keras-hub-nightly 0.16.0.dev20240915160609__py3-none-any.whl → 0.16.1.dev202409220340__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/__init__.py +0 -6
- keras_hub/api/__init__.py +1 -0
- keras_hub/api/utils/__init__.py +22 -0
- keras_hub/src/api_export.py +17 -11
- keras_hub/src/layers/preprocessing/resizing_image_converter.py +56 -6
- keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +1 -11
- keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +0 -1
- keras_hub/src/models/densenet/densenet_backbone.py +2 -12
- keras_hub/src/models/densenet/densenet_image_classifier.py +0 -1
- keras_hub/src/models/efficientnet/efficientnet_backbone.py +3 -14
- keras_hub/src/models/gemma/gemma_decoder_block.py +1 -1
- keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +1 -11
- keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +0 -1
- keras_hub/src/models/mobilenet/mobilenet_backbone.py +3 -14
- keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -1
- keras_hub/src/models/pali_gemma/pali_gemma_vit.py +3 -0
- keras_hub/src/models/resnet/resnet_backbone.py +1 -21
- keras_hub/src/models/resnet/resnet_image_classifier.py +9 -4
- keras_hub/src/models/resnet/resnet_presets.py +6 -6
- keras_hub/src/models/retinanet/__init__.py +13 -0
- keras_hub/src/models/retinanet/anchor_generator.py +175 -0
- keras_hub/src/models/retinanet/box_matcher.py +259 -0
- keras_hub/src/models/retinanet/non_max_supression.py +578 -0
- keras_hub/src/models/vgg/vgg_backbone.py +0 -8
- keras_hub/src/models/vgg/vgg_image_classifier.py +0 -1
- keras_hub/src/models/vit_det/vit_det_backbone.py +0 -9
- keras_hub/src/tests/test_case.py +11 -3
- keras_hub/src/tokenizers/byte_pair_tokenizer.py +1 -0
- keras_hub/src/tokenizers/sentence_piece_tokenizer.py +1 -0
- keras_hub/src/tokenizers/word_piece_tokenizer.py +1 -0
- keras_hub/src/utils/imagenet/__init__.py +13 -0
- keras_hub/src/utils/imagenet/imagenet_utils.py +1067 -0
- keras_hub/src/utils/preset_utils.py +10 -1
- keras_hub/src/utils/tensor_utils.py +14 -14
- keras_hub/src/utils/timm/convert_resnet.py +0 -8
- keras_hub/src/utils/timm/preset_loader.py +16 -1
- keras_hub/src/version_utils.py +1 -1
- keras_hub_nightly-0.16.1.dev202409220340.dist-info/METADATA +202 -0
- {keras_hub_nightly-0.16.0.dev20240915160609.dist-info → keras_hub_nightly-0.16.1.dev202409220340.dist-info}/RECORD +41 -34
- {keras_hub_nightly-0.16.0.dev20240915160609.dist-info → keras_hub_nightly-0.16.1.dev202409220340.dist-info}/WHEEL +1 -1
- keras_hub_nightly-0.16.0.dev20240915160609.dist-info/METADATA +0 -33
- {keras_hub_nightly-0.16.0.dev20240915160609.dist-info → keras_hub_nightly-0.16.1.dev202409220340.dist-info}/top_level.txt +0 -0
@@ -569,7 +569,16 @@ def load_serialized_object(config, **kwargs):
|
|
569
569
|
|
570
570
|
def check_config_class(config):
|
571
571
|
"""Validate a preset is being loaded on the correct class."""
|
572
|
-
|
572
|
+
registered_name = config["registered_name"]
|
573
|
+
cls = keras.saving.get_registered_object(registered_name)
|
574
|
+
if cls is None:
|
575
|
+
raise ValueError(
|
576
|
+
f"Attempting to load class {registered_name} with "
|
577
|
+
"`from_preset()`, but there is no class registered with Keras "
|
578
|
+
f"for {registered_name}. Make sure to register any custom "
|
579
|
+
"classes with `register_keras_serializable()`."
|
580
|
+
)
|
581
|
+
return cls
|
573
582
|
|
574
583
|
|
575
584
|
def jax_memory_cleanup(layer):
|
@@ -30,20 +30,19 @@ except ImportError:
|
|
30
30
|
|
31
31
|
|
32
32
|
NO_CONVERT_COUNTER = threading.local()
|
33
|
-
NO_CONVERT_COUNTER.count = 0
|
34
33
|
|
35
34
|
|
36
35
|
@contextlib.contextmanager
|
37
36
|
def no_convert_scope():
|
38
37
|
try:
|
39
|
-
NO_CONVERT_COUNTER.count
|
38
|
+
NO_CONVERT_COUNTER.count = getattr(NO_CONVERT_COUNTER, "count", 0) + 1
|
40
39
|
yield
|
41
40
|
finally:
|
42
|
-
NO_CONVERT_COUNTER.count
|
41
|
+
NO_CONVERT_COUNTER.count = getattr(NO_CONVERT_COUNTER, "count", 0) - 1
|
43
42
|
|
44
43
|
|
45
44
|
def in_no_convert_scope():
|
46
|
-
return NO_CONVERT_COUNTER
|
45
|
+
return getattr(NO_CONVERT_COUNTER, "count", 0) > 0
|
47
46
|
|
48
47
|
|
49
48
|
def preprocessing_function(fn):
|
@@ -53,20 +52,21 @@ def preprocessing_function(fn):
|
|
53
52
|
|
54
53
|
params = inspect.signature(fn).parameters
|
55
54
|
accepts_labels = all(k in params for k in ("x", "y", "sample_weight"))
|
56
|
-
|
57
|
-
if not accepts_labels:
|
55
|
+
if not accepts_labels:
|
58
56
|
|
59
|
-
|
60
|
-
|
57
|
+
@functools.wraps(fn)
|
58
|
+
def wrapper(self, x, **kwargs):
|
59
|
+
with tf.device("cpu"):
|
61
60
|
x = convert_preprocessing_inputs(x)
|
62
61
|
with no_convert_scope():
|
63
62
|
x = fn(self, x, **kwargs)
|
64
63
|
return convert_preprocessing_outputs(x)
|
65
64
|
|
66
|
-
|
65
|
+
else:
|
67
66
|
|
68
|
-
|
69
|
-
|
67
|
+
@functools.wraps(fn)
|
68
|
+
def wrapper(self, x, y=None, sample_weight=None, **kwargs):
|
69
|
+
with tf.device("cpu"):
|
70
70
|
x, y, sample_weight = convert_preprocessing_inputs(
|
71
71
|
(x, y, sample_weight)
|
72
72
|
)
|
@@ -74,7 +74,7 @@ def preprocessing_function(fn):
|
|
74
74
|
x = fn(self, x, y=y, sample_weight=sample_weight, **kwargs)
|
75
75
|
return convert_preprocessing_outputs(x)
|
76
76
|
|
77
|
-
|
77
|
+
return wrapper
|
78
78
|
|
79
79
|
|
80
80
|
def convert_preprocessing_inputs(x):
|
@@ -118,7 +118,7 @@ def convert_preprocessing_inputs(x):
|
|
118
118
|
return {k: convert_preprocessing_inputs(x[k]) for k, v in x.items()}
|
119
119
|
if isinstance(x, tuple):
|
120
120
|
return tuple(convert_preprocessing_inputs(v) for v in x)
|
121
|
-
if isinstance(x, str):
|
121
|
+
if isinstance(x, (str, bytes)):
|
122
122
|
return tf.constant(x)
|
123
123
|
if isinstance(x, list):
|
124
124
|
try:
|
@@ -131,7 +131,7 @@ def convert_preprocessing_inputs(x):
