keras-hub-nightly 0.16.1.dev202409290341__py3-none-any.whl → 0.16.1.dev202410010346__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -46,6 +46,7 @@ from keras_hub.src.models.pali_gemma.pali_gemma_image_converter import (
46
46
  from keras_hub.src.models.resnet.resnet_image_converter import (
47
47
  ResNetImageConverter,
48
48
  )
49
+ from keras_hub.src.models.sam.sam_image_converter import SAMImageConverter
49
50
  from keras_hub.src.models.sam.sam_mask_decoder import SAMMaskDecoder
50
51
  from keras_hub.src.models.sam.sam_prompt_encoder import SAMPromptEncoder
51
52
  from keras_hub.src.models.whisper.whisper_audio_converter import (
@@ -168,6 +168,9 @@ from keras_hub.src.models.image_classifier_preprocessor import (
168
168
  ImageClassifierPreprocessor,
169
169
  )
170
170
  from keras_hub.src.models.image_segmenter import ImageSegmenter
171
+ from keras_hub.src.models.image_segmenter_preprocessor import (
172
+ ImageSegmenterPreprocessor,
173
+ )
171
174
  from keras_hub.src.models.llama3.llama3_backbone import Llama3Backbone
172
175
  from keras_hub.src.models.llama3.llama3_causal_lm import Llama3CausalLM
173
176
  from keras_hub.src.models.llama3.llama3_causal_lm_preprocessor import (
@@ -250,6 +253,9 @@ from keras_hub.src.models.roberta.roberta_text_classifier_preprocessor import (
250
253
  from keras_hub.src.models.roberta.roberta_tokenizer import RobertaTokenizer
251
254
  from keras_hub.src.models.sam.sam_backbone import SAMBackbone
252
255
  from keras_hub.src.models.sam.sam_image_segmenter import SAMImageSegmenter
256
+ from keras_hub.src.models.sam.sam_image_segmenter_preprocessor import (
257
+ SAMImageSegmenterPreprocessor as SamImageSegmenterPreprocessor,
258
+ )
253
259
  from keras_hub.src.models.seq_2_seq_lm import Seq2SeqLM
254
260
  from keras_hub.src.models.seq_2_seq_lm_preprocessor import Seq2SeqLMPreprocessor
255
261
  from keras_hub.src.models.stable_diffusion_3.stable_diffusion_3_backbone import (
@@ -0,0 +1,73 @@
1
+ import keras
2
+
3
+ from keras_hub.src.api_export import keras_hub_export
4
+ from keras_hub.src.models.preprocessor import Preprocessor
5
+ from keras_hub.src.utils.tensor_utils import preprocessing_function
6
+
7
+
8
+ @keras_hub_export("keras_hub.models.ImageSegmenterPreprocessor")
9
+ class ImageSegmenterPreprocessor(Preprocessor):
10
+ """Base class for image segmentation preprocessing layers.
11
+
12
+ `ImageSegmenterPreprocessor` wraps a
13
+ `keras_hub.layers.ImageConverter` to create a preprocessing layer for
14
+ image segmentation tasks. It is intended to be paired with a
15
+ `keras_hub.models.ImageSegmenter` task.
16
+
17
+ All `ImageSegmenterPreprocessor` instances take three inputs: `x`, `y`, and
18
+ `sample_weight`.
19
+
20
+ - `x`: The first input, should always be included. It can be an image or
21
+ a batch of images.
22
+ - `y`: (Optional) Usually the segmentation mask(s), will be passed through
23
+ unaltered.
24
+ - `sample_weight`: (Optional) Will be passed through unaltered.
25
+
26
+ The layer will output either `x`, an `(x, y)` tuple if labels were provided,
27
+ or an `(x, y, sample_weight)` tuple if labels and sample weight were
28
+ provided. `x` will be the input images after all model preprocessing has
29
+ been applied.
30
+
31
+ All `ImageSegmenterPreprocessor` tasks include a `from_preset()`
32
+ constructor which can be used to load a pre-trained config and vocabularies.
33
+ You can call the `from_preset()` constructor directly on this base class, in
34
+ which case the correct class for your model will be automatically
35
+ instantiated.
36
+
37
+ Examples.
