
  @preprocessing_function
70
75
  def call(self, x, y=None, sample_weight=None):
71
76
  if self.image_converter:
72
77
  x = self.image_converter(x)
78
+
79
+ if y is not None and self.image_converter and self.resize_output_mask:
80
+
81
+ y = keras.layers.Resizing(
82
+ height=(
83
+ self.image_converter.image_size[0]
84
+ if self.image_converter.image_size
85
+ else None
86
+ ),
87
+ width=(
88
+ self.image_converter.image_size[1]
89
+ if self.image_converter.image_size
90
+ else None
91
+ ),
92
+ crop_to_aspect_ratio=self.image_converter.crop_to_aspect_ratio,
93
+ interpolation="nearest",
94
+ data_format=self.image_converter.data_format,
95
+ dtype=self.dtype_policy,
96
+ name="mask_resizing",
97
+ )(y)
73
98
  return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
@@ -27,7 +27,7 @@ class FlowMatchEulerDiscreteScheduler(layers.Layer):
27
27
  https://arxiv.org/abs/2403.03206).
28
28
  """
29
29
 
30
- def __init__(self, num_train_timesteps=1000, shift=1.0, **kwargs):
30
+ def __init__(self, num_train_timesteps=1000, shift=3.0, **kwargs):
31
31
  super().__init__(**kwargs)
32
32
  self.num_train_timesteps = int(num_train_timesteps)
33
33
  self.shift = float(shift)
@@ -65,6 +65,13 @@ class FlowMatchEulerDiscreteScheduler(layers.Layer):
65
65
  timestep = self._sigma_to_timestep(sigma)
66
66
  return sigma, timestep
67
67
 
68
+ def add_noise(self, inputs, noises, step, num_steps):
69
+ sigma, _ = self(step, num_steps)
70
+ return ops.add(
71
+ ops.multiply(sigma, noises),
72
+ ops.multiply(ops.subtract(1.0, sigma), inputs),
73
+ )
74
+
68
75
  def get_config(self):
69
76
  config = super().get_config()
70
77
  config.update(