|
|
131
131
|
# If ragged conversion failed return to the numpy error.
|
132
132
|
raise e
|
133
133
|
# If we have a string input, use tf.tensor.
|
134
|
-
if numpy_x.dtype.type is np.str_:
|
134
|
+
if numpy_x.dtype.type is np.str_ or numpy_x.dtype.type is np.bytes_:
|
135
135
|
return tf.convert_to_tensor(x)
|
136
136
|
# Numpy will default to int64, int32 works with more ops.
|
137
137
|
if numpy_x.dtype == np.int64:
|
@@ -151,14 +151,6 @@ def convert_weights(backbone, loader, timm_config):
|
|
151
151
|
if version == "v2":
|
152
152
|
port_batch_normalization("post_bn", "norm")
|
153
153
|
|
154
|
-
# Rebuild normalization layer with pretrained mean & std
|
155
|
-
mean = timm_config["pretrained_cfg"]["mean"]
|
156
|
-
std = timm_config["pretrained_cfg"]["std"]
|
157
|
-
normalization_layer = backbone.get_layer("normalization")
|
158
|
-
normalization_layer.input_mean = mean
|
159
|
-
normalization_layer.input_variance = [s**2 for s in std]
|
160
|
-
normalization_layer.build(normalization_layer._build_input_shape)
|
161
|
-
|
162
154
|
|
163
155
|
def convert_head(task, loader, timm_config):
|
164
156
|
v2 = "resnetv2_" in timm_config["architecture"]
|
@@ -62,5 +62,20 @@ class TimmPresetLoader(PresetLoader):
|
|
62
62
|
pretrained_cfg = self.config.get("pretrained_cfg", None)
|
63
63
|
if not pretrained_cfg or "input_size" not in pretrained_cfg:
|
64
64
|
return None
|
65
|
+
# This assumes the same basic setup for all timm preprocessing, and that
|
66
|
+
# all our image conversion will be via a `ResizingImageConverter. We may
|
67
|
+
# need to extend this as we cover more model types.
|
65
68
|
input_size = pretrained_cfg["input_size"]
|
66
|
-
|
69
|
+
mean = pretrained_cfg["mean"]
|
70
|
+
variance = [s**2 for s in pretrained_cfg["std"]]
|
71
|
+
interpolation = pretrained_cfg["interpolation"]
|
72
|
+
if interpolation not in ("bilinear", "nearest", "bicubic"):
|
73
|
+
interpolation = "bilinear" # Unsupported interpolation type.
|
74
|
+
return cls(
|
75
|
+
width=input_size[1],
|
76
|
+
height=input_size[2],
|
77
|
+
scale=1 / 255.0,
|
78
|
+
mean=mean,
|
79
|
+
variance=variance,
|
80
|
+
interpolation=interpolation,
|
81
|
+
)
|
keras_hub/src/version_utils.py
CHANGED
@@ -0,0 +1,202 @@
|
|
1
|
+
Metadata-Version: 2.1
|
2
|
+
Name: keras-hub-nightly
|
3
|
+
Version: 0.16.1.dev202409220340
|
4
|
+
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
|
+
Home-page: https://github.com/keras-team/keras-hub
|
6
|
+
Author: Keras team
|
7
|
+
Author-email: keras-hub@google.com
|
8
|
+
License: Apache License 2.0
|
9
|
+
Classifier: Development Status :: 3 - Alpha
|
10
|
+
Classifier: Programming Language :: Python :: 3
|
11
|
+
Classifier: Programming Language :: Python :: 3.9
|
12
|
+
Classifier: Programming Language :: Python :: 3.10
|
13
|
+
Classifier: Programming Language :: Python :: 3.11
|
14
|
+
Classifier: Programming Language :: Python :: 3 :: Only
|
15
|
+
Classifier: Operating System :: Unix
|
16
|
+
Classifier: Operating System :: Microsoft :: Windows
|
17
|
+
Classifier: Operating System :: MacOS
|
18
|
+
Classifier: Intended Audience :: Science/Research
|
19
|
+
Classifier: Topic :: Scientific/Engineering
|
20
|
+
Classifier: Topic :: Software Development
|
21
|
+
Requires-Python: >=3.9
|
22
|
+
Description-Content-Type: text/markdown
|
23
|
+
Requires-Dist: absl-py
|
24
|
+
Requires-Dist: numpy
|
25
|
+
Requires-Dist: packaging
|
26
|
+
Requires-Dist: regex
|
27
|
+
Requires-Dist: rich
|
28
|
+
Requires-Dist: kagglehub
|
29
|
+
Requires-Dist: tensorflow-text ; platform_system != "Darwin"
|
30
|
+
Provides-Extra: extras
|
31
|
+
Requires-Dist: rouge-score ; extra == 'extras'
|
32
|
+
Requires-Dist: sentencepiece ; extra == 'extras'
|
33
|
+
|
34
|
+
# KerasNLP: Multi-framework NLP Models
|
35
|
+
[](https://github.com/keras-team/keras-hub/actions?query=workflow%3ATests+branch%3Amaster)
|
36
|
+

|
37
|
+
[](https://github.com/keras-team/keras-hub/issues)
|
38
|
+
|
39
|
+
> [!IMPORTANT]
|
40
|
+
> 📢 KerasNLP is becoming KerasHub! 📢 Read
|
41
|
+
> [the announcement](https://github.com/keras-team/keras-hub/issues/1831).