38
+ ```python
39
+ preprocessor = keras_hub.models.ImageSegmenterPreprocessor.from_preset(
40
+ "deeplabv3_resnet50",
41
+ )
42
+
43
+ # Resize a single image for the model.
44
+ x = np.ones((512, 512, 3))
45
+ x = preprocessor(x)
46
+
47
+ # Resize an image and its mask.
48
+ x, y = np.ones((512, 512, 3)), np.zeros((512, 512, 1))
49
+ x, y = preprocessor(x, y)
50
+
51
+ # Resize a batch of images and masks.
52
+ x, y = [np.ones((512, 512, 3)), np.zeros((512, 512, 3))], [np.ones((512, 512, 1)), np.zeros((512, 512, 1))]
53
+ x, y = preprocessor(x, y)
54
+
55
+ # Use a `tf.data.Dataset`.
56
+ ds = tf.data.Dataset.from_tensor_slices((x, y)).batch(2)
57
+ ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
58
+ ```
59
+ """
60
+
61
+ def __init__(
62
+ self,
63
+ image_converter=None,
64
+ **kwargs,
65
+ ):
66
+ super().__init__(**kwargs)
67
+ self.image_converter = image_converter
68
+
69
+ @preprocessing_function
70
+ def call(self, x, y=None, sample_weight=None):
71
+ if self.image_converter:
72
+ x = self.image_converter(x)
73
+ return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
@@ -90,13 +90,14 @@ class LlamaBackbone(Backbone):
90
90
  layer_norm_epsilon=1e-6,
91
91
  dropout=0,
92
92
  dtype=None,
93
+ tie_word_embeddings=False,
93
94
  **kwargs,
94
95
  ):
95
96
  # === Layers ===
96
97
  self.token_embedding = ReversibleEmbedding(
97
98
  input_dim=vocabulary_size,
98
99
  output_dim=hidden_dim,
99
- tie_weights=False,
100
+ tie_weights=tie_word_embeddings,
100
101
  embeddings_initializer=_llama_kernel_initializer(stddev=0.01),
101
102
  dtype=dtype,
102
103
  name="token_embedding",
@@ -155,6 +156,7 @@ class LlamaBackbone(Backbone):
155
156
  self.rope_scaling_factor = rope_scaling_factor
156
157
  self.layer_norm_epsilon = layer_norm_epsilon
157
158
  self.dropout = dropout
159
+ self.tie_word_embeddings = tie_word_embeddings
158
160
 
159
161
  def get_config(self):
160
162
  config = super().get_config()
@@ -20,7 +20,7 @@ class MiTBackbone(FeaturePyramidBackbone):
20
20
  num_layers,
21
21
  blockwise_num_heads,
22
22
  blockwise_sr_ratios,
23
- end_value,
23
+ max_drop_path_rate,
24
24
  patch_sizes,
25
25
  strides,
26
26
  image_shape=(None, None, 3),
@@ -45,7 +45,9 @@ class MiTBackbone(FeaturePyramidBackbone):
45
45
  ratio to perform for each layer on the sequence before key and
46
46
  value projections. If set to > 1, a `Conv2D` layer is used to
47
47
  reduce the length of the sequence.
48
- end_value: The end value of the sequence.
48
+ max_drop_path_rate: The final value of the `linspace()` that
49
+ defines the drop path rates for the `DropPath` layers of
50
+ the `HierarchicalTransformerEncoder` layers.
49
51
  image_shape: optional shape tuple, defaults to (None, None, 3).
50
52
  hidden_dims: the embedding dims per hierarchical layer, used as
51
53
  the levels of the feature pyramid.
