keras-hub-nightly 0.16.0.dev20240915160609__py3-none-any.whl → 0.16.1.dev202409210335__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (42) hide show
  1. keras_hub/__init__.py +0 -6
  2. keras_hub/api/__init__.py +1 -0
  3. keras_hub/api/utils/__init__.py +22 -0
  4. keras_hub/src/api_export.py +17 -11
  5. keras_hub/src/layers/preprocessing/resizing_image_converter.py +56 -6
  6. keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +1 -11
  7. keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +0 -1
  8. keras_hub/src/models/densenet/densenet_backbone.py +2 -12
  9. keras_hub/src/models/densenet/densenet_image_classifier.py +0 -1
  10. keras_hub/src/models/efficientnet/efficientnet_backbone.py +3 -14
  11. keras_hub/src/models/gemma/gemma_decoder_block.py +1 -1
  12. keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +1 -11
  13. keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +0 -1
  14. keras_hub/src/models/mobilenet/mobilenet_backbone.py +3 -14
  15. keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -1
  16. keras_hub/src/models/pali_gemma/pali_gemma_vit.py +3 -0
  17. keras_hub/src/models/resnet/resnet_backbone.py +1 -21
  18. keras_hub/src/models/resnet/resnet_image_classifier.py +9 -4
  19. keras_hub/src/models/resnet/resnet_presets.py +6 -6
  20. keras_hub/src/models/retinanet/__init__.py +13 -0
  21. keras_hub/src/models/retinanet/anchor_generator.py +175 -0
  22. keras_hub/src/models/retinanet/box_matcher.py +259 -0
  23. keras_hub/src/models/retinanet/non_max_supression.py +578 -0
  24. keras_hub/src/models/vgg/vgg_backbone.py +0 -8
  25. keras_hub/src/models/vgg/vgg_image_classifier.py +0 -1
  26. keras_hub/src/models/vit_det/vit_det_backbone.py +0 -9
  27. keras_hub/src/tests/test_case.py +11 -3
  28. keras_hub/src/tokenizers/byte_pair_tokenizer.py +1 -0
  29. keras_hub/src/tokenizers/sentence_piece_tokenizer.py +1 -0
  30. keras_hub/src/tokenizers/word_piece_tokenizer.py +1 -0
  31. keras_hub/src/utils/imagenet/__init__.py +13 -0
  32. keras_hub/src/utils/imagenet/imagenet_utils.py +1067 -0
  33. keras_hub/src/utils/preset_utils.py +10 -1
  34. keras_hub/src/utils/tensor_utils.py +14 -14
  35. keras_hub/src/utils/timm/convert_resnet.py +0 -8
  36. keras_hub/src/utils/timm/preset_loader.py +16 -1
  37. keras_hub/src/version_utils.py +1 -1
  38. keras_hub_nightly-0.16.1.dev202409210335.dist-info/METADATA +202 -0
  39. {keras_hub_nightly-0.16.0.dev20240915160609.dist-info → keras_hub_nightly-0.16.1.dev202409210335.dist-info}/RECORD +41 -34
  40. {keras_hub_nightly-0.16.0.dev20240915160609.dist-info → keras_hub_nightly-0.16.1.dev202409210335.dist-info}/WHEEL +1 -1
  41. keras_hub_nightly-0.16.0.dev20240915160609.dist-info/METADATA +0 -33
  42. {keras_hub_nightly-0.16.0.dev20240915160609.dist-info → keras_hub_nightly-0.16.1.dev202409210335.dist-info}/top_level.txt +0 -0
@@ -569,7 +569,16 @@ def load_serialized_object(config, **kwargs):
569
569
 
570
570
  def check_config_class(config):
571
571
  """Validate a preset is being loaded on the correct class."""
572
- return keras.saving.get_registered_object(config["registered_name"])
572
+ registered_name = config["registered_name"]
573
+ cls = keras.saving.get_registered_object(registered_name)
574
+ if cls is None:
575
+ raise ValueError(
576
+ f"Attempting to load class {registered_name} with "
577
+ "`from_preset()`, but there is no class registered with Keras "
578
+ f"for {registered_name}. Make sure to register any custom "
579
+ "classes with `register_keras_serializable()`."
580
+ )
581
+ return cls
573
582
 
574
583
 
575
584
  def jax_memory_cleanup(layer):
@@ -30,20 +30,19 @@ except ImportError:
30
30
 
31
31
 
32
32
  NO_CONVERT_COUNTER = threading.local()
33
- NO_CONVERT_COUNTER.count = 0
34
33
 
35
34
 
36
35
  @contextlib.contextmanager
37
36
  def no_convert_scope():
38
37
  try:
39
- NO_CONVERT_COUNTER.count += 1
38
+ NO_CONVERT_COUNTER.count = getattr(NO_CONVERT_COUNTER, "count", 0) + 1
40
39
  yield
41
40
  finally:
42
- NO_CONVERT_COUNTER.count -= 1
41
+ NO_CONVERT_COUNTER.count = getattr(NO_CONVERT_COUNTER, "count", 0) - 1
43
42
 
44
43
 
45
44
  def in_no_convert_scope():
46
- return NO_CONVERT_COUNTER.count > 0
45
+ return getattr(NO_CONVERT_COUNTER, "count", 0) > 0
47
46
 
48
47
 
49
48
  def preprocessing_function(fn):
@@ -53,20 +52,21 @@ def preprocessing_function(fn):
53
52
 
54
53
  params = inspect.signature(fn).parameters
55
54
  accepts_labels = all(k in params for k in ("x", "y", "sample_weight"))
56
- with tf.device("cpu"):
57
- if not accepts_labels:
55
+ if not accepts_labels:
58
56
 