|
42
|
+
>
|
43
|
+
> We have renamed the repo to KerasHub in preparation for the release, but have not yet
|
44
|
+
> released the new package. Follow the announcement for news.
|
45
|
+
|
46
|
+
KerasNLP is a natural language processing library that works natively
|
47
|
+
with TensorFlow, JAX, or PyTorch. KerasNLP provides a repository of pre-trained
|
48
|
+
models and a collection of lower-level building blocks for language modeling.
|
49
|
+
Built on Keras 3, models can be trained and serialized in any framework
|
50
|
+
and re-used in another without costly migrations.
|
51
|
+
|
52
|
+
This library is an extension of the core Keras API; all high-level modules are
|
53
|
+
Layers and Models that receive that same level of polish as core Keras.
|
54
|
+
If you are familiar with Keras, congratulations! You already understand most of
|
55
|
+
KerasNLP.
|
56
|
+
|
57
|
+
All models support JAX, TensorFlow, and PyTorch from a single model
|
58
|
+
definition and can be fine-tuned on GPUs and TPUs out of the box. Models can
|
59
|
+
be trained on individual accelerators with built-in PEFT techniques, or
|
60
|
+
fine-tuned at scale with model and data parallel training. See our
|
61
|
+
[Getting Started guide](https://keras.io/guides/keras_nlp/getting_started)
|
62
|
+
to start learning our API. Browse our models on
|
63
|
+
[Kaggle](https://www.kaggle.com/organizations/keras/models).
|
64
|
+
We welcome contributions.
|
65
|
+
|
66
|
+
## Quick Links
|
67
|
+
|
68
|
+
### For everyone
|
69
|
+
|
70
|
+
- [Home Page](https://keras.io/keras_nlp)
|
71
|
+
- [Developer Guides](https://keras.io/guides/keras_nlp)
|
72
|
+
- [API Reference](https://keras.io/api/keras_nlp)
|
73
|
+
- [Pre-trained Models](https://www.kaggle.com/organizations/keras/models)
|
74
|
+
|
75
|
+
### For contributors
|
76
|
+
|
77
|
+
- [Contributing Guide](CONTRIBUTING.md)
|
78
|
+
- [Roadmap](ROADMAP.md)
|
79
|
+
- [Style Guide](STYLE_GUIDE.md)
|
80
|
+
- [API Design Guide](API_DESIGN_GUIDE.md)
|
81
|
+
- [Call for Contributions](https://github.com/keras-team/keras-hub/issues?q=is%3Aissue+is%3Aopen+label%3A%22contributions+welcome%22)
|
82
|
+
|
83
|
+
## Quickstart
|
84
|
+
|
85
|
+
Fine-tune BERT on IMDb movie reviews:
|
86
|
+
|
87
|
+
```python
|
88
|
+
import os
|
89
|
+
os.environ["KERAS_BACKEND"] = "jax" # Or "tensorflow" or "torch"!
|
90
|
+
|
91
|
+
import keras_nlp
|
92
|
+
import tensorflow_datasets as tfds
|
93
|
+
|
94
|
+
imdb_train, imdb_test = tfds.load(
|
95
|
+
"imdb_reviews",
|
96
|
+
split=["train", "test"],
|
97
|
+
as_supervised=True,
|
98
|
+
batch_size=16,
|
99
|
+
)
|
100
|
+
# Load a BERT model.
|
101
|
+
classifier = keras_nlp.models.Classifier.from_preset(
|
102
|
+
"bert_base_en",
|
103
|
+
num_classes=2,
|
104
|
+
activation="softmax",
|
105
|
+
)
|
106
|
+
# Fine-tune on IMDb movie reviews.
|
107
|
+
classifier.fit(imdb_train, validation_data=imdb_test)
|
108
|
+
# Predict two new examples.
|
109
|
+
classifier.predict(["What an amazing movie!", "A total waste of my time."])
|
110
|
+
```
|
111
|
+
|
112
|
+
Try it out [in a colab](https://colab.research.google.com/gist/mattdangerw/e457e42d5ea827110c8d5cb4eb9d9a07/kerasnlp-quickstart.ipynb).
|
113
|
+
For more in depth guides and examples, visit
|
114
|
+
[keras.io/keras_nlp](https://keras.io/keras_nlp/).
|
115
|
+
|
116
|
+
## Installation
|
117
|
+
|
118
|
+
To install the latest KerasNLP release with Keras 3, simply run:
|
119
|
+
|
120
|
+
```
|
121
|
+
pip install --upgrade keras-nlp
|
122
|
+
```
|
123
|
+
|
124
|
+
To install the latest nightly changes for both KerasNLP and Keras, you can use
|
125
|
+
our nightly package.
|
126
|
+
|
127
|
+
```
|
128
|
+
pip install --upgrade keras-nlp-nightly
|
129
|
+
```
|
130
|
+
|
131
|
+
Note that currently, installing KerasNLP will always pull in TensorFlow for use
|
132
|
+
of the `tf.data` API for preprocessing. Even when pre-processing with `tf.data`,
|
133
|
+
training can still happen on any backend.
|
134
|
+
|
135
|
+
Read [Getting started with Keras](https://keras.io/getting_started/) for more
|
136
|
+
information on installing Keras 3 and compatibility with different frameworks.
|
137
|
+
|
138
|
+
> [!IMPORTANT]
|
139
|
+
> We recommend using KerasNLP with TensorFlow 2.16 or later, as TF 2.16 packages
|
140
|
+
> Keras 3 by default.
|
141
|
+
|
142
|
+
## Configuring your backend
|
143
|
+
|
144
|
+
If you have Keras 3 installed in your environment (see installation above),
|
145
|
+
you can use KerasNLP with any of JAX, TensorFlow and PyTorch. To do so, set the
|
146
|
+
`KERAS_BACKEND` environment variable. For example:
|
147
|
+
|
148
|
+
```shell
|
149
|
+
export KERAS_BACKEND=jax
|
150
|
+
```
|
151
|
+
|
152
|
+
Or in Colab, with:
|
153
|
+
|
154
|
+
```python
|
155
|
+
import os
|
156
|
+
os.environ["KERAS_BACKEND"] = "jax"
|
157
|
+
|
158
|
+
import keras_nlp
|
159
|
+
```
|
160
|
+
|
161
|
+
> [!IMPORTANT]
|
162
|
+
> Make sure to set the `KERAS_BACKEND` before import any Keras libraries, it
|
163
|
+
> will be used to set up Keras when it is first imported.