@@ -73,7 +75,7 @@ class MiTBackbone(FeaturePyramidBackbone):
73
75
  model.fit(images, labels, epochs=3)
74
76
  ```
75
77
  """
76
- dpr = [x for x in np.linspace(0.0, end_value, sum(depths))]
78
+ dpr = [x for x in np.linspace(0.0, max_drop_path_rate, sum(depths))]
77
79
 
78
80
  # === Layers ===
79
81
  cur = 0
@@ -136,7 +138,7 @@ class MiTBackbone(FeaturePyramidBackbone):
136
138
  self.num_layers = num_layers
137
139
  self.blockwise_num_heads = blockwise_num_heads
138
140
  self.blockwise_sr_ratios = blockwise_sr_ratios
139
- self.end_value = end_value
141
+ self.max_drop_path_rate = max_drop_path_rate
140
142
  self.patch_sizes = patch_sizes
141
143
  self.strides = strides
142
144
 
@@ -150,7 +152,7 @@ class MiTBackbone(FeaturePyramidBackbone):
150
152
  "num_layers": self.num_layers,
151
153
  "blockwise_num_heads": self.blockwise_num_heads,
152
154
  "blockwise_sr_ratios": self.blockwise_sr_ratios,
153
- "end_value": self.end_value,
155
+ "max_drop_path_rate": self.max_drop_path_rate,
154
156
  "patch_sizes": self.patch_sizes,
155
157
  "strides": self.strides,
156
158
  }
@@ -0,0 +1,10 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.layers.preprocessing.resizing_image_converter import (
3
+ ResizingImageConverter,
4
+ )
5
+ from keras_hub.src.models.sam.sam_backbone import SAMBackbone
6
+
7
+
8
+ @keras_hub_export("keras_hub.layers.SAMImageConverter")
9
+ class SAMImageConverter(ResizingImageConverter):
10
+ backbone_cls = SAMBackbone
@@ -4,6 +4,9 @@ from keras import ops
4
4
  from keras_hub.src.api_export import keras_hub_export
5
5
  from keras_hub.src.models.image_segmenter import ImageSegmenter
6
6
  from keras_hub.src.models.sam.sam_backbone import SAMBackbone
7
+ from keras_hub.src.models.sam.sam_image_segmenter_preprocessor import (
8
+ SAMImageSegmenterPreprocessor,
9
+ )
7
10
 
8
11
 
9
12
  @keras_hub_export("keras_hub.models.SAMImageSegmenter")
@@ -165,7 +168,7 @@ class SAMImageSegmenter(ImageSegmenter):
165
168
  """
166
169
 
167
170
  backbone_cls = SAMBackbone
168
- preprocessor_cls = None
171
+ preprocessor_cls = SAMImageSegmenterPreprocessor
169
172
 
170
173
  def __init__(self, backbone, preprocessor=None, **kwargs):
171
174
  # The implementation has been adapted form [Segment Anything
@@ -174,6 +177,7 @@ class SAMImageSegmenter(ImageSegmenter):
174
177
  # [Detectron2](https://github.com/facebookresearch/detectron2).
175
178
  # === Layers ===
176
179
  self.backbone = backbone
180
+ self.preprocessor = preprocessor
177
181
  # === Functional Model ===
178
182
  inputs = self.backbone.input
179
183
  x = self.backbone(inputs)
@@ -0,0 +1,12 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.models.image_segmenter_preprocessor import (
3
+ ImageSegmenterPreprocessor,
4
+ )
5
+ from keras_hub.src.models.sam.sam_backbone import SAMBackbone
6
+ from keras_hub.src.models.sam.sam_image_converter import SAMImageConverter
7
+
8
+
9
+ @keras_hub_export("keras_hub.models.SamImageSegmenterPreprocessor")
10
+ class SAMImageSegmenterPreprocessor(ImageSegmenterPreprocessor):
11
+ backbone_cls = SAMBackbone
12
+ image_converter_cls = SAMImageConverter
@@ -0,0 +1,34 @@
1
+ """SAM preset configurations."""