59
- @functools.wraps(fn)
60
- def wrapper(self, x, **kwargs):
57
+ @functools.wraps(fn)
58
+ def wrapper(self, x, **kwargs):
59
+ with tf.device("cpu"):
61
60
  x = convert_preprocessing_inputs(x)
62
61
  with no_convert_scope():
63
62
  x = fn(self, x, **kwargs)
64
63
  return convert_preprocessing_outputs(x)
65
64
 
66
- else:
65
+ else:
67
66
 
68
- @functools.wraps(fn)
69
- def wrapper(self, x, y=None, sample_weight=None, **kwargs):
67
+ @functools.wraps(fn)
68
+ def wrapper(self, x, y=None, sample_weight=None, **kwargs):
69
+ with tf.device("cpu"):
70
70
  x, y, sample_weight = convert_preprocessing_inputs(
71
71
  (x, y, sample_weight)
72
72
  )
@@ -74,7 +74,7 @@ def preprocessing_function(fn):
74
74
  x = fn(self, x, y=y, sample_weight=sample_weight, **kwargs)
75
75
  return convert_preprocessing_outputs(x)
76
76
 
77
- return wrapper
77
+ return wrapper
78
78
 
79
79
 
80
80
  def convert_preprocessing_inputs(x):
@@ -118,7 +118,7 @@ def convert_preprocessing_inputs(x):
118
118
  return {k: convert_preprocessing_inputs(x[k]) for k, v in x.items()}
119
119
  if isinstance(x, tuple):
120
120
  return tuple(convert_preprocessing_inputs(v) for v in x)
121
- if isinstance(x, str):
121
+ if isinstance(x, (str, bytes)):
122
122
  return tf.constant(x)
123
123
  if isinstance(x, list):
124
124
  try:
@@ -131,7 +131,7 @@ def convert_preprocessing_inputs(x):
131
131
  # If ragged conversion failed return to the numpy error.
132
132
  raise e
133
133
  # If we have a string input, use tf.tensor.
134
- if numpy_x.dtype.type is np.str_:
134
+ if numpy_x.dtype.type is np.str_ or numpy_x.dtype.type is np.bytes_:
135
135
  return tf.convert_to_tensor(x)
136
136
  # Numpy will default to int64, int32 works with more ops.
137
137
  if numpy_x.dtype == np.int64:
@@ -151,14 +151,6 @@ def convert_weights(backbone, loader, timm_config):
151
151
  if version == "v2":
152
152
  port_batch_normalization("post_bn", "norm")
153
153
 
154
- # Rebuild normalization layer with pretrained mean & std
155
- mean = timm_config["pretrained_cfg"]["mean"]
156
- std = timm_config["pretrained_cfg"]["std"]
157
- normalization_layer = backbone.get_layer("normalization")
158
- normalization_layer.input_mean = mean
159
- normalization_layer.input_variance = [s**2 for s in std]
160
- normalization_layer.build(normalization_layer._build_input_shape)
161
-
162
154
 
163
155
  def convert_head(task, loader, timm_config):
164
156
  v2 = "resnetv2_" in timm_config["architecture"]
@@ -62,5 +62,20 @@ class TimmPresetLoader(PresetLoader):
62
62
  pretrained_cfg = self.config.get("pretrained_cfg", None)
63
63
  if not pretrained_cfg or "input_size" not in pretrained_cfg:
64
64
  return None
65
+ # This assumes the same basic setup for all timm preprocessing, and that
66
+ # all our image conversion will be via a `ResizingImageConverter. We may
67
+ # need to extend this as we cover more model types.
65
68
  input_size = pretrained_cfg["input_size"]
66
- return cls(width=input_size[1], height=input_size[2])
69
+ mean = pretrained_cfg["mean"]
70
+ variance = [s**2 for s in pretrained_cfg["std"]]
71
+ interpolation = pretrained_cfg["interpolation"]
72
+ if interpolation not in ("bilinear", "nearest", "bicubic"):
73
+ interpolation = "bilinear" # Unsupported interpolation type.
74
+ return cls(
75
+ width=input_size[1],
76
+ height=input_size[2],
77
+ scale=1 / 255.0,
78
+ mean=mean,
79
+ variance=variance,
80
+ interpolation=interpolation,
81
+ )
@@ -15,7 +15,7 @@
15
15
  from keras_hub.src.api_export import keras_hub_export
16
16
 
17
17
  # Unique source of truth for the version number.
18
- __version__ = "0.16.0.dev20240915160609"
18
+ __version__ = "0.16.1.dev202409210335"
19
19
 
