keras-hub-nightly 0.16.1.dev202409280337__py3-none-any.whl → 0.16.1.dev202410010346__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/api/layers/__init__.py +1 -0
- keras_hub/api/models/__init__.py +6 -0
- keras_hub/src/models/image_segmenter_preprocessor.py +73 -0
- keras_hub/src/models/llama/llama_backbone.py +3 -1
- keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +7 -5
- keras_hub/src/models/sam/sam_image_converter.py +10 -0
- keras_hub/src/models/sam/sam_image_segmenter.py +5 -1
- keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +12 -0
- keras_hub/src/models/sam/sam_presets.py +34 -0
- keras_hub/src/models/vit_det/vit_layers.py +2 -2
- keras_hub/src/utils/transformers/convert_llama3.py +10 -6
- keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.16.1.dev202409280337.dist-info → keras_hub_nightly-0.16.1.dev202410010346.dist-info}/METADATA +20 -16
- {keras_hub_nightly-0.16.1.dev202409280337.dist-info → keras_hub_nightly-0.16.1.dev202410010346.dist-info}/RECORD +16 -12
- {keras_hub_nightly-0.16.1.dev202409280337.dist-info → keras_hub_nightly-0.16.1.dev202410010346.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.16.1.dev202409280337.dist-info → keras_hub_nightly-0.16.1.dev202410010346.dist-info}/top_level.txt +0 -0
keras_hub/api/layers/__init__.py
CHANGED
@@ -46,6 +46,7 @@ from keras_hub.src.models.pali_gemma.pali_gemma_image_converter import (
|
|
46
46
|
from keras_hub.src.models.resnet.resnet_image_converter import (
|
47
47
|
ResNetImageConverter,
|
48
48
|
)
|
49
|
+
from keras_hub.src.models.sam.sam_image_converter import SAMImageConverter
|
49
50
|
from keras_hub.src.models.sam.sam_mask_decoder import SAMMaskDecoder
|
50
51
|
from keras_hub.src.models.sam.sam_prompt_encoder import SAMPromptEncoder
|
51
52
|
from keras_hub.src.models.whisper.whisper_audio_converter import (
|
keras_hub/api/models/__init__.py
CHANGED
@@ -168,6 +168,9 @@ from keras_hub.src.models.image_classifier_preprocessor import (
|
|
168
168
|
ImageClassifierPreprocessor,
|
169
169
|
)
|
170
170
|
from keras_hub.src.models.image_segmenter import ImageSegmenter
|
171
|
+
from keras_hub.src.models.image_segmenter_preprocessor import (
|
172
|
+
ImageSegmenterPreprocessor,
|
173
|
+
)
|
171
174
|
from keras_hub.src.models.llama3.llama3_backbone import Llama3Backbone
|
172
175
|
from keras_hub.src.models.llama3.llama3_causal_lm import Llama3CausalLM
|
173
176
|
from keras_hub.src.models.llama3.llama3_causal_lm_preprocessor import (
|
@@ -250,6 +253,9 @@ from keras_hub.src.models.roberta.roberta_text_classifier_preprocessor import (
|
|
250
253
|
from keras_hub.src.models.roberta.roberta_tokenizer import RobertaTokenizer
|
251
254
|
from keras_hub.src.models.sam.sam_backbone import SAMBackbone
|
252
255
|
from keras_hub.src.models.sam.sam_image_segmenter import SAMImageSegmenter
|
256
|
+
from keras_hub.src.models.sam.sam_image_segmenter_preprocessor import (
|
257
|
+
SAMImageSegmenterPreprocessor as SamImageSegmenterPreprocessor,
|
258
|
+
)
|
253
259
|
from keras_hub.src.models.seq_2_seq_lm import Seq2SeqLM
|
254
260
|
from keras_hub.src.models.seq_2_seq_lm_preprocessor import Seq2SeqLMPreprocessor
|
255
261
|
from keras_hub.src.models.stable_diffusion_3.stable_diffusion_3_backbone import (
|
@@ -0,0 +1,73 @@
|
|
1
|
+
import keras
|
2
|
+
|
3
|
+
from keras_hub.src.api_export import keras_hub_export
|
4
|
+
from keras_hub.src.models.preprocessor import Preprocessor
|
5
|
+
from keras_hub.src.utils.tensor_utils import preprocessing_function
|
6
|
+
|
7
|
+
|
8
|
+
@keras_hub_export("keras_hub.models.ImageSegmenterPreprocessor")
|
9
|
+
class ImageSegmenterPreprocessor(Preprocessor):
|
10
|
+
"""Base class for image segmentation preprocessing layers.