2
+
3
+ backbone_presets = {
4
+ "sam_base_sa1b": {
5
+ "metadata": {
6
+ "description": ("The base SAM model trained on the SA1B dataset."),
7
+ "params": 93735728,
8
+ "official_name": "SAMImageSegmenter",
9
+ "path": "sam",
10
+ "model_card": "https://arxiv.org/abs/2304.02643",
11
+ },
12
+ "kaggle_handle": "kaggle://kerashub/sam/keras/sam_base_sa1b/1",
13
+ },
14
+ "sam_large_sa1b": {
15
+ "metadata": {
16
+ "description": ("The large SAM model trained on the SA1B dataset."),
17
+ "params": 641090864,
18
+ "official_name": "SAMImageSegmenter",
19
+ "path": "sam",
20
+ "model_card": "https://arxiv.org/abs/2304.02643",
21
+ },
22
+ "kaggle_handle": "kaggle://kerashub/sam/keras/sam_large_sa1b/1",
23
+ },
24
+ "sam_huge_sa1b": {
25
+ "metadata": {
26
+ "description": ("The huge SAM model trained on the SA1B dataset."),
27
+ "params": 312343088,
28
+ "official_name": "SAMImageSegmenter",
29
+ "path": "sam",
30
+ "model_card": "https://arxiv.org/abs/2304.02643",
31
+ },
32
+ "kaggle_handle": "kaggle://kerashub/sam/keras/sam_huge_sa1b/1",
33
+ },
34
+ }
@@ -212,7 +212,7 @@ class MultiHeadAttentionWithRelativePE(keras.layers.Layer):
212
212
  "Input size must be provided if using relative "
213
213
  "positional encoding."
214
214
  )
215
- self.add_decomposed_reative_pe = AddRelativePositionalEmbedding(
215
+ self.add_decomposed_relative_pe = AddRelativePositionalEmbedding(
216
216
  self.input_size, self.key_dim
217
217
  )
218
218
 
@@ -241,7 +241,7 @@ class MultiHeadAttentionWithRelativePE(keras.layers.Layer):
241
241
  keys, axes=(0, 2, 1)
242
242
  )
243
243
  if self.use_rel_pos:
244
- attention_map = self.add_decomposed_reative_pe(
244
+ attention_map = self.add_decomposed_relative_pe(
245
245
  attention_map,
246
246
  queries=queries,
247
247
  query_size=(height, width),
@@ -14,6 +14,7 @@ def convert_backbone_config(transformers_config):
14
14
  "hidden_dim": transformers_config["hidden_size"],
15
15
  "intermediate_dim": transformers_config["intermediate_size"],
16
16
  "num_key_value_heads": transformers_config["num_key_value_heads"],
17
+ "tie_word_embeddings": transformers_config["tie_word_embeddings"],
17
18
  }
18
19
 
19
20
 
@@ -22,12 +23,15 @@ def convert_weights(backbone, loader, transformers_config):
22
23
  keras_variable=backbone.get_layer("token_embedding").embeddings,
23
24
  hf_weight_key="model.embed_tokens.weight",
24
25
  )
25
- loader.port_weight(
26
- keras_variable=backbone.get_layer("token_embedding").reverse_embeddings,
27
- hf_weight_key="lm_head.weight",
28
- # rearrange_pattern="b a -> a b",
29
- hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
30
- )
26
+ if not backbone.tie_word_embeddings:
27
+ loader.port_weight(
28
+ keras_variable=backbone.get_layer(
29
+ "token_embedding"
30
+ ).reverse_embeddings,
31
+ hf_weight_key="lm_head.weight",
32
+ # rearrange_pattern="b a -> a b",
33
+ hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
34
+ )
31
35
 
32
36
  def transpose_and_reshape(x, shape):
33
37
  return np.reshape(np.transpose(x), shape)
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.16.1.dev202409290341"
4
+ __version__ = "0.16.1.dev202410010346"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: keras-hub-nightly
3
- Version: 0.16.1.dev202409290341
3
+ Version: 0.16.1.dev202410010346
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -83,13 +83,13 @@ We welcome contributions.
83
83
 
84
84
  ## Quickstart
85
85
 
86
- Fine-tune BERT on IMDb movie reviews:
86
+ Fine-tune a BERT classifier on IMDb movie reviews:
87
87
 
88
88
  ```python
89
89
  import os
90
90
  os.environ["KERAS_BACKEND"] = "jax" # Or "tensorflow" or "torch"!