20
20
 
21
21
  @keras_hub_export("keras_hub.version")
@@ -0,0 +1,202 @@
1
+ Metadata-Version: 2.1
2
+ Name: keras-hub-nightly
3
+ Version: 0.16.1.dev202409210335
4
+ Summary: Industry-strength Natural Language Processing extensions for Keras.
5
+ Home-page: https://github.com/keras-team/keras-hub
6
+ Author: Keras team
7
+ Author-email: keras-hub@google.com
8
+ License: Apache License 2.0
9
+ Classifier: Development Status :: 3 - Alpha
10
+ Classifier: Programming Language :: Python :: 3
11
+ Classifier: Programming Language :: Python :: 3.9
12
+ Classifier: Programming Language :: Python :: 3.10
13
+ Classifier: Programming Language :: Python :: 3.11
14
+ Classifier: Programming Language :: Python :: 3 :: Only
15
+ Classifier: Operating System :: Unix
16
+ Classifier: Operating System :: Microsoft :: Windows
17
+ Classifier: Operating System :: MacOS
18
+ Classifier: Intended Audience :: Science/Research
19
+ Classifier: Topic :: Scientific/Engineering
20
+ Classifier: Topic :: Software Development
21
+ Requires-Python: >=3.9
22
+ Description-Content-Type: text/markdown
23
+ Requires-Dist: absl-py
24
+ Requires-Dist: numpy
25
+ Requires-Dist: packaging
26
+ Requires-Dist: regex
27
+ Requires-Dist: rich
28
+ Requires-Dist: kagglehub
29
+ Requires-Dist: tensorflow-text ; platform_system != "Darwin"
30
+ Provides-Extra: extras
31
+ Requires-Dist: rouge-score ; extra == 'extras'
32
+ Requires-Dist: sentencepiece ; extra == 'extras'
33
+
34
+ # KerasNLP: Multi-framework NLP Models
35
+ [![](https://github.com/keras-team/keras-hub/workflows/Tests/badge.svg?branch=master)](https://github.com/keras-team/keras-hub/actions?query=workflow%3ATests+branch%3Amaster)
36
+ ![Python](https://img.shields.io/badge/python-v3.9.0+-success.svg)
37
+ [![contributions welcome](https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat)](https://github.com/keras-team/keras-hub/issues)
38
+
39
+ > [!IMPORTANT]
40
+ > 📢 KerasNLP is becoming KerasHub! 📢 Read
41
+ > [the announcement](https://github.com/keras-team/keras-hub/issues/1831).
42
+ >
43
+ > We have renamed the repo to KerasHub in preparation for the release, but have not yet
44
+ > released the new package. Follow the announcement for news.
45
+
46
+ KerasNLP is a natural language processing library that works natively
47
+ with TensorFlow, JAX, or PyTorch. KerasNLP provides a repository of pre-trained
48
+ models and a collection of lower-level building blocks for language modeling.
49
+ Built on Keras 3, models can be trained and serialized in any framework
50
+ and re-used in another without costly migrations.
51
+
52
+ This library is an extension of the core Keras API; all high-level modules are
53
+ Layers and Models that receive that same level of polish as core Keras.
54
+ If you are familiar with Keras, congratulations! You already understand most of
55
+ KerasNLP.
56
+
57
+ All models support JAX, TensorFlow, and PyTorch from a single model
58
+ definition and can be fine-tuned on GPUs and TPUs out of the box. Models can
59
+ be trained on individual accelerators with built-in PEFT techniques, or
60
+ fine-tuned at scale with model and data parallel training. See our
61
+ [Getting Started guide](https://keras.io/guides/keras_nlp/getting_started)
62
+ to start learning our API. Browse our models on
63
+ [Kaggle](https://www.kaggle.com/organizations/keras/models).
64
+ We welcome contributions.
65
+
66
+ ## Quick Links
67
+
68
+ ### For everyone
69
+
70
+ - [Home Page](https://keras.io/keras_nlp)
71
+ - [Developer Guides](https://keras.io/guides/keras_nlp)
72
+ - [API Reference](https://keras.io/api/keras_nlp)
73
+ - [Pre-trained Models](https://www.kaggle.com/organizations/keras/models)
74
+
75
+ ### For contributors
76
+
77
+ - [Contributing Guide](CONTRIBUTING.md)
78
+ - [Roadmap](ROADMAP.md)
79
+ - [Style Guide](STYLE_GUIDE.md)
80
+ - [API Design Guide](API_DESIGN_GUIDE.md)
81
+ - [Call for Contributions](https://github.com/keras-team/keras-hub/issues?q=is%3Aissue+is%3Aopen+label%3A%22contributions+welcome%22)
82
+
83
+ ## Quickstart
84
+
85
+ Fine-tune BERT on IMDb movie reviews:
86
+
87
+ ```python
88
+ import os
89
+ os.environ["KERAS_BACKEND"] = "jax" # Or "tensorflow" or "torch"!
90
+
91
+ import keras_nlp
92
+ import tensorflow_datasets as tfds
93
+
94
+ imdb_train, imdb_test = tfds.load(
95
+ "imdb_reviews",
96
+ split=["train", "test"],
97
+ as_supervised=True,
98
+ batch_size=16,
99
+ )
100
+ # Load a BERT model.
101
+ classifier = keras_nlp.models.Classifier.from_preset(
102
+ "bert_base_en",
103
+ num_classes=2,
104
+ activation="softmax",
105
+ )
106
+ # Fine-tune on IMDb movie reviews.
107
+ classifier.fit(imdb_train, validation_data=imdb_test)
108
+ # Predict two new examples.
109
+ classifier.predict(["What an amazing movie!", "A total waste of my time."])
110
+ ```
111
+
112
+ Try it out [in a colab](https://colab.research.google.com/gist/mattdangerw/e457e42d5ea827110c8d5cb4eb9d9a07/kerasnlp-quickstart.ipynb).
113
+ For more in depth guides and examples, visit
114
+ [keras.io/keras_nlp](https://keras.io/keras_nlp/).
115
+
116
+ ## Installation
117
+
118
+ To install the latest KerasNLP release with Keras 3, simply run:
119
+
120
+ ```
121
+ pip install --upgrade keras-nlp
122
+ ```
123
+
124
+ To install the latest nightly changes for both KerasNLP and Keras, you can use
125
+ our nightly package.
126
+
127
+ ```
128
+ pip install --upgrade keras-nlp-nightly
129
+ ```
130
+
131
+ Note that currently, installing KerasNLP will always pull in TensorFlow for use
132
+ of the `tf.data` API for preprocessing. Even when pre-processing with `tf.data`,
133
+ training can still happen on any backend.
134
+
135
+ Read [Getting started with Keras](https://keras.io/getting_started/) for more
136
+ information on installing Keras 3 and compatibility with different frameworks.
137
+
138
+ > [!IMPORTANT]
139
+ > We recommend using KerasNLP with TensorFlow 2.16 or later, as TF 2.16 packages
140
+ > Keras 3 by default.
141
+
142
+ ## Configuring your backend
143
+
144
+ If you have Keras 3 installed in your environment (see installation above),
145
+ you can use KerasNLP with any of JAX, TensorFlow and PyTorch. To do so, set the
146
+ `KERAS_BACKEND` environment variable. For example:
147
+
148
+ ```shell
149
+ export KERAS_BACKEND=jax
150
+ ```
151
+
152
+ Or in Colab, with:
153
+
154
+ ```python
155
+ import os
156
+ os.environ["KERAS_BACKEND"] = "jax"
157
+
158
+ import keras_nlp
159
+ ```
160
+
161
+ > [!IMPORTANT]
162
+ > Make sure to set the `KERAS_BACKEND` before import any Keras libraries, it
163
+ > will be used to set up Keras when it is first imported.
164
+
165
+ ## Compatibility
166
+
167
+ We follow [Semantic Versioning](https://semver.org/), and plan to
168
+ provide backwards compatibility guarantees both for code and saved models built
169
+ with our components. While we continue with pre-release `0.y.z` development, we
170
+ may break compatibility at any time and APIs should not be consider stable.
171
+
172
+ ## Disclaimer
173
+
174
+ KerasNLP provides access to pre-trained models via the `keras_nlp.models` API.
175
+ These pre-trained models are provided on an "as is" basis, without warranties
176
+ or conditions of any kind. The following underlying models are provided by third
177
+ parties, and subject to separate licenses:
178
+ BART, BLOOM, DeBERTa, DistilBERT, GPT-2, Llama, Mistral, OPT, RoBERTa, Whisper,
179
+ and XLM-RoBERTa.
180
+
181
+ ## Citing KerasNLP
182
+
183
+ If KerasNLP helps your research, we appreciate your citations.
184
+ Here is the BibTeX entry:
185
+
186
+ ```bibtex
187
+ @misc{kerasnlp2022,
188
+ title={KerasNLP},
189
+ author={Watson, Matthew, and Qian, Chen, and Bischof, Jonathan and Chollet,
190
+ Fran\c{c}ois and others},
191
+ year={2022},
192
+ howpublished={\url{https://github.com/keras-team/keras-hub}},
193
+ }
194
+ ```
195
+
196
+ ## Acknowledgements
197
+
198
+ Thank you to all of our wonderful contributors!
199
+
200
+ <a href="https://github.com/keras-team/keras-hub/graphs/contributors">
201
+ <img src="https://contrib.rocks/image?repo=keras-team/keras-hub" />
202
+ </a>
@@ -1,14 +1,15 @@
1