|
11
|
+
|
12
|
+
`ImageSegmenterPreprocessor` wraps a
|
13
|
+
`keras_hub.layers.ImageConverter` to create a preprocessing layer for
|
14
|
+
image segmentation tasks. It is intended to be paired with a
|
15
|
+
`keras_hub.models.ImageSegmenter` task.
|
16
|
+
|
17
|
+
All `ImageSegmenterPreprocessor` instances take three inputs: `x`, `y`, and
|
18
|
+
`sample_weight`.
|
19
|
+
|
20
|
+
- `x`: The first input, should always be included. It can be an image or
|
21
|
+
a batch of images.
|
22
|
+
- `y`: (Optional) Usually the segmentation mask(s), will be passed through
|
23
|
+
unaltered.
|
24
|
+
- `sample_weight`: (Optional) Will be passed through unaltered.
|
25
|
+
|
26
|
+
The layer will output either `x`, an `(x, y)` tuple if labels were provided,
|
27
|
+
or an `(x, y, sample_weight)` tuple if labels and sample weight were
|
28
|
+
provided. `x` will be the input images after all model preprocessing has
|
29
|
+
been applied.
|
30
|
+
|
31
|
+
All `ImageSegmenterPreprocessor` tasks include a `from_preset()`
|
32
|
+
constructor which can be used to load a pre-trained config and vocabularies.
|
33
|
+
You can call the `from_preset()` constructor directly on this base class, in
|
34
|
+
which case the correct class for your model will be automatically
|
35
|
+
instantiated.
|
36
|
+
|
37
|
+
Examples.
|
38
|
+
```python
|
39
|
+
preprocessor = keras_hub.models.ImageSegmenterPreprocessor.from_preset(
|
40
|
+
"deeplabv3_resnet50",
|
41
|
+
)
|
42
|
+
|
43
|
+
# Resize a single image for the model.
|
44
|
+
x = np.ones((512, 512, 3))
|
45
|
+
x = preprocessor(x)
|
46
|
+
|
47
|
+
# Resize an image and its mask.
|
48
|
+
x, y = np.ones((512, 512, 3)), np.zeros((512, 512, 1))
|
49
|
+
x, y = preprocessor(x, y)
|
50
|
+
|
51
|
+
# Resize a batch of images and masks.
|
52
|
+
x, y = [np.ones((512, 512, 3)), np.zeros((512, 512, 3))], [np.ones((512, 512, 1)), np.zeros((512, 512, 1))]
|
53
|
+
x, y = preprocessor(x, y)
|
54
|
+
|
55
|
+
# Use a `tf.data.Dataset`.
|
56
|
+
ds = tf.data.Dataset.from_tensor_slices((x, y)).batch(2)
|
57
|
+
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
58
|
+
```
|
59
|
+
"""
|
60
|
+
|
61
|
+
def __init__(
|
62
|
+
self,
|
63
|
+
image_converter=None,
|
64
|
+
**kwargs,
|
65
|
+
):
|
66
|
+
super().__init__(**kwargs)
|
67
|
+
self.image_converter = image_converter
|
68
|
+
|
69
|
+
@preprocessing_function
|
70
|
+
def call(self, x, y=None, sample_weight=None):
|
71
|
+
if self.image_converter:
|
72
|
+
x = self.image_converter(x)
|
73
|
+
return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
|
@@ -90,13 +90,14 @@ class LlamaBackbone(Backbone):
|
|
90
90
|
layer_norm_epsilon=1e-6,
|
91
91
|
dropout=0,
|
92
92
|
dtype=None,
|
93
|
+
tie_word_embeddings=False,
|
93
94
|
**kwargs,
|
94
95
|
):
|
95
96
|
# === Layers ===
|
96
97
|
self.token_embedding = ReversibleEmbedding(
|
97
98
|
input_dim=vocabulary_size,
|
98
99
|
output_dim=hidden_dim,
|
99
|
-
tie_weights=
|
100
|
+
tie_weights=tie_word_embeddings,
|
100
101
|
embeddings_initializer=_llama_kernel_initializer(stddev=0.01),
|
101
102
|
dtype=dtype,
|
102
103
|
name="token_embedding",
|
@@ -155,6 +156,7 @@ class LlamaBackbone(Backbone):
|
|
155
156
|
self.rope_scaling_factor = rope_scaling_factor
|
156
157
|
self.layer_norm_epsilon = layer_norm_epsilon
|
157
158
|
self.dropout = dropout
|
159
|
+
self.tie_word_embeddings = tie_word_embeddings
|
158
160
|
|
159
161
|
def get_config(self):
|
160
162
|
config = super().get_config()
|
@@ -20,7 +20,7 @@ class MiTBackbone(FeaturePyramidBackbone):
|
|
20
20
|
num_layers,
|
21
21
|
blockwise_num_heads,
|
22
22
|
blockwise_sr_ratios,
|
23
|
-
|
23
|
+
max_drop_path_rate,
|
24
24
|
patch_sizes,
|
25
25
|
strides,
|
26
26
|
image_shape=(None, None, 3),
|
@@ -45,7 +45,9 @@ class MiTBackbone(FeaturePyramidBackbone):
|
|
45
45
|
ratio to perform for each layer on the sequence before key and
|
46
46
|
value projections. If set to > 1, a `Conv2D` layer is used to
|
47
47
|
reduce the length of the sequence.