91
91
 
92
- import keras_hub
92
+ import keras_nlp
93
93
  import tensorflow_datasets as tfds
94
94
 
95
95
  imdb_train, imdb_test = tfds.load(
@@ -98,12 +98,14 @@ imdb_train, imdb_test = tfds.load(
98
98
  as_supervised=True,
99
99
  batch_size=16,
100
100
  )
101
+
101
102
  # Load a BERT model.
102
- classifier = keras_hub.models.Classifier.from_preset(
103
+ classifier = keras_nlp.models.Classifier.from_preset(
103
104
  "bert_base_en",
104
105
  num_classes=2,
105
106
  activation="softmax",
106
107
  )
108
+
107
109
  # Fine-tune on IMDb movie reviews.
108
110
  classifier.fit(imdb_train, validation_data=imdb_test)
109
111
  # Predict two new examples.
@@ -116,21 +118,23 @@ For more in depth guides and examples, visit
116
118
 
117
119
  ## Installation
118
120
 
119
- To install the latest KerasHub release with Keras 3, simply run:
121
+ KerasHub is currently in pre-release. Note that pre-release versions may
122
+ introduce breaking changes to the API in future versions. For a stable and
123
+ supported experience, we recommend installing `keras-nlp` version 0.15.1:
120
124
 
121
- ```
122
- pip install --upgrade keras-hub
125
+ ```bash
126
+ pip install keras-nlp==0.15.1
123
127
  ```
124
128
 
125
- To install the latest nightly changes for both KerasHub and Keras, you can use
126
- our nightly package.
129
+ To try out the latest pre-release version of KerasHub, you can use
130
+ our nightly package:
127
131
 
128
- ```
129
- pip install --upgrade keras-hub-nightly
132
+ ```bash
133
+ pip install keras-hub-nightly
130
134
  ```
131
135
 
132
- Note that currently, installing KerasHub will always pull in TensorFlow for use
133
- of the `tf.data` API for preprocessing. Even when pre-processing with `tf.data`,
136
+ KerasHub currently requires TensorFlow to be installed for use of the
137
+ `tf.data` API for preprocessing. Even when pre-processing with `tf.data`,
134
138
  training can still happen on any backend.
135
139
 
136
140
  Read [Getting started with Keras](https://keras.io/getting_started/) for more
@@ -160,15 +164,15 @@ import keras_hub
160
164
  ```
161
165
 
162
166
  > [!IMPORTANT]
163
- > Make sure to set the `KERAS_BACKEND` before import any Keras libraries, it
164
- > will be used to set up Keras when it is first imported.
167
+ > Make sure to set the `KERAS_BACKEND` **before** importing any Keras libraries;
168
+ > it will be used to set up Keras when it is first imported.
165
169
 
166
170
  ## Compatibility
167
171
 
168
172
  We follow [Semantic Versioning](https://semver.org/), and plan to
169
173
  provide backwards compatibility guarantees both for code and saved models built
170
174
  with our components. While we continue with pre-release `0.y.z` development, we
171
- may break compatibility at any time and APIs should not be consider stable.
175
+ may break compatibility at any time and APIs should not be considered stable.
172
176
 
173
177
  ## Disclaimer
174
178
 
@@ -1,15 +1,15 @@