- keras_hub/__init__.py,sha256=uHOd4ucottkl7ZGHcyIP2ajuIozrBQ0uct9FoDRO2Q0,1562
2
- keras_hub/api/__init__.py,sha256=je2H9ewlE0Dg3f0Dbjou6ah-VHrS2TsIXN1HRoWz0Z8,1077
1
+ keras_hub/__init__.py,sha256=La-s5SQDd0312puWDSbPJ2XYxFXtg0jsCdUa2LMY-Z8,1440
2
+ keras_hub/api/__init__.py,sha256=8EwhEBO-o-92lvGv6M5zOdkNL9Bd3xfutlfGNJ8QwBE,1109
3
3
  keras_hub/api/bounding_box/__init__.py,sha256=LNSVZLB1WJ9hMg0wxt7HTfFFd9uAFviH9x9CnfJYzBA,1682
4
4
  keras_hub/api/layers/__init__.py,sha256=4OlmzaQ0I8RuHp7Ot9580loeElsV4QeB2Lon8ZB_a1Q,2600
5
5
  keras_hub/api/metrics/__init__.py,sha256=tgQfooPHzlq6w34RHfro6vO8IUITLTf-jU2IWEBxxUM,966
6
6
  keras_hub/api/models/__init__.py,sha256=0BRVIXtv8DrIbE5n1JeAR_gVeF1_sG_zeMI0cR0rjBI,13396
7
7
  keras_hub/api/samplers/__init__.py,sha256=l56H4y3h_HlRn_PpeMyZ6vC7228EH_BVFo4Caay-zQ8,1315
8
8
  keras_hub/api/tokenizers/__init__.py,sha256=nzMwKmxkMCOiYB35BIgxHNveCM9WoYRp7ChhmVK8MIM,3042
9
+ keras_hub/api/utils/__init__.py,sha256=4IXDgmXqFzqrCK2MPgkih0Ye1s-8hrlBaUk-n5Kqwl4,800
9
10
  keras_hub/src/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
10
- keras_hub/src/api_export.py,sha256=4vXS_G7iezVVk9FsJLM97AwOiU35W_wum_-uBSvXrZk,1658
11
- keras_hub/src/version_utils.py,sha256=n0B4C4spVrJz_BF11ar6P4yF0FtiZ1jSAiA65mkVOIo,810
11
+ keras_hub/src/api_export.py,sha256=82JzmDgnWTJR-PRJI9L_vjhW2Svz8gilbE1NMGZ2JgA,2085
12
+ keras_hub/src/version_utils.py,sha256=n0vYCPXxWIvl26pl1OjjwU68CgOOokRrcKD05BhvVNY,808
12
13
  keras_hub/src/bounding_box/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
13
14
  keras_hub/src/bounding_box/converters.py,sha256=V2ti6xPpaBgeLKbTpCsHsABdYOYASerIKX9oWqeOjHo,18450
14
15
  keras_hub/src/bounding_box/formats.py,sha256=5bbHO-n2ADsKIOBJDHMvIPCeNBaV1_mj-NVCgBKNiu8,4453
@@ -39,7 +40,7 @@ keras_hub/src/layers/preprocessing/multi_segment_packer.py,sha256=0se5fOIz-2fMt4
39
40
  keras_hub/src/layers/preprocessing/preprocessing_layer.py,sha256=5jFBScsNWuYyokPt8mUoyYeOkKH9ZS7MkeC3j-nxYHU,1273
40
41
  keras_hub/src/layers/preprocessing/random_deletion.py,sha256=P4YkpDXgQnlXEgukk6V_iuIrRIQOOC9i8KMkpd7UDic,10349
41
42
  keras_hub/src/layers/preprocessing/random_swap.py,sha256=Wu6pNuQ1l_5VRGlRxcomrWyEnqYfA4PcK-mHNuvSjr0,10090
42
- keras_hub/src/layers/preprocessing/resizing_image_converter.py,sha256=xbDDbJUL2IJ7Zv-CWFH8qtNjvGDrsj4Kf2L3usohIC0,4282
43
+ keras_hub/src/layers/preprocessing/resizing_image_converter.py,sha256=P7KDWTGSnf40iUGUXhCkxx7A5kQMsTF1s3PxYkYxa6U,6440
43
44
  keras_hub/src/layers/preprocessing/start_end_packer.py,sha256=3IvVoOE-0kovt_8o2w-uVYEPFhGg-tmv3cwuJQu7VPc,8560
44
45
  keras_hub/src/metrics/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
45
46
  keras_hub/src/metrics/bleu.py,sha256=r0vROmLVVNjc1d9fwJgc64lwmhEXHNaNT1ed1h7Y0E0,14259
@@ -94,8 +95,8 @@ keras_hub/src/models/bloom/bloom_decoder.py,sha256=hSoeVnwRQvGbpVhYmf7-k8FB3Wg4a
94
95
  keras_hub/src/models/bloom/bloom_presets.py,sha256=7GiGFPmcXd_UraNsWGQffpzjKDRF-7nqIoUsic78xf0,4696
95
96
  keras_hub/src/models/bloom/bloom_tokenizer.py,sha256=ZMx8mHhw0D50zmmvYdmpg-Lk2GcvHz7pPlRpPlhS_2s,3161
96
97
  keras_hub/src/models/csp_darknet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
97
- keras_hub/src/models/csp_darknet/csp_darknet_backbone.py,sha256=Zc3liZuKV-lgAKSAGGKZzsYyFRQwMFMI1qIkUGVUMBM,14718
98
- keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py,sha256=h74Q_VHaoSAkwBsDV-ZufN6fb9NFX2gDVk7AOvX-HUk,4388
98
+ keras_hub/src/models/csp_darknet/csp_darknet_backbone.py,sha256=h0eua1EZP0vBV416uOVMmMP1JXy7cVoEj0JEO0OO_lc,14312
99
+ keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py,sha256=qLav7bxuzB0oaNJLs8gIiQbQVFjAlteDT7WKRfKoSmk,4355
99
100
  keras_hub/src/models/deberta_v3/__init__.py,sha256=NCuHFWsgQl-Wer7w3xETvqFtF75AyKabjAYdOlyN34w,874
100
101
  keras_hub/src/models/deberta_v3/deberta_v3_backbone.py,sha256=_J-PpSLubay58YO51BicDK0bF97aUeoC21ZQOt1O9r0,7831
101
102
  keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py,sha256=urcktTsXN3kDWnppplnC8yISGx37qGW5HdwHSC7VDLE,4773
@@ -108,8 +109,8 @@ keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py,sha256=Zt10UPx
108
109