|
48
|
-
|
48
|
+
max_drop_path_rate: The final value of the `linspace()` that
|
49
|
+
defines the drop path rates for the `DropPath` layers of
|
50
|
+
the `HierarchicalTransformerEncoder` layers.
|
49
51
|
image_shape: optional shape tuple, defaults to (None, None, 3).
|
50
52
|
hidden_dims: the embedding dims per hierarchical layer, used as
|
51
53
|
the levels of the feature pyramid.
|
@@ -73,7 +75,7 @@ class MiTBackbone(FeaturePyramidBackbone):
|
|
73
75
|
model.fit(images, labels, epochs=3)
|
74
76
|
```
|
75
77
|
"""
|
76
|
-
dpr = [x for x in np.linspace(0.0,
|
78
|
+
dpr = [x for x in np.linspace(0.0, max_drop_path_rate, sum(depths))]
|
77
79
|
|
78
80
|
# === Layers ===
|
79
81
|
cur = 0
|
@@ -136,7 +138,7 @@ class MiTBackbone(FeaturePyramidBackbone):
|
|
136
138
|
self.num_layers = num_layers
|
137
139
|
self.blockwise_num_heads = blockwise_num_heads
|
138
140
|
self.blockwise_sr_ratios = blockwise_sr_ratios
|
139
|
-
self.
|
141
|
+
self.max_drop_path_rate = max_drop_path_rate
|
140
142
|
self.patch_sizes = patch_sizes
|
141
143
|
self.strides = strides
|
142
144
|
|
@@ -150,7 +152,7 @@ class MiTBackbone(FeaturePyramidBackbone):
|
|
150
152
|
"num_layers": self.num_layers,
|
151
153
|
"blockwise_num_heads": self.blockwise_num_heads,
|
152
154
|
"blockwise_sr_ratios": self.blockwise_sr_ratios,
|
153
|
-
"
|
155
|
+
"max_drop_path_rate": self.max_drop_path_rate,
|
154
156
|
"patch_sizes": self.patch_sizes,
|
155
157
|
"strides": self.strides,
|
156
158
|
}
|
@@ -0,0 +1,10 @@
|
|
1
|
+
from keras_hub.src.api_export import keras_hub_export
|
2
|
+
from keras_hub.src.layers.preprocessing.resizing_image_converter import (
|
3
|
+
ResizingImageConverter,
|
4
|
+
)
|
5
|
+
from keras_hub.src.models.sam.sam_backbone import SAMBackbone
|
6
|
+
|
7
|
+
|
8
|
+
@keras_hub_export("keras_hub.layers.SAMImageConverter")
|
9
|
+
class SAMImageConverter(ResizingImageConverter):
|
10
|
+
backbone_cls = SAMBackbone
|
@@ -4,6 +4,9 @@ from keras import ops
|
|
4
4
|
from keras_hub.src.api_export import keras_hub_export
|
5
5
|
from keras_hub.src.models.image_segmenter import ImageSegmenter
|
6
6
|
from keras_hub.src.models.sam.sam_backbone import SAMBackbone
|
7
|
+
from keras_hub.src.models.sam.sam_image_segmenter_preprocessor import (
|
8
|
+
SAMImageSegmenterPreprocessor,
|
9
|
+
)
|
7
10
|
|
8
11
|
|
9
12
|
@keras_hub_export("keras_hub.models.SAMImageSegmenter")
|
@@ -165,7 +168,7 @@ class SAMImageSegmenter(ImageSegmenter):
|
|
165
168
|
"""
|
166
169
|
|
167
170
|
backbone_cls = SAMBackbone
|
168
|
-
preprocessor_cls =
|
171
|
+
preprocessor_cls = SAMImageSegmenterPreprocessor
|
169
172
|
|
170
173
|
def __init__(self, backbone, preprocessor=None, **kwargs):
|
171
174
|
# The implementation has been adapted form [Segment Anything
|
@@ -174,6 +177,7 @@ class SAMImageSegmenter(ImageSegmenter):