1
1
  keras_hub/__init__.py,sha256=QGdXyHgYt6cMUAP1ebxwc6oR86dE0dkMxNy2eOCQtFo,855
2
2
  keras_hub/api/__init__.py,sha256=spMxsgqzjpeuC8rY4WP-2kAZ2qwwKRSbFwddXgUjqQE,524
3
3
  keras_hub/api/bounding_box/__init__.py,sha256=T8R_X7BPm0et1xaZq8565uJmid7dylsSFSj4V-rGuFQ,1097
4
- keras_hub/api/layers/__init__.py,sha256=W42ptsnGJZ9x6I6jfaspKcrv4SSFLokschJDW9CofAM,2256
4
+ keras_hub/api/layers/__init__.py,sha256=jX6K16_pDvfm8ScLsRnO5OoF91WpHda0SiOLGkoIGp4,2331
5
5
  keras_hub/api/metrics/__init__.py,sha256=So8Ec-lOcTzn_UUMmAdzDm8RKkPu2dbRUm2px8gpUEI,381
6
- keras_hub/api/models/__init__.py,sha256=71LtPajJXixbdH2BpslAoBoO0S8j64uZWnzZSXUP_0Q,13787
6
+ keras_hub/api/models/__init__.py,sha256=mPLLdpHJ6AIOei9dFKImcIrHjXOm3-pHYiUZVA_ry0g,14027
7
7
  keras_hub/api/samplers/__init__.py,sha256=n-_SEXxr2LNUzK2FqVFN7alsrkx1P_HOVTeLZKeGCdE,730
8
8
  keras_hub/api/tokenizers/__init__.py,sha256=_f-r_cyUM2fjBB7iO84ThOdqqsAxHNIewJ2EBDlM0cA,2524
9
9
  keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
10
10
  keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
11
  keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
12
- keras_hub/src/version_utils.py,sha256=GxYmS5YH-wnfPE281Ma_mqC_6TDvSlrBelngquLu2LQ,222
12
+ keras_hub/src/version_utils.py,sha256=NH7d2eE6DNxa_SHZWLz69EGvzOJOo6uXftLERho96ps,222
13
13
  keras_hub/src/bounding_box/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
14
14
  keras_hub/src/bounding_box/converters.py,sha256=a5po8DBm87oz2EXfi-0uEZHCMlCJPIb4-MaZIdYx3Dg,17865
15
15
  keras_hub/src/bounding_box/formats.py,sha256=YmskOz2BOSat7NaE__J9VfpSNGPJJR0znSzA4lp8MMI,3868
@@ -57,6 +57,7 @@ keras_hub/src/models/feature_pyramid_backbone.py,sha256=2Mh0G5y3CYjSyWqyw5X-NvtJ
57
57
  keras_hub/src/models/image_classifier.py,sha256=PFbuXXYDzryfvftsCJs2eLJ8IoSAwIbsMSiAW-zn-8M,3169
58
58
  keras_hub/src/models/image_classifier_preprocessor.py,sha256=BRAdFfK4oQ0TsvGDM-Dpjj38eV0xmpKdQwdnGZOvt_c,2614
59
59
  keras_hub/src/models/image_segmenter.py,sha256=OngkYiqvgs49Q-bNQ86TE1w_HYTorcgSg_mkmwbhO00,3014
60
+ keras_hub/src/models/image_segmenter_preprocessor.py,sha256=vJoZc1OebQWlqUP_ygCS7P1Pyq1KmmUc-0V_-maDzX4,2658
60
61
  keras_hub/src/models/masked_lm.py,sha256=uXO_dE_hILlOC9jNr6oK6IHi9IGUqLyNGvr6nMt8Rk0,3576
61
62
  keras_hub/src/models/masked_lm_preprocessor.py,sha256=g8vrnyYwqdnSw5xppROM1Gzo_jmMWKYZoQCsKdfrFKk,5656
62
63
  keras_hub/src/models/preprocessor.py,sha256=_hNy2qWRK_vcycS1eDB_Dz9r33T3eZ7dUwB85f7FzOs,8133
@@ -178,7 +179,7 @@ keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py,sha256=xSLDgavOhhm3SZc18VN60
178
179
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py,sha256=aKso-8yGrynn3tZ5xm2egcXIBQo3__sWZDBtjmS3ZgU,1991
179
180
  keras_hub/src/models/llama/__init__.py,sha256=svVZjGi71R3lVbq0AdbqlXj909mr3Rp9EPXdiO0w0G0,251
180
181
  keras_hub/src/models/llama/llama_attention.py,sha256=HzTWtvTjfN_j0vA9-ComstHpI81tzUrJU3RSSvSCaI4,7194
181
- keras_hub/src/models/llama/llama_backbone.py,sha256=cpBJD7dnCnfeBSAYPMGwR3gwewMr0oBNSQseUU6Pgao,6599