  keras_hub/src/models/deberta_v3/disentangled_self_attention.py,sha256=MxpWy30h9JB8nlEk7V9_wETzP-tpv1Sd1Wiz_pHGpkI,13708
109
110
  keras_hub/src/models/deberta_v3/relative_embedding.py,sha256=QT5MAnheJ1wSKFeN49pdnZzWkztz5K2oYYuNEtB_5xM,3472
110
111
  keras_hub/src/models/densenet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
111
- keras_hub/src/models/densenet/densenet_backbone.py,sha256=IoZsMjfbFVsnc5p6jyMGLoX-UJDaw2cxtBKm1NTSs_0,7660
112
- keras_hub/src/models/densenet/densenet_image_classifier.py,sha256=bmmkNNpxwkwfqI_ZMmoEATClmgmmkW6NO5tDK8BCt2Y,4336
112
+ keras_hub/src/models/densenet/densenet_backbone.py,sha256=BbTecC7gfigSC3t4L-kGsZHS7pjj8DtDIztyMxo_AoI,7238
113
+ keras_hub/src/models/densenet/densenet_image_classifier.py,sha256=eECPZKHycVHNbgFuBHyiZGPWBn0M_pBdLasjmroc95g,4303
113
114
  keras_hub/src/models/distil_bert/__init__.py,sha256=EiJUA3y_b22rMacMbBD7jD0eBSzR-wbVtF73k2RsQow,889
114
115
  keras_hub/src/models/distil_bert/distil_bert_backbone.py,sha256=ZW2OgNlWXeRlfI5BrcJLYr4Oc2qNJZoDxjoL7-cGuIQ,7027
115
116
  keras_hub/src/models/distil_bert/distil_bert_masked_lm.py,sha256=1BFS1At_HYlLK21VWyhQPrPtActpmR52A8LJG2c6N8Y,4862
@@ -119,7 +120,7 @@ keras_hub/src/models/distil_bert/distil_bert_text_classifier.py,sha256=Q-qGmyl6i
119
120
  keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py,sha256=sad3XpW2HfjG2iQ4JRm1tw2jp4pZCN4LYwF1mM4GUps,5480
120
121
  keras_hub/src/models/distil_bert/distil_bert_tokenizer.py,sha256=VK7kZJEbsClp20uWVb6pj-WSUU5IMdRBk0jyUIM_RIg,3698
121
122
  keras_hub/src/models/efficientnet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
122
- keras_hub/src/models/efficientnet/efficientnet_backbone.py,sha256=krz5lgw5cPs2EyKArq99XnIfUeBVbkeq2PhPFADO04c,21841
123
+ keras_hub/src/models/efficientnet/efficientnet_backbone.py,sha256=i-K9kYwnl2Ninuebw6nNJ6X7D_4dvjMrV1Y9XAdt6I4,21392
123
124
  keras_hub/src/models/efficientnet/fusedmbconv.py,sha256=_6aNQKL2XdVNgoAdKvvTh_NDkWeU66q98EFUOjEQ1UM,7933
124
125
  keras_hub/src/models/efficientnet/mbconv.py,sha256=LNbEj7RpEZ0SqzEu-7ZpH1BKm6Ne2sXPckc5c2DMqUk,8212
125
126
  keras_hub/src/models/electra/__init__.py,sha256=ixE5hAkfTFfErqbYVyIUKMT8MUz-u_175QXxEBIiGBU,849
@@ -147,7 +148,7 @@ keras_hub/src/models/gemma/gemma_attention.py,sha256=mKwcU_s0epJzRllxGVg-Bbc1CuC
147
148
  keras_hub/src/models/gemma/gemma_backbone.py,sha256=RO9O_AhUlboUzBYxYFDFFdYBjaXaDifPB-Yz2idnYZ8,13501
148
149
  keras_hub/src/models/gemma/gemma_causal_lm.py,sha256=jOy_X0QR-olMfCPyFtmXRZSllWz3oy10JYwLzAPtXAg,17357
149
150
  keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py,sha256=uZdYAAMIeABh339U9qmSPVRxVXtU4Ko4nrih1nN0QX4,3498
150
- keras_hub/src/models/gemma/gemma_decoder_block.py,sha256=GcMv7Xibgxliu2sGJWaZ_PXRJRuvexxE-NSQq4nbYmk,8172
151
+ keras_hub/src/models/gemma/gemma_decoder_block.py,sha256=OgvSypSaKXNKatmua62HITyUzl79enh4x_sUZhBRItY,8173
151
152
  keras_hub/src/models/gemma/gemma_presets.py,sha256=7N5dcMjMb4gOb9ysCLdVqLFDpvV3bETiB6Hq2XrdGWA,9867
152
153
  keras_hub/src/models/gemma/gemma_tokenizer.py,sha256=JZ3XDScSsAV9y8uM-uKrO-lyu3PNyXNynrJqVJQbJo0,3208
153
154
  keras_hub/src/models/gemma/rms_normalization.py,sha256=27nA9BjNVkwI-icHISK57qJl8wxRdWGM5g4K_DzjAeI,1419
@@ -190,12 +191,12 @@ keras_hub/src/models/mistral/mistral_presets.py,sha256=uF1Q4zllcV1upIlqmn3gxhVWz
190
191
  keras_hub/src/models/mistral/mistral_tokenizer.py,sha256=pO7mpzYgRDFpIrsmLBL3zxkadrOE0xfFj30c2nHN42c,2591
191
192
  keras_hub/src/models/mistral/mistral_transformer_decoder.py,sha256=6CdaZt1lQ9VcLz_OoYroqiqvsZfq9H5VGaWab25aCRI,10127
192
193
  keras_hub/src/models/mix_transformer/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
193
- keras_hub/src/models/mix_transformer/mix_transformer_backbone.py,sha256=TYcQCAMTZedirh2L4z8LrjfhmxR2CoImzIvVXFTiTMc,6833
194
- keras_hub/src/models/mix_transformer/mix_transformer_classifier.py,sha256=QUTeq4f07nrCE-hIKoam_M6jJ6aM9l6s_At5sRTo0JY,4310
194
+ keras_hub/src/models/mix_transformer/mix_transformer_backbone.py,sha256=1OUWvrI4y5rzoOsQkB8ZqQqeg5DwFIWRY-IKgR5qDfA,6426
195
+ keras_hub/src/models/mix_transformer/mix_transformer_classifier.py,sha256=Kq-FIayi0yiJ1P4_AhwdBAC-vFnfhEK3FYlmBjw4jUc,4277