|
164
|
+
|
165
|
+
## Compatibility
|
166
|
+
|
167
|
+
We follow [Semantic Versioning](https://semver.org/), and plan to
|
168
|
+
provide backwards compatibility guarantees both for code and saved models built
|
169
|
+
with our components. While we continue with pre-release `0.y.z` development, we
|
170
|
+
may break compatibility at any time and APIs should not be consider stable.
|
171
|
+
|
172
|
+
## Disclaimer
|
173
|
+
|
174
|
+
KerasNLP provides access to pre-trained models via the `keras_nlp.models` API.
|
175
|
+
These pre-trained models are provided on an "as is" basis, without warranties
|
176
|
+
or conditions of any kind. The following underlying models are provided by third
|
177
|
+
parties, and subject to separate licenses:
|
178
|
+
BART, BLOOM, DeBERTa, DistilBERT, GPT-2, Llama, Mistral, OPT, RoBERTa, Whisper,
|
179
|
+
and XLM-RoBERTa.
|
180
|
+
|
181
|
+
## Citing KerasNLP
|
182
|
+
|
183
|
+
If KerasNLP helps your research, we appreciate your citations.
|
184
|
+
Here is the BibTeX entry:
|
185
|
+
|
186
|
+
```bibtex
|
187
|
+
@misc{kerasnlp2022,
|
188
|
+
title={KerasNLP},
|
189
|
+
author={Watson, Matthew, and Qian, Chen, and Bischof, Jonathan and Chollet,
|
190
|
+
Fran\c{c}ois and others},
|
191
|
+
year={2022},
|
192
|
+
howpublished={\url{https://github.com/keras-team/keras-hub}},
|
193
|
+
}
|
194
|
+
```
|
195
|
+
|
196
|
+
## Acknowledgements
|
197
|
+
|
198
|
+
Thank you to all of our wonderful contributors!
|
199
|
+
|
200
|
+
<a href="https://github.com/keras-team/keras-hub/graphs/contributors">
|
201
|
+
<img src="https://contrib.rocks/image?repo=keras-team/keras-hub" />
|
202
|
+
</a>
|
@@ -1,14 +1,15 @@
|
|
1
|
-
keras_hub/__init__.py,sha256=
|
2
|
-
keras_hub/api/__init__.py,sha256=
|
1
|
+
keras_hub/__init__.py,sha256=La-s5SQDd0312puWDSbPJ2XYxFXtg0jsCdUa2LMY-Z8,1440
|
2
|
+
keras_hub/api/__init__.py,sha256=8EwhEBO-o-92lvGv6M5zOdkNL9Bd3xfutlfGNJ8QwBE,1109
|
3
3
|
keras_hub/api/bounding_box/__init__.py,sha256=LNSVZLB1WJ9hMg0wxt7HTfFFd9uAFviH9x9CnfJYzBA,1682
|
4
4
|
keras_hub/api/layers/__init__.py,sha256=4OlmzaQ0I8RuHp7Ot9580loeElsV4QeB2Lon8ZB_a1Q,2600
|
5
5
|
keras_hub/api/metrics/__init__.py,sha256=tgQfooPHzlq6w34RHfro6vO8IUITLTf-jU2IWEBxxUM,966
|
6
6
|
keras_hub/api/models/__init__.py,sha256=0BRVIXtv8DrIbE5n1JeAR_gVeF1_sG_zeMI0cR0rjBI,13396
|
7
7
|
keras_hub/api/samplers/__init__.py,sha256=l56H4y3h_HlRn_PpeMyZ6vC7228EH_BVFo4Caay-zQ8,1315
|
8
8
|
keras_hub/api/tokenizers/__init__.py,sha256=nzMwKmxkMCOiYB35BIgxHNveCM9WoYRp7ChhmVK8MIM,3042
|
9
|
+
keras_hub/api/utils/__init__.py,sha256=4IXDgmXqFzqrCK2MPgkih0Ye1s-8hrlBaUk-n5Kqwl4,800
|
9
10
|
keras_hub/src/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
10
|
-
keras_hub/src/api_export.py,sha256=
|
11
|
-
keras_hub/src/version_utils.py,sha256=
|
11
|
+
keras_hub/src/api_export.py,sha256=82JzmDgnWTJR-PRJI9L_vjhW2Svz8gilbE1NMGZ2JgA,2085
|
12
|
+
keras_hub/src/version_utils.py,sha256=pb_llbrCwUQ10s7tznnYbDbzu7AOJ-4swn_ubtL9-3E,808
|
12
13
|
keras_hub/src/bounding_box/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
13
14
|
keras_hub/src/bounding_box/converters.py,sha256=V2ti6xPpaBgeLKbTpCsHsABdYOYASerIKX9oWqeOjHo,18450
|
14
15
|
keras_hub/src/bounding_box/formats.py,sha256=5bbHO-n2ADsKIOBJDHMvIPCeNBaV1_mj-NVCgBKNiu8,4453
|
@@ -39,7 +40,7 @@ keras_hub/src/layers/preprocessing/multi_segment_packer.py,sha256=0se5fOIz-2fMt4
|
|
39
40
|
keras_hub/src/layers/preprocessing/preprocessing_layer.py,sha256=5jFBScsNWuYyokPt8mUoyYeOkKH9ZS7MkeC3j-nxYHU,1273
|
40
41
|
keras_hub/src/layers/preprocessing/random_deletion.py,sha256=P4YkpDXgQnlXEgukk6V_iuIrRIQOOC9i8KMkpd7UDic,10349
|
41
42
|
keras_hub/src/layers/preprocessing/random_swap.py,sha256=Wu6pNuQ1l_5VRGlRxcomrWyEnqYfA4PcK-mHNuvSjr0,10090
|
42
|
-
keras_hub/src/layers/preprocessing/resizing_image_converter.py,sha256=
|
43
|
+
keras_hub/src/layers/preprocessing/resizing_image_converter.py,sha256=P7KDWTGSnf40iUGUXhCkxx7A5kQMsTF1s3PxYkYxa6U,6440
|
43
44
|
keras_hub/src/layers/preprocessing/start_end_packer.py,sha256=3IvVoOE-0kovt_8o2w-uVYEPFhGg-tmv3cwuJQu7VPc,8560
|
44
45
|
keras_hub/src/metrics/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
45
46
