keras-hub-nightly 0.16.1.dev202409240339__py3-none-any.whl → 0.16.1.dev202409260340__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (44) hide show
  1. keras_hub/api/layers/__init__.py +5 -0
  2. keras_hub/api/models/__init__.py +19 -0
  3. keras_hub/api/tokenizers/__init__.py +1 -0
  4. keras_hub/src/models/{stable_diffusion_v3 → clip}/clip_encoder_block.py +8 -2
  5. keras_hub/src/models/clip/clip_preprocessor.py +147 -0
  6. keras_hub/src/models/{stable_diffusion_v3 → clip}/clip_text_encoder.py +60 -57
  7. keras_hub/src/models/{stable_diffusion_v3 → clip}/clip_tokenizer.py +69 -30
  8. keras_hub/src/models/densenet/__init__.py +6 -0
  9. keras_hub/src/models/densenet/densenet_backbone.py +11 -8
  10. keras_hub/src/models/densenet/densenet_image_classifier.py +27 -4
  11. keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +27 -0
  12. keras_hub/src/models/densenet/densenet_image_converter.py +23 -0
  13. keras_hub/src/models/densenet/densenet_presets.py +56 -0
  14. keras_hub/src/models/image_segmenter.py +86 -0
  15. keras_hub/src/models/sam/__init__.py +13 -0
  16. keras_hub/src/models/sam/sam_backbone.py +153 -0
  17. keras_hub/src/models/sam/sam_image_segmenter.py +237 -0
  18. keras_hub/src/models/sam/sam_layers.py +402 -0
  19. keras_hub/src/models/sam/sam_mask_decoder.py +270 -0
  20. keras_hub/src/models/sam/sam_prompt_encoder.py +336 -0
  21. keras_hub/src/models/sam/sam_transformer.py +159 -0
  22. keras_hub/src/models/stable_diffusion_3/__init__.py +13 -0
  23. keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +93 -0
  24. keras_hub/src/models/{stable_diffusion_v3 → stable_diffusion_3}/mmdit.py +351 -26
  25. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +630 -0
  26. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +151 -0
  27. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +77 -0
  28. keras_hub/src/models/{stable_diffusion_v3/t5_xxl_text_encoder.py → stable_diffusion_3/t5_encoder.py} +7 -7
  29. keras_hub/src/models/stable_diffusion_3/vae_image_decoder.py +333 -0
  30. keras_hub/src/models/{stable_diffusion_v3/t5_xxl_preprocessor.py → t5/t5_preprocessor.py} +12 -3
  31. keras_hub/src/models/text_to_image.py +295 -0
  32. keras_hub/src/models/vit_det/vit_det_backbone.py +17 -12
  33. keras_hub/src/utils/timm/convert_densenet.py +107 -0
  34. keras_hub/src/utils/timm/preset_loader.py +3 -0
  35. keras_hub/src/version_utils.py +1 -1
  36. {keras_hub_nightly-0.16.1.dev202409240339.dist-info → keras_hub_nightly-0.16.1.dev202409260340.dist-info}/METADATA +1 -1
  37. {keras_hub_nightly-0.16.1.dev202409240339.dist-info → keras_hub_nightly-0.16.1.dev202409260340.dist-info}/RECORD +40 -24
  38. keras_hub/src/models/stable_diffusion_v3/clip_preprocessor.py +0 -93
  39. keras_hub/src/models/stable_diffusion_v3/mmdit_block.py +0 -317
  40. keras_hub/src/models/stable_diffusion_v3/vae_attention.py +0 -126
  41. keras_hub/src/models/stable_diffusion_v3/vae_image_decoder.py +0 -186
  42. /keras_hub/src/models/{stable_diffusion_v3 → clip}/__init__.py +0 -0
  43. {keras_hub_nightly-0.16.1.dev202409240339.dist-info → keras_hub_nightly-0.16.1.dev202409260340.dist-info}/WHEEL +0 -0
  44. {keras_hub_nightly-0.16.1.dev202409240339.dist-info → keras_hub_nightly-0.16.1.dev202409260340.dist-info}/top_level.txt +0 -0
@@ -1,186 +0,0 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- import keras
15
- from keras import layers
16
-
17
- from keras_hub.src.models.stable_diffusion_v3.vae_attention import VAEAttention
18
- from keras_hub.src.utils.keras_utils import standardize_data_format
19
-
20
-
21
- class VAEImageDecoder(keras.Model):
22
- def __init__(
23
- self,
24
- stackwise_num_filters,
25
- stackwise_num_blocks,
26
- output_channels=3,
27
- latent_shape=(None, None, 16),
28
- data_format=None,
29
- dtype=None,
30
- **kwargs,
31
- ):
32
- data_format = standardize_data_format(data_format)
33
- gn_axis = -1 if data_format == "channels_last" else 1
34
-
35
- # === Functional Model ===
36
- latent_inputs = layers.Input(shape=latent_shape)
37
-
38
- x = layers.Conv2D(
39
- stackwise_num_filters[0],
40
- 3,
41
- 1,
42
- padding="same",
43
- data_format=data_format,
44
- dtype=dtype,
45
- name="input_projection",
46
- )(latent_inputs)
47
- x = apply_resnet_block(
48
- x,
49
- stackwise_num_filters[0],
50
- data_format=data_format,
51
- dtype=dtype,
52
- name="input_block0",
53
- )
54
- x = VAEAttention(
55
- stackwise_num_filters[0],
56
- data_format=data_format,
57
- dtype=dtype,
58
- name="input_attention",
59
- )(x)
60
- x = apply_resnet_block(
61
- x,
62
- stackwise_num_filters[0],
63
- data_format=data_format,
64
- dtype=dtype,
65
- name="input_block1",
66
- )
67
-
68
- # Stacks.