195
196
  keras_hub/src/models/mix_transformer/mix_transformer_layers.py,sha256=Bi4lHMfiKgI-XOt21BBfKoK05uU3GcDJ3mQrGfCXb6Y,10123
196
197
  keras_hub/src/models/mobilenet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
197
- keras_hub/src/models/mobilenet/mobilenet_backbone.py,sha256=G02NFvx2xy2mbEBX6mtJzhPwygZDAhJ2TMk2ejAuLg0,19168
198
- keras_hub/src/models/mobilenet/mobilenet_image_classifier.py,sha256=Oo3URtyqjfnmsyO9uncxOVHO9Giv607LBJ3UE8pWacU,3794
198
+ keras_hub/src/models/mobilenet/mobilenet_backbone.py,sha256=Y950Yx4s5fTmVk7YTiMFiyqZLLuB75_iJaVbefznOwo,18776
199
+ keras_hub/src/models/mobilenet/mobilenet_image_classifier.py,sha256=35Px2z1E_ATSZIYNb_bXjJ6Qimbd2rnPi04S99ycTNg,3759
199
200
  keras_hub/src/models/opt/__init__.py,sha256=DiiylcsbseSQ8te8KWZ6BTIaKYSzXHUPGBgFssFNGFY,825
200
201
  keras_hub/src/models/opt/opt_backbone.py,sha256=cbm9I7d3QlGD8l2W1eK8esqc5gm77tpwxg4t9nC-FtA,6460
201
202
  keras_hub/src/models/opt/opt_causal_lm.py,sha256=z6M8cQV-c8q7HmikNA9RuvsMMvQYF21-ZcC0nVGfnp8,11438
@@ -210,7 +211,7 @@ keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py,sha256=fXLO4uHtWYTuE
210
211
  keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=Wm1A-HuOMxesAHFbEpP5ZkPbdDaVW5CTTwkyFpI-WdI,990
211
212
  keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=cG5cV2bkiDJlKDiHX76BpnClsY5PcmLDezDg7emeiA4,2986
212
213
  keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=7F1TQql3DEN517iVbNL60u6fQPimrGQvWBYh16ng8JU,3000
213
- keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=JUfJuyobcEb60jp3sIxlq12gIH_qsn97h4hsecimipQ,19092
214
+ keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=GUMAuFcpoi0TxJk7LzsKp0Tt0c_83gx645cz26GqFzA,19271
214
215
  keras_hub/src/models/phi3/__init__.py,sha256=ENAOZhScWf9RbPmkiuICR5gr36ZMUn4AniLvJOrykj8,831
215
216
  keras_hub/src/models/phi3/phi3_attention.py,sha256=BcYApteLjbrCzube7jHVagc0mMpDCReRyvsQhQcJzY8,9828
216
217
  keras_hub/src/models/phi3/phi3_backbone.py,sha256=MvTE5bMmVpFHinZIEDBM1lfJFbgu4zg-0e-8_4hK-No,9470
@@ -222,11 +223,15 @@ keras_hub/src/models/phi3/phi3_presets.py,sha256=S7_gIqPxU5FQAEnAE_68UrfGGSLOMvo
222
223
  keras_hub/src/models/phi3/phi3_rotary_embedding.py,sha256=QVJIgpOw6iMicGrsPdW8eF84vV_stf0Tqm2qBJdsKH0,5597
223
224
  keras_hub/src/models/phi3/phi3_tokenizer.py,sha256=hlA-u2sTRYARDW3ABICPeiOYW1AJwr-5kvZk3EB5z7M,2577
224
225
  keras_hub/src/models/resnet/__init__.py,sha256=41gttaQ7gt_ZaqDa_GKuMPfIk5c88-GrdC1h9fBUTXc,843
225
- keras_hub/src/models/resnet/resnet_backbone.py,sha256=n9aKIpQcJCsAZrBiiN1vxUMHeQgYudRHdu_MsdRQZqw,33260
226
- keras_hub/src/models/resnet/resnet_image_classifier.py,sha256=KZ2Na7dU8vvxsMDOHolhjF9kdxs7ptRKNg1FqNVDU2U,5323
226
+ keras_hub/src/models/resnet/resnet_backbone.py,sha256=Qu2MuPBNYasQDD4zeY2rnUUqiEYRXqjbeXilcUdimkA,32451
227
+ keras_hub/src/models/resnet/resnet_image_classifier.py,sha256=4Ksxhp4kB93mbkjh7K-uKcCyEO4MtMazHN7VtUCL-wg,5362
227
228
  keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py,sha256=Vrs9NBZRL5fgDXXY27GZJg5xMa5_wovi8A2z8kFl2nc,1129
228
229
  keras_hub/src/models/resnet/resnet_image_converter.py,sha256=820drIU5Kkib7gC7T418mmrhsBHSkenfEiZ6-fkChv0,961
229
- keras_hub/src/models/resnet/resnet_presets.py,sha256=DZoufeJyrVDL4aHSztQNzZj8Cb_OGX53Fn0Ze4RuZCI,3550
230
+ keras_hub/src/models/resnet/resnet_presets.py,sha256=6y8R-PviAnEyh-LFli9uMUNku4cJC9V7YqOd9V5PlV0,3550
231
+ keras_hub/src/models/retinanet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
232
+ keras_hub/src/models/retinanet/anchor_generator.py,sha256=VQwgIAWh-6s28TU8MHFdl556U6h7rfF9B9iVI_zwI7c,7027
233
+ keras_hub/src/models/retinanet/box_matcher.py,sha256=SvGn_6d5sfjq522UaHpxVCE2S5Nwml_aj5yAKApTNE4,11420
234
+ keras_hub/src/models/retinanet/non_max_supression.py,sha256=5rDXA1Lk27T1TK3cwTrRIAbh8ceZLcbL4Koei96bBVQ,21522
230
235
  keras_hub/src/models/roberta/__init__.py,sha256=P-9HOooyuSriDclHrf0YvdRy95bU08VPU7P8nBsy59U,849
231
236
  keras_hub/src/models/roberta/roberta_backbone.py,sha256=KR3y11RpA4dvKmQ2HaRoWNTLGnLs6Lqx-HXYejQt4G8,6926
232
237