|
keras_hub/src/metrics/bleu.py,sha256=r0vROmLVVNjc1d9fwJgc64lwmhEXHNaNT1ed1h7Y0E0,14259
|
@@ -94,8 +95,8 @@ keras_hub/src/models/bloom/bloom_decoder.py,sha256=hSoeVnwRQvGbpVhYmf7-k8FB3Wg4a
|
|
94
95
|
keras_hub/src/models/bloom/bloom_presets.py,sha256=7GiGFPmcXd_UraNsWGQffpzjKDRF-7nqIoUsic78xf0,4696
|
95
96
|
keras_hub/src/models/bloom/bloom_tokenizer.py,sha256=ZMx8mHhw0D50zmmvYdmpg-Lk2GcvHz7pPlRpPlhS_2s,3161
|
96
97
|
keras_hub/src/models/csp_darknet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
97
|
-
keras_hub/src/models/csp_darknet/csp_darknet_backbone.py,sha256=
|
98
|
-
keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py,sha256=
|
98
|
+
keras_hub/src/models/csp_darknet/csp_darknet_backbone.py,sha256=h0eua1EZP0vBV416uOVMmMP1JXy7cVoEj0JEO0OO_lc,14312
|
99
|
+
keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py,sha256=qLav7bxuzB0oaNJLs8gIiQbQVFjAlteDT7WKRfKoSmk,4355
|
99
100
|
keras_hub/src/models/deberta_v3/__init__.py,sha256=NCuHFWsgQl-Wer7w3xETvqFtF75AyKabjAYdOlyN34w,874
|
100
101
|
keras_hub/src/models/deberta_v3/deberta_v3_backbone.py,sha256=_J-PpSLubay58YO51BicDK0bF97aUeoC21ZQOt1O9r0,7831
|
101
102
|
keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py,sha256=urcktTsXN3kDWnppplnC8yISGx37qGW5HdwHSC7VDLE,4773
|
@@ -108,8 +109,8 @@ keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py,sha256=Zt10UPx
|
|
108
109
|
keras_hub/src/models/deberta_v3/disentangled_self_attention.py,sha256=MxpWy30h9JB8nlEk7V9_wETzP-tpv1Sd1Wiz_pHGpkI,13708
|
109
110
|
keras_hub/src/models/deberta_v3/relative_embedding.py,sha256=QT5MAnheJ1wSKFeN49pdnZzWkztz5K2oYYuNEtB_5xM,3472
|
110
111
|
keras_hub/src/models/densenet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
111
|
-
keras_hub/src/models/densenet/densenet_backbone.py,sha256=
|
112
|
-
keras_hub/src/models/densenet/densenet_image_classifier.py,sha256=
|
112
|
+
keras_hub/src/models/densenet/densenet_backbone.py,sha256=BbTecC7gfigSC3t4L-kGsZHS7pjj8DtDIztyMxo_AoI,7238
|
113
|
+
keras_hub/src/models/densenet/densenet_image_classifier.py,sha256=eECPZKHycVHNbgFuBHyiZGPWBn0M_pBdLasjmroc95g,4303
|
113
114
|
keras_hub/src/models/distil_bert/__init__.py,sha256=EiJUA3y_b22rMacMbBD7jD0eBSzR-wbVtF73k2RsQow,889
|
114
115
|
keras_hub/src/models/distil_bert/distil_bert_backbone.py,sha256=ZW2OgNlWXeRlfI5BrcJLYr4Oc2qNJZoDxjoL7-cGuIQ,7027
|
115
116
|
keras_hub/src/models/distil_bert/distil_bert_masked_lm.py,sha256=1BFS1At_HYlLK21VWyhQPrPtActpmR52A8LJG2c6N8Y,4862
|
@@ -119,7 +120,7 @@ keras_hub/src/models/distil_bert/distil_bert_text_classifier.py,sha256=Q-qGmyl6i
|
|
119
120
|
keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py,sha256=sad3XpW2HfjG2iQ4JRm1tw2jp4pZCN4LYwF1mM4GUps,5480
|
120
121
|
keras_hub/src/models/distil_bert/distil_bert_tokenizer.py,sha256=VK7kZJEbsClp20uWVb6pj-WSUU5IMdRBk0jyUIM_RIg,3698
|
121
122
|
keras_hub/src/models/efficientnet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
122
|
-
keras_hub/src/models/efficientnet/efficientnet_backbone.py,sha256=
|
123
|
+
keras_hub/src/models/efficientnet/efficientnet_backbone.py,sha256=i-K9kYwnl2Ninuebw6nNJ6X7D_4dvjMrV1Y9XAdt6I4,21392
|
123
124
|
keras_hub/src/models/efficientnet/fusedmbconv.py,sha256=_6aNQKL2XdVNgoAdKvvTh_NDkWeU66q98EFUOjEQ1UM,7933
|
124
125
|
keras_hub/src/models/efficientnet/mbconv.py,sha256=LNbEj7RpEZ0SqzEu-7ZpH1BKm6Ne2sXPckc5c2DMqUk,8212
|
125
126
|
keras_hub/src/models/electra/__init__.py,sha256=ixE5hAkfTFfErqbYVyIUKMT8MUz-u_175QXxEBIiGBU,849
|
@@ -147,7 +148,7 @@ keras_hub/src/models/gemma/gemma_attention.py,sha256=mKwcU_s0epJzRllxGVg-Bbc1CuC
|
|
147
148
|
keras_hub/src/models/gemma/gemma_backbone.py,sha256=RO9O_AhUlboUzBYxYFDFFdYBjaXaDifPB-Yz2idnYZ8,13501
|
148
149
|
keras_hub/src/models/gemma/gemma_causal_lm.py,sha256=jOy_X0QR-olMfCPyFtmXRZSllWz3oy10JYwLzAPtXAg,17357
|
149
150
|
keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py,sha256=uZdYAAMIeABh339U9qmSPVRxVXtU4Ko4nrih1nN0QX4,3498
|
150
|
-
keras_hub/src/models/gemma/gemma_decoder_block.py,sha256=
|
151
|
+
keras_hub/src/models/gemma/gemma_decoder_block.py,sha256=OgvSypSaKXNKatmua62HITyUzl79enh4x_sUZhBRItY,8173
|
151
152
|
keras_hub/src/models/gemma/gemma_presets.py,sha256=7N5dcMjMb4gOb9ysCLdVqLFDpvV3bETiB6Hq2XrdGWA,9867