|
|
174
177
|
# [Detectron2](https://github.com/facebookresearch/detectron2).
|
175
178
|
# === Layers ===
|
176
179
|
self.backbone = backbone
|
180
|
+
self.preprocessor = preprocessor
|
177
181
|
# === Functional Model ===
|
178
182
|
inputs = self.backbone.input
|
179
183
|
x = self.backbone(inputs)
|
@@ -0,0 +1,12 @@
|
|
1
|
+
from keras_hub.src.api_export import keras_hub_export
|
2
|
+
from keras_hub.src.models.image_segmenter_preprocessor import (
|
3
|
+
ImageSegmenterPreprocessor,
|
4
|
+
)
|
5
|
+
from keras_hub.src.models.sam.sam_backbone import SAMBackbone
|
6
|
+
from keras_hub.src.models.sam.sam_image_converter import SAMImageConverter
|
7
|
+
|
8
|
+
|
9
|
+
@keras_hub_export("keras_hub.models.SamImageSegmenterPreprocessor")
|
10
|
+
class SAMImageSegmenterPreprocessor(ImageSegmenterPreprocessor):
|
11
|
+
backbone_cls = SAMBackbone
|
12
|
+
image_converter_cls = SAMImageConverter
|
@@ -0,0 +1,34 @@
|
|
1
|
+
"""SAM preset configurations."""
|
2
|
+
|
3
|
+
backbone_presets = {
|
4
|
+
"sam_base_sa1b": {
|
5
|
+
"metadata": {
|
6
|
+
"description": ("The base SAM model trained on the SA1B dataset."),
|
7
|
+
"params": 93735728,
|
8
|
+
"official_name": "SAMImageSegmenter",
|
9
|
+
"path": "sam",
|
10
|
+
"model_card": "https://arxiv.org/abs/2304.02643",
|
11
|
+
},
|
12
|
+
"kaggle_handle": "kaggle://kerashub/sam/keras/sam_base_sa1b/1",
|
13
|
+
},
|
14
|
+
"sam_large_sa1b": {
|
15
|
+
"metadata": {
|
16
|
+
"description": ("The large SAM model trained on the SA1B dataset."),
|
17
|
+
"params": 641090864,
|
18
|
+
"official_name": "SAMImageSegmenter",
|
19
|
+
"path": "sam",
|
20
|
+
"model_card": "https://arxiv.org/abs/2304.02643",
|
21
|
+
},
|
22
|
+
"kaggle_handle": "kaggle://kerashub/sam/keras/sam_large_sa1b/1",
|
23
|
+
},
|
24
|
+
"sam_huge_sa1b": {
|
25
|
+
"metadata": {
|
26
|
+
"description": ("The huge SAM model trained on the SA1B dataset."),
|
27
|
+
"params": 312343088,
|
28
|
+
"official_name": "SAMImageSegmenter",
|
29
|
+
"path": "sam",
|
30
|
+
"model_card": "https://arxiv.org/abs/2304.02643",
|
31
|
+
},
|
32
|
+
"kaggle_handle": "kaggle://kerashub/sam/keras/sam_huge_sa1b/1",
|
33
|
+
},
|
34
|
+
}
|
@@ -212,7 +212,7 @@ class MultiHeadAttentionWithRelativePE(keras.layers.Layer):
|
|
212
212
|
"Input size must be provided if using relative "
|
213
213
|
"positional encoding."
|
214
214
|
)
|
215
|
-
self.
|
215
|
+
self.add_decomposed_relative_pe = AddRelativePositionalEmbedding(
|
216
216
|
self.input_size, self.key_dim
|
217
217
|
)
|
218
218
|
|
@@ -241,7 +241,7 @@ class MultiHeadAttentionWithRelativePE(keras.layers.Layer):
|
|
241
241
|
keys, axes=(0, 2, 1)
|
242
242
|
)
|
243
243
|
if self.use_rel_pos:
|
244
|
-
attention_map = self.