69
- for i, filters in enumerate(stackwise_num_filters):
70
- for j in range(stackwise_num_blocks[i]):
71
- x = apply_resnet_block(
72
- x,
73
- filters,
74
- data_format=data_format,
75
- dtype=dtype,
76
- name=f"block{i}_{j}",
77
- )
78
- if i != len(stackwise_num_filters) - 1:
79
- # No upsamling in the last blcok.
80
- x = layers.UpSampling2D(
81
- 2,
82
- data_format=data_format,
83
- dtype=dtype,
84
- name=f"upsample_{i}",
85
- )(x)
86
- x = layers.Conv2D(
87
- filters,
88
- 3,
89
- 1,
90
- padding="same",
91
- data_format=data_format,
92
- dtype=dtype,
93
- name=f"upsample_{i}_conv",
94
- )(x)
95
-
96
- # Ouput block.
97
- x = layers.GroupNormalization(
98
- groups=32,
99
- axis=gn_axis,
100
- epsilon=1e-6,
101
- dtype=dtype,
102
- name="output_norm",
103
- )(x)
104
- x = layers.Activation("swish", dtype=dtype, name="output_activation")(x)
105
- image_outputs = layers.Conv2D(
106
- output_channels,
107
- 3,
108
- 1,
109
- padding="same",
110
- data_format=data_format,
111
- dtype=dtype,
112
- name="output_projection",
113
- )(x)
114
- super().__init__(inputs=latent_inputs, outputs=image_outputs, **kwargs)
115
-
116
- # === Config ===
117
- self.stackwise_num_filters = stackwise_num_filters
118
- self.stackwise_num_blocks = stackwise_num_blocks
119
- self.output_channels = output_channels
120
- self.latent_shape = latent_shape
121
-
122
- if dtype is not None:
123
- try:
124
- self.dtype_policy = keras.dtype_policies.get(dtype)
125
- # Before Keras 3.2, there is no `keras.dtype_policies.get`.
126
- except AttributeError:
127
- if isinstance(dtype, keras.DTypePolicy):
128
- dtype = dtype.name
129
- self.dtype_policy = keras.DTypePolicy(dtype)
130
-
131
- def get_config(self):
132
- config = super().get_config()
133
- config.update(
134
- {
135
- "stackwise_num_filters": self.stackwise_num_filters,
136
- "stackwise_num_blocks": self.stackwise_num_blocks,
137
- "output_channels": self.output_channels,
138
- "image_shape": self.latent_shape,
139
- }
140
- )
141
- return config
142
-
143
-
144
- def apply_resnet_block(x, filters, data_format=None, dtype=None, name=None):
145
- data_format = standardize_data_format(data_format)
146
- gn_axis = -1 if data_format == "channels_last" else 1
147
- input_filters = x.shape[gn_axis]
148
-
149
- residual = x
150
- x = layers.GroupNormalization(
151
- groups=32, axis=gn_axis, epsilon=1e-6, dtype=dtype, name=f"{name}_norm1"
152
- )(x)
153
- x = layers.Activation("swish", dtype=dtype)(x)
154
- x = layers.Conv2D(
155
- filters,
156
- 3,
157
- 1,
158
- padding="same",
159
- data_format=data_format,
160
- dtype=dtype,
161
- name=f"{name}_conv1",
162
- )(x)
163
- x = layers.GroupNormalization(
164
- groups=32, axis=gn_axis, epsilon=1e-6, dtype=dtype, name=f"{name}_norm2"
165
- )(x)
166
- x = layers.Activation("swish")(x)
167
- x = layers.Conv2D(
168
- filters,
169
- 3,
170
- 1,
171
- padding="same",
172
- data_format=data_format,
173
- dtype=dtype,
174
- name=f"{name}_conv2",
175
- )(x)
176
- if input_filters != filters:
177
- residual = layers.Conv2D(
178
- filters,
179
- 1,
180
- 1,
181
- data_format=data_format,
182
- dtype=dtype,
183
- name=f"{name}_residual_projection",
184
- )(residual)
185
- x = layers.Add(dtype=dtype)([residual, x])
186
- return x