|
152
153
|
keras_hub/src/models/gemma/gemma_tokenizer.py,sha256=JZ3XDScSsAV9y8uM-uKrO-lyu3PNyXNynrJqVJQbJo0,3208
|
153
154
|
keras_hub/src/models/gemma/rms_normalization.py,sha256=27nA9BjNVkwI-icHISK57qJl8wxRdWGM5g4K_DzjAeI,1419
|
@@ -190,12 +191,12 @@ keras_hub/src/models/mistral/mistral_presets.py,sha256=uF1Q4zllcV1upIlqmn3gxhVWz
|
|
190
191
|
keras_hub/src/models/mistral/mistral_tokenizer.py,sha256=pO7mpzYgRDFpIrsmLBL3zxkadrOE0xfFj30c2nHN42c,2591
|
191
192
|
keras_hub/src/models/mistral/mistral_transformer_decoder.py,sha256=6CdaZt1lQ9VcLz_OoYroqiqvsZfq9H5VGaWab25aCRI,10127
|
192
193
|
keras_hub/src/models/mix_transformer/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
193
|
-
keras_hub/src/models/mix_transformer/mix_transformer_backbone.py,sha256=
|
194
|
-
keras_hub/src/models/mix_transformer/mix_transformer_classifier.py,sha256=
|
194
|
+
keras_hub/src/models/mix_transformer/mix_transformer_backbone.py,sha256=1OUWvrI4y5rzoOsQkB8ZqQqeg5DwFIWRY-IKgR5qDfA,6426
|
195
|
+
keras_hub/src/models/mix_transformer/mix_transformer_classifier.py,sha256=Kq-FIayi0yiJ1P4_AhwdBAC-vFnfhEK3FYlmBjw4jUc,4277
|
195
196
|
keras_hub/src/models/mix_transformer/mix_transformer_layers.py,sha256=Bi4lHMfiKgI-XOt21BBfKoK05uU3GcDJ3mQrGfCXb6Y,10123
|
196
197
|
keras_hub/src/models/mobilenet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
197
|
-
keras_hub/src/models/mobilenet/mobilenet_backbone.py,sha256=
|
198
|
-
keras_hub/src/models/mobilenet/mobilenet_image_classifier.py,sha256=
|
198
|
+
keras_hub/src/models/mobilenet/mobilenet_backbone.py,sha256=Y950Yx4s5fTmVk7YTiMFiyqZLLuB75_iJaVbefznOwo,18776
|
199
|
+
keras_hub/src/models/mobilenet/mobilenet_image_classifier.py,sha256=35Px2z1E_ATSZIYNb_bXjJ6Qimbd2rnPi04S99ycTNg,3759
|
199
200
|
keras_hub/src/models/opt/__init__.py,sha256=DiiylcsbseSQ8te8KWZ6BTIaKYSzXHUPGBgFssFNGFY,825
|
200
201
|
keras_hub/src/models/opt/opt_backbone.py,sha256=cbm9I7d3QlGD8l2W1eK8esqc5gm77tpwxg4t9nC-FtA,6460
|
201
202
|
keras_hub/src/models/opt/opt_causal_lm.py,sha256=z6M8cQV-c8q7HmikNA9RuvsMMvQYF21-ZcC0nVGfnp8,11438
|
@@ -210,7 +211,7 @@ keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py,sha256=fXLO4uHtWYTuE
|
|
210
211
|
keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=Wm1A-HuOMxesAHFbEpP5ZkPbdDaVW5CTTwkyFpI-WdI,990
|
211
212
|
keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=cG5cV2bkiDJlKDiHX76BpnClsY5PcmLDezDg7emeiA4,2986
|
212
213
|
keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=7F1TQql3DEN517iVbNL60u6fQPimrGQvWBYh16ng8JU,3000
|
213
|
-
keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=
|
214
|
+
keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=GUMAuFcpoi0TxJk7LzsKp0Tt0c_83gx645cz26GqFzA,19271
|
214
215
|
keras_hub/src/models/phi3/__init__.py,sha256=ENAOZhScWf9RbPmkiuICR5gr36ZMUn4AniLvJOrykj8,831
|
215
216
|
keras_hub/src/models/phi3/phi3_attention.py,sha256=BcYApteLjbrCzube7jHVagc0mMpDCReRyvsQhQcJzY8,9828
|
216
217
|
keras_hub/src/models/phi3/phi3_backbone.py,sha256=MvTE5bMmVpFHinZIEDBM1lfJFbgu4zg-0e-8_4hK-No,9470
|
@@ -222,11 +223,15 @@ keras_hub/src/models/phi3/phi3_presets.py,sha256=S7_gIqPxU5FQAEnAE_68UrfGGSLOMvo
|
|
222
223
|
keras_hub/src/models/phi3/phi3_rotary_embedding.py,sha256=QVJIgpOw6iMicGrsPdW8eF84vV_stf0Tqm2qBJdsKH0,5597
|
223
224
|
keras_hub/src/models/phi3/phi3_tokenizer.py,sha256=hlA-u2sTRYARDW3ABICPeiOYW1AJwr-5kvZk3EB5z7M,2577
|
224
225
|
keras_hub/src/models/resnet/__init__.py,sha256=41gttaQ7gt_ZaqDa_GKuMPfIk5c88-GrdC1h9fBUTXc,843
|
225
|
-
keras_hub/src/models/resnet/resnet_backbone.py,sha256=
|
226
|
-
keras_hub/src/models/resnet/resnet_image_classifier.py,sha256=
|
226
|
+
keras_hub/src/models/resnet/resnet_backbone.py,sha256=Qu2MuPBNYasQDD4zeY2rnUUqiEYRXqjbeXilcUdimkA,32451
|
227
|
+
keras_hub/src/models/resnet/resnet_image_classifier.py,sha256=4Ksxhp4kB93mbkjh7K-uKcCyEO4MtMazHN7VtUCL-wg,5362
|
227
228
|
keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py,sha256=Vrs9NBZRL5fgDXXY27GZJg5xMa5_wovi8A2z8kFl2nc,1129
|
228
229
|
keras_hub/src/models/resnet/resnet_image_converter.py,sha256=820drIU5Kkib7gC7T418mmrhsBHSkenfEiZ6-fkChv0,961
|
229
|
-