|
244
|
+
attention_map = self.add_decomposed_relative_pe(
|
245
245
|
attention_map,
|
246
246
|
queries=queries,
|
247
247
|
query_size=(height, width),
|
@@ -14,6 +14,7 @@ def convert_backbone_config(transformers_config):
|
|
14
14
|
"hidden_dim": transformers_config["hidden_size"],
|
15
15
|
"intermediate_dim": transformers_config["intermediate_size"],
|
16
16
|
"num_key_value_heads": transformers_config["num_key_value_heads"],
|
17
|
+
"tie_word_embeddings": transformers_config["tie_word_embeddings"],
|
17
18
|
}
|
18
19
|
|
19
20
|
|
@@ -22,12 +23,15 @@ def convert_weights(backbone, loader, transformers_config):
|
|
22
23
|
keras_variable=backbone.get_layer("token_embedding").embeddings,
|
23
24
|
hf_weight_key="model.embed_tokens.weight",
|
24
25
|
)
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
26
|
+
if not backbone.tie_word_embeddings:
|
27
|
+
loader.port_weight(
|
28
|
+
keras_variable=backbone.get_layer(
|
29
|
+
"token_embedding"
|
30
|
+
).reverse_embeddings,
|
31
|
+
hf_weight_key="lm_head.weight",
|
32
|
+
# rearrange_pattern="b a -> a b",
|
33
|
+
hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
|
34
|
+
)
|
31
35
|
|
32
36
|
def transpose_and_reshape(x, shape):
|
33
37
|
return np.reshape(np.transpose(x), shape)
|
keras_hub/src/version_utils.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: keras-hub-nightly
|
3
|
-
Version: 0.16.1.
|
3
|
+
Version: 0.16.1.dev202410010346
|
4
4
|
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
5
|
Home-page: https://github.com/keras-team/keras-hub
|
6
6
|
Author: Keras team
|
@@ -83,13 +83,13 @@ We welcome contributions.
|
|
83
83
|
|
84
84
|
## Quickstart
|
85
85
|
|
86
|
-
Fine-tune BERT on IMDb movie reviews:
|
86
|
+
Fine-tune a BERT classifier on IMDb movie reviews:
|
87
87
|
|
88
88
|
```python
|
89
89
|
import os
|
90
90
|
os.environ["KERAS_BACKEND"] = "jax" # Or "tensorflow" or "torch"!
|
91
91
|
|
92
|
-
import
|
92
|
+
import keras_nlp
|
93
93
|
import tensorflow_datasets as tfds
|
94
94
|
|
95
95
|
imdb_train, imdb_test = tfds.load(
|
@@ -98,12 +98,14 @@ imdb_train, imdb_test = tfds.load(
|
|
98
98
|
as_supervised=True,
|
99
99
|
batch_size=16,
|
100
100
|
)
|
101
|
+
|
101
102
|
# Load a BERT model.
|
102
|
-
classifier =
|
103
|
+
classifier = keras_nlp.models.Classifier.from_preset(
|
103
104
|
"bert_base_en",
|
104
105
|
num_classes=2,
|
105
106
|
activation="softmax",
|
106
107
|
)
|
108
|
+
|
107
109
|
# Fine-tune on IMDb movie reviews.
|
108
110
|
classifier.fit(imdb_train, validation_data=imdb_test)
|
109
111
|
# Predict two new examples.
|
@@ -116,21 +118,23 @@ For more in depth guides and examples, visit
|
|
116
118
|
|
117
119
|
## Installation
|
118
120
|
|
119
|
-
|
121
|
+
KerasHub is currently in pre-release. Note that pre-release versions may
|
122
|
+
introduce breaking changes to the API in future versions. For a stable and
|
123
|
+
supported experience, we recommend installing `keras-nlp` version 0.15.1:
|
120
124
|
|
121
|
-
```
|
122
|
-
pip install
|
125
|
+
```bash
|
126
|
+
pip install keras-nlp==0.15.1
|
123
127
|
```
|
124
128
|
|
125
|
-
To
|
126
|
-
our nightly package
|
129
|
+
To try out the latest pre-release version of KerasHub, you can use
|
130
|
+
our nightly package:
|
127
131
|
|
128
|
-
```
|
129
|
-
pip install
|
132
|
+
```bash
|
133
|
+
pip install keras-hub-nightly
|
130
134
|
```
|
131
135
|
|
132
|
-
|
133
|
-
|
136
|
+
KerasHub currently requires TensorFlow to be installed for use of the
|
137
|
+
`tf.data` API for preprocessing. Even when pre-processing with `tf.data`,
|
134
138
|
training can still happen on any backend.
|
135
139
|
|
136
140
|
Read [Getting started with Keras](https://keras.io/getting_started/) for more
|
@@ -160,15 +164,15 @@ import keras_hub
|
|
160
164
|
```
|
161
165
|
|
162
166
|
> [!IMPORTANT]
|
163
|
-
> Make sure to set the `KERAS_BACKEND` before
|
164
|
-
> will be used to set up Keras when it is first imported.
|
167
|
+
> Make sure to set the `KERAS_BACKEND` **before** importing any Keras libraries;
|
168
|
+
> it will be used to set up Keras when it is first imported.