182
+ keras_hub/src/models/llama/llama_backbone.py,sha256=6tkTvAwhFZjnHFIzQbUYlgByMt2qQE2F3sfBluVhON0,6703
182
183
  keras_hub/src/models/llama/llama_causal_lm.py,sha256=JyTiCt1mxvf6QNxhjCjAW-aopTL4teS1EHTb_K-RGrs,13109
183
184
  keras_hub/src/models/llama/llama_causal_lm_preprocessor.py,sha256=VTboOMiRBoxHrwP343upLUTsv3AG65r2H8h_PNPVphE,3047
184
185
  keras_hub/src/models/llama/llama_decoder.py,sha256=6iERIblED0ZB5w_EUlHks4UvMnsrWONdO_Xdz2OzhWM,8623
@@ -201,7 +202,7 @@ keras_hub/src/models/mistral/mistral_presets.py,sha256=gucgdaFAiU-vRDS1g9zWGHjbD
201
202
  keras_hub/src/models/mistral/mistral_tokenizer.py,sha256=wyzR_Y2XwrDiBV3jIeBChSPiaOkVVaxFuLxMH2F6EYA,2005
202
203
  keras_hub/src/models/mistral/mistral_transformer_decoder.py,sha256=RDIIB3FhneHZP11tNUFQT9DcWawCMnrtVxtSvtnP3ts,9542
203
204
  keras_hub/src/models/mix_transformer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
204
- keras_hub/src/models/mix_transformer/mix_transformer_backbone.py,sha256=Uuuz7G9pwHIEVaJwpUJmRieFak8LvIg275hyvn34lh0,5841
205
+ keras_hub/src/models/mix_transformer/mix_transformer_backbone.py,sha256=B4hdhWHZ93lS937BGSSxovDKVXQZVuWrMbFwECFoWrg,6048
205
206
  keras_hub/src/models/mix_transformer/mix_transformer_classifier.py,sha256=XF0RvdocC4CPOrIEStw1V9KQ8IKs09Ti3Dd4dbZteac,3692
206
207
  keras_hub/src/models/mix_transformer/mix_transformer_layers.py,sha256=SzyJJhuyESlsCgndmZNYuuF0Ogb1FKoYkSfDJnThgT0,9538
207
208
  keras_hub/src/models/mobilenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -254,9 +255,12 @@ keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py,sha256=gAJa
254
255
  keras_hub/src/models/roberta/roberta_tokenizer.py,sha256=VKPrgXVT9aMKP7et2DIWKlTN8g4tIzjya0MHqNz9BwQ,2712
255
256
  keras_hub/src/models/sam/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
256
257
  keras_hub/src/models/sam/sam_backbone.py,sha256=fbvtGG6du7tnkcGtEsRyT9TRwPBUJ99GBolGkWR5pkc,4351
257
- keras_hub/src/models/sam/sam_image_segmenter.py,sha256=Lt_RAC7tBxH85dnuSPJoavrvxes_kxXQiCyCOaQKApo,7505
258
+ keras_hub/src/models/sam/sam_image_converter.py,sha256=Gr6OB-R3jXKjnWk_ndKEQLveIUj8NGKQ3vMG3tpBy9Y,358
259
+ keras_hub/src/models/sam/sam_image_segmenter.py,sha256=gJ-O7XaSvn9KTI-QPguhAiGfvxLUBar-KVQ-EEH5kko,7680
260
+ keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py,sha256=lZynaWAAdHer3NZZ6YLymZ9h5x1D6dIMQDwmPp-JSc4,499
258
261
  keras_hub/src/models/sam/sam_layers.py,sha256=SE5e6tYc-lsIVfMp9khewvuA1jY-dEHQmLT00YUok4M,13862
259
262
  keras_hub/src/models/sam/sam_mask_decoder.py,sha256=9RfjoNL7GSY6I9LZ3ulUa5cIoYSPJNP4KnHvq16lnM4,9549
263
+ keras_hub/src/models/sam/sam_presets.py,sha256=PYQrmhsNApgLO6CAOYPnd24IbFqztyJwrhkLT5bx1wk,1220
260
264
  keras_hub/src/models/sam/sam_prompt_encoder.py,sha256=2foB7900QbzQfZjBo335XYsdjmhOnVT8fKD1CubJNVE,11801
261
265
  keras_hub/src/models/sam/sam_transformer.py,sha256=L2bdxdc2RUF1juRZ0F0Z6r0gTva1sUwEdjItJmKKf6w,5730
262
266