keras_hub/src/models/resnet/resnet_presets.py,sha256=
|
230
|
+
keras_hub/src/models/resnet/resnet_presets.py,sha256=6y8R-PviAnEyh-LFli9uMUNku4cJC9V7YqOd9V5PlV0,3550
|
231
|
+
keras_hub/src/models/retinanet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
232
|
+
keras_hub/src/models/retinanet/anchor_generator.py,sha256=VQwgIAWh-6s28TU8MHFdl556U6h7rfF9B9iVI_zwI7c,7027
|
233
|
+
keras_hub/src/models/retinanet/box_matcher.py,sha256=SvGn_6d5sfjq522UaHpxVCE2S5Nwml_aj5yAKApTNE4,11420
|
234
|
+
keras_hub/src/models/retinanet/non_max_supression.py,sha256=5rDXA1Lk27T1TK3cwTrRIAbh8ceZLcbL4Koei96bBVQ,21522
|
230
235
|
keras_hub/src/models/roberta/__init__.py,sha256=P-9HOooyuSriDclHrf0YvdRy95bU08VPU7P8nBsy59U,849
|
231
236
|
keras_hub/src/models/roberta/roberta_backbone.py,sha256=KR3y11RpA4dvKmQ2HaRoWNTLGnLs6Lqx-HXYejQt4G8,6926
|
232
237
|
keras_hub/src/models/roberta/roberta_masked_lm.py,sha256=N0r6XEZAVMNgyTorFQzyT8EiEXtWO3R2PnL6s2P3YDQ,4763
|
@@ -254,10 +259,10 @@ keras_hub/src/models/t5/t5_presets.py,sha256=2RT_NuJcqDdSeAsoSJXh5O_ax2H-s4YKTAo
|
|
254
259
|
keras_hub/src/models/t5/t5_tokenizer.py,sha256=UnmZjiKhyb4AU7zALW3YAM_6_OGzYOVEGStBiw4ICvg,3103
|
255
260
|
keras_hub/src/models/t5/t5_transformer_layer.py,sha256=wnu108InkHH9YMmFNTbmgIqcrKQQUxeJ7S1dcjUfBSY,5933
|
256
261
|
keras_hub/src/models/vgg/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
257
|
-
keras_hub/src/models/vgg/vgg_backbone.py,sha256=
|
258
|
-
keras_hub/src/models/vgg/vgg_image_classifier.py,sha256=
|
262
|
+
keras_hub/src/models/vgg/vgg_backbone.py,sha256=O6onZEduEPt1J4v2HFgtHsxu-SheqpUwY2pYoeLa6uE,5080
|
263
|
+
keras_hub/src/models/vgg/vgg_image_classifier.py,sha256=cDcmHoHU1BZ211JakGPw3Z9lV22oMmK8J4-Ng8S07G0,4071
|
259
264
|
keras_hub/src/models/vit_det/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
260
|
-
keras_hub/src/models/vit_det/vit_det_backbone.py,sha256=
|
265
|
+
keras_hub/src/models/vit_det/vit_det_backbone.py,sha256=4b3CUk4zg8gjFJvDU-QJZP72CV8jqw3TnaoCzUC-vyo,8054
|
261
266
|
keras_hub/src/models/vit_det/vit_layers.py,sha256=JeUzOT2jmSOoJ_OiHOfLSkkCUZ5mlK5Mfd21DwudRCQ,20436
|
262
267
|
keras_hub/src/models/whisper/__init__.py,sha256=FI-xj6FwZDAAdCfKhOrE1_roQ8cXhD1gK4G6CLTvPQo,849
|
263
268
|
keras_hub/src/models/whisper/whisper_audio_converter.py,sha256=JqtA2kLUMFKZ4FrI8g2piEjahE-0-F3Yp4qQXS1cYf4,8973
|
@@ -290,25 +295,27 @@ keras_hub/src/samplers/serialization.py,sha256=Z8u-nRdv7K1RPS_0rMYJwkunoFmI2xPCj
|
|
290
295
|
keras_hub/src/samplers/top_k_sampler.py,sha256=xLexmP7FrW_W2657ObeJUgbeEox8AbB9uXIBKODVuKU,2836
|
291
296
|
keras_hub/src/samplers/top_p_sampler.py,sha256=Mx4Ytti2BsVh6uLPnBeNZ5znBjvXrnDndmbMlMAMRbk,3986
|
292
297
|
keras_hub/src/tests/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
293
|
-
keras_hub/src/tests/test_case.py,sha256=
|
298
|
+
keras_hub/src/tests/test_case.py,sha256=i8-jrXric88acmQTGIn0KCp157EsWZBCx88qHKyAjSM,25730
|
294
299
|
keras_hub/src/tokenizers/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
295
|
-
keras_hub/src/tokenizers/byte_pair_tokenizer.py,sha256=
|
300
|
+
keras_hub/src/tokenizers/byte_pair_tokenizer.py,sha256=5VTFUGSQGd_NMwuQc9kBA5KU1rLcJpNYnRPl28NMFWo,24435
|
296
301
|
keras_hub/src/tokenizers/byte_tokenizer.py,sha256=ueijdnipIG7G4a_cals0y6t7oVm-dyEcSVY2JkX_5i4,11234
|
297
|
-
keras_hub/src/tokenizers/sentence_piece_tokenizer.py,sha256=
|
302
|
+
keras_hub/src/tokenizers/sentence_piece_tokenizer.py,sha256=nmYwaoK4yLaqp1c0JxXI4JZS3fmR4qIyuRnf2zExjmg,10148
|
298
303
|
keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py,sha256=0VZ-5QdvVKFp8_tSZiM8qROYhrrfrg-GCJ1BllXSd1g,5420
|
299
304
|
keras_hub/src/tokenizers/tokenizer.py,sha256=sySYL7Nym6N-NIXk1pu9zsgbfFIOGvPvNRy-R3kXlzA,10098
|
300
305
|
keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py,sha256=z720-paGm8tV-rhs0B8QHD3P2syPKVdXMyQqLdSjTwM,14118
|
301
|
-
keras_hub/src/tokenizers/word_piece_tokenizer.py,sha256=
|
306
|
+
keras_hub/src/tokenizers/word_piece_tokenizer.py,sha256=AWFCHCxgRJ3_iHLxi1s9gTIjTrdtqvJAxqN1ugEXLvc,20529
|
302
307
|
keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=_W07w57ZHuqpAK7U8Qs4neFW4UEzhRdfyVy2oDs02d8,7136
|
303
308
|
keras_hub/src/utils/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