|
165
169
|
|
166
170
|
## Compatibility
|
167
171
|
|
168
172
|
We follow [Semantic Versioning](https://semver.org/), and plan to
|
169
173
|
provide backwards compatibility guarantees both for code and saved models built
|
170
174
|
with our components. While we continue with pre-release `0.y.z` development, we
|
171
|
-
may break compatibility at any time and APIs should not be
|
175
|
+
may break compatibility at any time and APIs should not be considered stable.
|
172
176
|
|
173
177
|
## Disclaimer
|
174
178
|
|
@@ -1,15 +1,15 @@
|
|
1
1
|
keras_hub/__init__.py,sha256=QGdXyHgYt6cMUAP1ebxwc6oR86dE0dkMxNy2eOCQtFo,855
|
2
2
|
keras_hub/api/__init__.py,sha256=spMxsgqzjpeuC8rY4WP-2kAZ2qwwKRSbFwddXgUjqQE,524
|
3
3
|
keras_hub/api/bounding_box/__init__.py,sha256=T8R_X7BPm0et1xaZq8565uJmid7dylsSFSj4V-rGuFQ,1097
|
4
|
-
keras_hub/api/layers/__init__.py,sha256=
|
4
|
+
keras_hub/api/layers/__init__.py,sha256=jX6K16_pDvfm8ScLsRnO5OoF91WpHda0SiOLGkoIGp4,2331
|
5
5
|
keras_hub/api/metrics/__init__.py,sha256=So8Ec-lOcTzn_UUMmAdzDm8RKkPu2dbRUm2px8gpUEI,381
|
6
|
-
keras_hub/api/models/__init__.py,sha256=
|
6
|
+
keras_hub/api/models/__init__.py,sha256=mPLLdpHJ6AIOei9dFKImcIrHjXOm3-pHYiUZVA_ry0g,14027
|
7
7
|
keras_hub/api/samplers/__init__.py,sha256=n-_SEXxr2LNUzK2FqVFN7alsrkx1P_HOVTeLZKeGCdE,730
|
8
8
|
keras_hub/api/tokenizers/__init__.py,sha256=_f-r_cyUM2fjBB7iO84ThOdqqsAxHNIewJ2EBDlM0cA,2524
|
9
9
|
keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
|
10
10
|
keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
11
11
|
keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
|
12
|
-
keras_hub/src/version_utils.py,sha256=
|
12
|
+
keras_hub/src/version_utils.py,sha256=NH7d2eE6DNxa_SHZWLz69EGvzOJOo6uXftLERho96ps,222
|
13
13
|
keras_hub/src/bounding_box/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
14
14
|
keras_hub/src/bounding_box/converters.py,sha256=a5po8DBm87oz2EXfi-0uEZHCMlCJPIb4-MaZIdYx3Dg,17865
|
15
15
|
keras_hub/src/bounding_box/formats.py,sha256=YmskOz2BOSat7NaE__J9VfpSNGPJJR0znSzA4lp8MMI,3868
|
@@ -57,6 +57,7 @@ keras_hub/src/models/feature_pyramid_backbone.py,sha256=2Mh0G5y3CYjSyWqyw5X-NvtJ
|
|
57
57
|
keras_hub/src/models/image_classifier.py,sha256=PFbuXXYDzryfvftsCJs2eLJ8IoSAwIbsMSiAW-zn-8M,3169
|
58
58
|
keras_hub/src/models/image_classifier_preprocessor.py,sha256=BRAdFfK4oQ0TsvGDM-Dpjj38eV0xmpKdQwdnGZOvt_c,2614
|
59
59
|
keras_hub/src/models/image_segmenter.py,sha256=OngkYiqvgs49Q-bNQ86TE1w_HYTorcgSg_mkmwbhO00,3014
|
60
|
+
keras_hub/src/models/image_segmenter_preprocessor.py,sha256=vJoZc1OebQWlqUP_ygCS7P1Pyq1KmmUc-0V_-maDzX4,2658
|
60
61
|
keras_hub/src/models/masked_lm.py,sha256=uXO_dE_hILlOC9jNr6oK6IHi9IGUqLyNGvr6nMt8Rk0,3576
|
61
62
|
keras_hub/src/models/masked_lm_preprocessor.py,sha256=g8vrnyYwqdnSw5xppROM1Gzo_jmMWKYZoQCsKdfrFKk,5656
|
62
63
|
keras_hub/src/models/preprocessor.py,sha256=_hNy2qWRK_vcycS1eDB_Dz9r33T3eZ7dUwB85f7FzOs,8133
|
@@ -178,7 +179,7 @@ keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py,sha256=xSLDgavOhhm3SZc18VN60