  keras_hub/src/models/stable_diffusion_3/__init__.py,sha256=ZKYQuaRObyhKq8GVAHmoRvlXp6FpU8ChvutVCHyXKuc,343
@@ -281,7 +285,7 @@ keras_hub/src/models/vgg/vgg_backbone.py,sha256=rI8pAscWJlda9P9L6gcfROpAo461l3v3
281
285
  keras_hub/src/models/vgg/vgg_image_classifier.py,sha256=eRJiisvXhO6SK3FPO6aOdI8ipxabktyT9Dt03l-_uxw,3486
282
286
  keras_hub/src/models/vit_det/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
283
287
  keras_hub/src/models/vit_det/vit_det_backbone.py,sha256=GzwHXAfttExqDaGU4R2LAvng1gzjuvO3HMqUPwNUy9g,7656
284
- keras_hub/src/models/vit_det/vit_layers.py,sha256=0DWLSHgEoz3lLPveOEIJ7cNmTCLfSE7p1W_JL2GxDDI,19850
288
+ keras_hub/src/models/vit_det/vit_layers.py,sha256=oCKeUw5ckyUAGvmFPuxIiIAqgmC3uqh85LfZcgyh964,19852
285
289
  keras_hub/src/models/whisper/__init__.py,sha256=45vTF01_e-7VzD-zvXPw1NiA9SCgDE8w0cI-6peG9cA,263
286
290
  keras_hub/src/models/whisper/whisper_audio_converter.py,sha256=aXqQ6uPI9fBSjuYbo7bMr4C0avPh3iDwrVXHEJ7W_zo,8386
287
291
  keras_hub/src/models/whisper/whisper_backbone.py,sha256=5AwhulDC-ius9zJQNqWmOISXRv3hLMurRfnaaj_EXVQ,11514
@@ -342,12 +346,12 @@ keras_hub/src/utils/transformers/convert_bert.py,sha256=4gQqXCJzC9QWdLPDUAq741K8
342
346
  keras_hub/src/utils/transformers/convert_distilbert.py,sha256=SlfIRhSRk5c1ir2HGiDPiXa5XdOId_DbcnZO9lbwyZ8,6498
343
347
  keras_hub/src/utils/transformers/convert_gemma.py,sha256=ElCgwBpSN5Q7rV5PJawTsoytPzs5ZjuwoY60YAe8y_A,6533
344
348
  keras_hub/src/utils/transformers/convert_gpt2.py,sha256=HCeHN_-GiQJRxLCM9OCJJ1watPVpIBF8ujS8pGbBOWc,5703
345
- keras_hub/src/utils/transformers/convert_llama3.py,sha256=yy7dDtgNESP_W34JgIm5fdlbpybrCqmvB7vtwF_dy6c,4450
349
+ keras_hub/src/utils/transformers/convert_llama3.py,sha256=QqsGS2rkQ5EBJUzhq06tJNU07BI7k7wAlUNzUgFEYhs,4620
346
350
  keras_hub/src/utils/transformers/convert_mistral.py,sha256=kVhN9h1ZFVhwkNW8p3wnS7eANJUXIsNy1RxWXy20Gqw,4760
347
351
  keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYumf66hIid07k5NLqoeWAJgPnaLs,10649
348
352
  keras_hub/src/utils/transformers/preset_loader.py,sha256=GS44hZUuGQCtzsyn8z44ZpHdftd3DFemwV2hx2bQa-U,2738
349
353
  keras_hub/src/utils/transformers/safetensor_utils.py,sha256=rPK-Uw1CG0DX0d_UAD-r2cG9fw8GI8bvAlrcXfQ9g4c,3323
350
- keras_hub_nightly-0.16.1.dev202409290341.dist-info/METADATA,sha256=x4KCDdTpn0-dCiiXij4SGFDFTt_e2WIBa0z3_8cUcnY,7310
351
- keras_hub_nightly-0.16.1.dev202409290341.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
352
- keras_hub_nightly-0.16.1.dev202409290341.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
353
- keras_hub_nightly-0.16.1.dev202409290341.dist-info/RECORD,,
354
+ keras_hub_nightly-0.16.1.dev202410010346.dist-info/METADATA,sha256=q_YCWBdg95yQvhaaHRaaLHxjh_zSBItI4TrdnUn0fvI,7458
355
+ keras_hub_nightly-0.16.1.dev202410010346.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
356
+ keras_hub_nightly-0.16.1.dev202410010346.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
357
+ keras_hub_nightly-0.16.1.dev202410010346.dist-info/RECORD,,