304
309
|
keras_hub/src/utils/keras_utils.py,sha256=r0ro8lBfqCgWT_S5dXMVuj_nQNxe_Dwsowrc1dSdHT0,2555
|
305
310
|
keras_hub/src/utils/pipeline_model.py,sha256=9GNlV8RBV18oFQUkXDCizyyBI8sYhB_7ejxI2dEPVdw,9610
|
306
|
-
keras_hub/src/utils/preset_utils.py,sha256=
|
311
|
+
keras_hub/src/utils/preset_utils.py,sha256=jMKJBYJO4AlT1DNis6kKTwDZ9P-JdfJC5PAU3e7ZFz0,29547
|
307
312
|
keras_hub/src/utils/python_utils.py,sha256=G5oCVQggmqgkgD1NXuBQEgNCFmDSevYv7bz-1cAVFAs,787
|
308
|
-
keras_hub/src/utils/tensor_utils.py,sha256=
|
313
|
+
keras_hub/src/utils/tensor_utils.py,sha256=XpWORE8iUzHXv1E1akiYDep07ndZJRKvjsKVljMvtUU,11362
|
314
|
+
keras_hub/src/utils/imagenet/__init__.py,sha256=AK2s8L-VARI5OmlT6G3vtlKIVyjwLfgVwXfxzhhSCq4,585
|
315
|
+
keras_hub/src/utils/imagenet/imagenet_utils.py,sha256=0iHrAQbh5DCa9Dh7tJiQeJc7AGzNO7j0cFEWS2Of16w,39889
|
309
316
|
keras_hub/src/utils/timm/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
310
|
-
keras_hub/src/utils/timm/convert_resnet.py,sha256=
|
311
|
-
keras_hub/src/utils/timm/preset_loader.py,sha256=
|
317
|
+
keras_hub/src/utils/timm/convert_resnet.py,sha256=X2N9lk8sqRMzOMXkcIThAu6ZEtw8u8_Y4Kol82iTuW4,6417
|
318
|
+
keras_hub/src/utils/timm/preset_loader.py,sha256=ac2PwGkfe-bikhQEFeIM25gDs3xk0E9SS5A1YEzZYQU,3602
|
312
319
|
keras_hub/src/utils/transformers/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
313
320
|
keras_hub/src/utils/transformers/convert_albert.py,sha256=7b9X1TLrWfHieoeX_K-EXTagkl4Rp9AfPjsPrwArBGY,8280
|
314
321
|
keras_hub/src/utils/transformers/convert_bart.py,sha256=RXmPf_XUZrUyqDaOV9T7qVNEP4rAVR44oK1aRZI0v78,14996
|
@@ -321,7 +328,7 @@ keras_hub/src/utils/transformers/convert_mistral.py,sha256=4QStizMS6ESEPjSI-ls6j
|
|
321
328
|
keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=BT5eX1QzbjCQCopbMstiejQQWQiB_N77bpD5FMUygEo,11234
|
322
329
|
keras_hub/src/utils/transformers/preset_loader.py,sha256=9x9hLhDh_6PAHG5gay5rVoEVyt-gXTQGrnprjMLKvCM,3294
|
323
330
|
keras_hub/src/utils/transformers/safetensor_utils.py,sha256=2O8lcCf9yIFt5xiRVOtF1ZkPb5pfhOfDJotBaanD9Zo,3547
|
324
|
-
keras_hub_nightly-0.16.
|
325
|
-
keras_hub_nightly-0.16.
|
326
|
-
keras_hub_nightly-0.16.
|
327
|
-
keras_hub_nightly-0.16.
|
331
|
+
keras_hub_nightly-0.16.1.dev202409220340.dist-info/METADATA,sha256=uJ9N2NsxFAoXOi7M4-WJSEJzxcyrN-887ZFn6DNL8RE,7061
|
332
|
+
keras_hub_nightly-0.16.1.dev202409220340.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
|
333
|
+
keras_hub_nightly-0.16.1.dev202409220340.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
334
|
+
keras_hub_nightly-0.16.1.dev202409220340.dist-info/RECORD,,
|
@@ -1,33 +0,0 @@
|
|
1
|
-
Metadata-Version: 2.1
|
2
|
-
Name: keras-hub-nightly
|
3
|
-
Version: 0.16.0.dev20240915160609
|
4
|
-
Summary: 🚧🚧🚧 Work in progress. 🚧🚧🚧 More details soon!
|
5
|
-
Home-page: https://github.com/keras-team/keras-hub
|
6
|
-
Author: Keras team
|
7
|
-
Author-email: keras-hub@google.com
|
8
|
-
License: Apache License 2.0
|
9
|
-
Classifier: Development Status :: 3 - Alpha
|
10
|
-
Classifier: Programming Language :: Python :: 3
|
11
|
-
Classifier: Programming Language :: Python :: 3.9
|
12
|
-
Classifier: Programming Language :: Python :: 3.10
|
13
|
-
Classifier: Programming Language :: Python :: 3.11
|
14
|
-
Classifier: Programming Language :: Python :: 3 :: Only
|
15
|
-
Classifier: Operating System :: Unix
|
16
|
-
Classifier: Operating System :: Microsoft :: Windows
|
17
|
-
Classifier: Operating System :: MacOS
|
18
|
-
Classifier: Intended Audience :: Science/Research
|
19
|
-
Classifier: Topic :: Scientific/Engineering
|
20
|
-
Classifier: Topic :: Software Development
|
21
|
-
Requires-Python: >=3.9
|
22
|
-
Requires-Dist: absl-py
|
23
|
-
Requires-Dist: numpy
|
24
|
-
Requires-Dist: packaging
|
25
|
-
Requires-Dist: regex
|
26
|
-
Requires-Dist: rich
|
27
|
-
Requires-Dist: kagglehub
|
28
|
-
Requires-Dist: tensorflow-text ; platform_system != "Darwin"
|
29
|
-
Provides-Extra: extras
|
30
|
-
Requires-Dist: rouge-score ; extra == 'extras'
|
31
|
-
Requires-Dist: sentencepiece ; extra == 'extras'
|
32
|
-
|
33
|
-
🚧🚧🚧 Work in progress. 🚧🚧🚧 More details soon!
|