|
|
178
179
|
keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py,sha256=aKso-8yGrynn3tZ5xm2egcXIBQo3__sWZDBtjmS3ZgU,1991
|
179
180
|
keras_hub/src/models/llama/__init__.py,sha256=svVZjGi71R3lVbq0AdbqlXj909mr3Rp9EPXdiO0w0G0,251
|
180
181
|
keras_hub/src/models/llama/llama_attention.py,sha256=HzTWtvTjfN_j0vA9-ComstHpI81tzUrJU3RSSvSCaI4,7194
|
181
|
-
keras_hub/src/models/llama/llama_backbone.py,sha256=
|
182
|
+
keras_hub/src/models/llama/llama_backbone.py,sha256=6tkTvAwhFZjnHFIzQbUYlgByMt2qQE2F3sfBluVhON0,6703
|
182
183
|
keras_hub/src/models/llama/llama_causal_lm.py,sha256=JyTiCt1mxvf6QNxhjCjAW-aopTL4teS1EHTb_K-RGrs,13109
|
183
184
|
keras_hub/src/models/llama/llama_causal_lm_preprocessor.py,sha256=VTboOMiRBoxHrwP343upLUTsv3AG65r2H8h_PNPVphE,3047
|
184
185
|
keras_hub/src/models/llama/llama_decoder.py,sha256=6iERIblED0ZB5w_EUlHks4UvMnsrWONdO_Xdz2OzhWM,8623
|
@@ -201,7 +202,7 @@ keras_hub/src/models/mistral/mistral_presets.py,sha256=gucgdaFAiU-vRDS1g9zWGHjbD
|
|
201
202
|
keras_hub/src/models/mistral/mistral_tokenizer.py,sha256=wyzR_Y2XwrDiBV3jIeBChSPiaOkVVaxFuLxMH2F6EYA,2005
|
202
203
|
keras_hub/src/models/mistral/mistral_transformer_decoder.py,sha256=RDIIB3FhneHZP11tNUFQT9DcWawCMnrtVxtSvtnP3ts,9542
|
203
204
|
keras_hub/src/models/mix_transformer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
204
|
-
keras_hub/src/models/mix_transformer/mix_transformer_backbone.py,sha256=
|
205
|
+
keras_hub/src/models/mix_transformer/mix_transformer_backbone.py,sha256=B4hdhWHZ93lS937BGSSxovDKVXQZVuWrMbFwECFoWrg,6048
|
205
206
|
keras_hub/src/models/mix_transformer/mix_transformer_classifier.py,sha256=XF0RvdocC4CPOrIEStw1V9KQ8IKs09Ti3Dd4dbZteac,3692
|
206
207
|
keras_hub/src/models/mix_transformer/mix_transformer_layers.py,sha256=SzyJJhuyESlsCgndmZNYuuF0Ogb1FKoYkSfDJnThgT0,9538
|
207
208
|
keras_hub/src/models/mobilenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -254,9 +255,12 @@ keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py,sha256=gAJa
|
|
254
255
|
keras_hub/src/models/roberta/roberta_tokenizer.py,sha256=VKPrgXVT9aMKP7et2DIWKlTN8g4tIzjya0MHqNz9BwQ,2712
|
255
256
|
keras_hub/src/models/sam/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
256
257
|
keras_hub/src/models/sam/sam_backbone.py,sha256=fbvtGG6du7tnkcGtEsRyT9TRwPBUJ99GBolGkWR5pkc,4351
|
257
|
-
keras_hub/src/models/sam/
|
258
|
+
keras_hub/src/models/sam/sam_image_converter.py,sha256=Gr6OB-R3jXKjnWk_ndKEQLveIUj8NGKQ3vMG3tpBy9Y,358
|
259
|
+
keras_hub/src/models/sam/sam_image_segmenter.py,sha256=gJ-O7XaSvn9KTI-QPguhAiGfvxLUBar-KVQ-EEH5kko,7680
|
260
|
+
keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py,sha256=lZynaWAAdHer3NZZ6YLymZ9h5x1D6dIMQDwmPp-JSc4,499
|
258
261
|
keras_hub/src/models/sam/sam_layers.py,sha256=SE5e6tYc-lsIVfMp9khewvuA1jY-dEHQmLT00YUok4M,13862
|
259
262
|
keras_hub/src/models/sam/sam_mask_decoder.py,sha256=9RfjoNL7GSY6I9LZ3ulUa5cIoYSPJNP4KnHvq16lnM4,9549
|
263
|
+
keras_hub/src/models/sam/sam_presets.py,sha256=PYQrmhsNApgLO6CAOYPnd24IbFqztyJwrhkLT5bx1wk,1220
|
260
264
|
keras_hub/src/models/sam/sam_prompt_encoder.py,sha256=2foB7900QbzQfZjBo335XYsdjmhOnVT8fKD1CubJNVE,11801
|
261
265
|
keras_hub/src/models/sam/sam_transformer.py,sha256=L2bdxdc2RUF1juRZ0F0Z6r0gTva1sUwEdjItJmKKf6w,5730
|
262
266
|
keras_hub/src/models/stable_diffusion_3/__init__.py,sha256=ZKYQuaRObyhKq8GVAHmoRvlXp6FpU8ChvutVCHyXKuc,343
|
@@ -281,7 +285,7 @@ keras_hub/src/models/vgg/vgg_backbone.py,sha256=rI8pAscWJlda9P9L6gcfROpAo461l3v3
|
|
281
285
|
keras_hub/src/models/vgg/vgg_image_classifier.py,sha256=eRJiisvXhO6SK3FPO6aOdI8ipxabktyT9Dt03l-_uxw,3486
|
282
286
|
keras_hub/src/models/vit_det/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
283
287
|
keras_hub/src/models/vit_det/vit_det_backbone.py,sha256=GzwHXAfttExqDaGU4R2LAvng1gzjuvO3HMqUPwNUy9g,7656
|
284
|
-
keras_hub/src/models/vit_det/vit_layers.py,sha256=
|
288
|
+
keras_hub/src/models/vit_det/vit_layers.py,sha256=oCKeUw5ckyUAGvmFPuxIiIAqgmC3uqh85LfZcgyh964,19852
|
285
289
|
keras_hub/src/models/whisper/__init__.py,sha256=45vTF01_e-7VzD-zvXPw1NiA9SCgDE8w0cI-6peG9cA,263
|
286
290
|
keras_hub/src/models/whisper/whisper_audio_converter.py,sha256=aXqQ6uPI9fBSjuYbo7bMr4C0avPh3iDwrVXHEJ7W_zo,8386
|
287
291
|
keras_hub/src/models/whisper/whisper_backbone.py,sha256=5AwhulDC-ius9zJQNqWmOISXRv3hLMurRfnaaj_EXVQ,11514
|
@@ -342,12 +346,12 @@ keras_hub/src/utils/transformers/convert_bert.py,sha256=4gQqXCJzC9QWdLPDUAq741K8
|
|
342
346
|
keras_hub/src/utils/transformers/convert_distilbert.py,sha256=SlfIRhSRk5c1ir2HGiDPiXa5XdOId_DbcnZO9lbwyZ8,6498
|
343
347
|
keras_hub/src/utils/transformers/convert_gemma.py,sha256=ElCgwBpSN5Q7rV5PJawTsoytPzs5ZjuwoY60YAe8y_A,6533
|
344
348
|
keras_hub/src/utils/transformers/convert_gpt2.py,sha256=HCeHN_-GiQJRxLCM9OCJJ1watPVpIBF8ujS8pGbBOWc,5703
|
345
|
-
keras_hub/src/utils/transformers/convert_llama3.py,sha256=
|
349
|
+
keras_hub/src/utils/transformers/convert_llama3.py,sha256=QqsGS2rkQ5EBJUzhq06tJNU07BI7k7wAlUNzUgFEYhs,4620
|
346
350
|
keras_hub/src/utils/transformers/convert_mistral.py,sha256=kVhN9h1ZFVhwkNW8p3wnS7eANJUXIsNy1RxWXy20Gqw,4760
|
347
351
|
keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYumf66hIid07k5NLqoeWAJgPnaLs,10649
|
348
352
|
keras_hub/src/utils/transformers/preset_loader.py,sha256=GS44hZUuGQCtzsyn8z44ZpHdftd3DFemwV2hx2bQa-U,2738
|
349
353
|
keras_hub/src/utils/transformers/safetensor_utils.py,sha256=rPK-Uw1CG0DX0d_UAD-r2cG9fw8GI8bvAlrcXfQ9g4c,3323
|
350
|
-
keras_hub_nightly-0.16.1.
|
351
|
-
keras_hub_nightly-0.16.1.
|
352
|
-
keras_hub_nightly-0.16.1.
|
353
|
-
keras_hub_nightly-0.16.1.
|
354
|
+
keras_hub_nightly-0.16.1.dev202410010346.dist-info/METADATA,sha256=q_YCWBdg95yQvhaaHRaaLHxjh_zSBItI4TrdnUn0fvI,7458
|
355
|
+
keras_hub_nightly-0.16.1.dev202410010346.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
|
356
|
+
keras_hub_nightly-0.16.1.dev202410010346.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
357
|
+
keras_hub_nightly-0.16.1.dev202410010346.dist-info/RECORD,,
|
File without changes
|