  keras_hub/src/models/roberta/roberta_masked_lm.py,sha256=N0r6XEZAVMNgyTorFQzyT8EiEXtWO3R2PnL6s2P3YDQ,4763
@@ -254,10 +259,10 @@ keras_hub/src/models/t5/t5_presets.py,sha256=2RT_NuJcqDdSeAsoSJXh5O_ax2H-s4YKTAo
254
259
  keras_hub/src/models/t5/t5_tokenizer.py,sha256=UnmZjiKhyb4AU7zALW3YAM_6_OGzYOVEGStBiw4ICvg,3103
255
260
  keras_hub/src/models/t5/t5_transformer_layer.py,sha256=wnu108InkHH9YMmFNTbmgIqcrKQQUxeJ7S1dcjUfBSY,5933
256
261
  keras_hub/src/models/vgg/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
257
- keras_hub/src/models/vgg/vgg_backbone.py,sha256=dMXIGypDQdLztvbHz0JgSdTGXXAZj11vLxG5oHk4ZNw,5479
258
- keras_hub/src/models/vgg/vgg_image_classifier.py,sha256=1bH6E46yHxN5tey2Mc62U3l4_5mTZ40U00bws-c6wqE,4106
262
+ keras_hub/src/models/vgg/vgg_backbone.py,sha256=O6onZEduEPt1J4v2HFgtHsxu-SheqpUwY2pYoeLa6uE,5080
263
+ keras_hub/src/models/vgg/vgg_image_classifier.py,sha256=cDcmHoHU1BZ211JakGPw3Z9lV22oMmK8J4-Ng8S07G0,4071
259
264
  keras_hub/src/models/vit_det/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
260
- keras_hub/src/models/vit_det/vit_det_backbone.py,sha256=Tyw3xTOW1rlHV-copzotzpaoPLWU8nA-LtViUGGgSlw,8541
265
+ keras_hub/src/models/vit_det/vit_det_backbone.py,sha256=4b3CUk4zg8gjFJvDU-QJZP72CV8jqw3TnaoCzUC-vyo,8054
261
266
  keras_hub/src/models/vit_det/vit_layers.py,sha256=JeUzOT2jmSOoJ_OiHOfLSkkCUZ5mlK5Mfd21DwudRCQ,20436
262
267
  keras_hub/src/models/whisper/__init__.py,sha256=FI-xj6FwZDAAdCfKhOrE1_roQ8cXhD1gK4G6CLTvPQo,849
263
268
  keras_hub/src/models/whisper/whisper_audio_converter.py,sha256=JqtA2kLUMFKZ4FrI8g2piEjahE-0-F3Yp4qQXS1cYf4,8973
@@ -290,25 +295,27 @@ keras_hub/src/samplers/serialization.py,sha256=Z8u-nRdv7K1RPS_0rMYJwkunoFmI2xPCj
290
295
  keras_hub/src/samplers/top_k_sampler.py,sha256=xLexmP7FrW_W2657ObeJUgbeEox8AbB9uXIBKODVuKU,2836
291
296
  keras_hub/src/samplers/top_p_sampler.py,sha256=Mx4Ytti2BsVh6uLPnBeNZ5znBjvXrnDndmbMlMAMRbk,3986
292
297
  keras_hub/src/tests/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
293
- keras_hub/src/tests/test_case.py,sha256=wBGxvEjCoZbFIIJSPEqyuNsnFEdyt-jbC1qBG2VT8wo,25412
298
+ keras_hub/src/tests/test_case.py,sha256=i8-jrXric88acmQTGIn0KCp157EsWZBCx88qHKyAjSM,25730
294
299
  keras_hub/src/tokenizers/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
295
- keras_hub/src/tokenizers/byte_pair_tokenizer.py,sha256=Ij1zU5QCRPcpsqcWQmZW91dn-c7ZcZF48MmhgjPBs3k,24389
300
+ keras_hub/src/tokenizers/byte_pair_tokenizer.py,sha256=5VTFUGSQGd_NMwuQc9kBA5KU1rLcJpNYnRPl28NMFWo,24435
296
301
  keras_hub/src/tokenizers/byte_tokenizer.py,sha256=ueijdnipIG7G4a_cals0y6t7oVm-dyEcSVY2JkX_5i4,11234
297
- keras_hub/src/tokenizers/sentence_piece_tokenizer.py,sha256=1V4xQeYGyZSe7r8TVukKIbLG06rifiSPoQdK9GUc9ZM,10102
302
+ keras_hub/src/tokenizers/sentence_piece_tokenizer.py,sha256=nmYwaoK4yLaqp1c0JxXI4JZS3fmR4qIyuRnf2zExjmg,10148
298
303
  keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py,sha256=0VZ-5QdvVKFp8_tSZiM8qROYhrrfrg-GCJ1BllXSd1g,5420
299
304
  keras_hub/src/tokenizers/tokenizer.py,sha256=sySYL7Nym6N-NIXk1pu9zsgbfFIOGvPvNRy-R3kXlzA,10098
300
305
  keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py,sha256=z720-paGm8tV-rhs0B8QHD3P2syPKVdXMyQqLdSjTwM,14118
301
- keras_hub/src/tokenizers/word_piece_tokenizer.py,sha256=MH-okrT7Z_EqNKFAk0oz9rXgqcuLkGZGEA9KldjByXs,20483
306
+ keras_hub/src/tokenizers/word_piece_tokenizer.py,sha256=AWFCHCxgRJ3_iHLxi1s9gTIjTrdtqvJAxqN1ugEXLvc,20529
302
307
  keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=_W07w57ZHuqpAK7U8Qs4neFW4UEzhRdfyVy2oDs02d8,7136
303
308
  keras_hub/src/utils/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
304
309
  keras_hub/src/utils/keras_utils.py,sha256=r0ro8lBfqCgWT_S5dXMVuj_nQNxe_Dwsowrc1dSdHT0,2555
305
310
  keras_hub/src/utils/pipeline_model.py,sha256=9GNlV8RBV18oFQUkXDCizyyBI8sYhB_7ejxI2dEPVdw,9610
306
- keras_hub/src/utils/preset_utils.py,sha256=rR0MCpMUyoiurLgWS4Kb08gFq00o9DlN5g3TqXTNHyM,29167
311
+ keras_hub/src/utils/preset_utils.py,sha256=jMKJBYJO4AlT1DNis6kKTwDZ9P-JdfJC5PAU3e7ZFz0,29547
307
312
  keras_hub/src/utils/python_utils.py,sha256=G5oCVQggmqgkgD1NXuBQEgNCFmDSevYv7bz-1cAVFAs,787
308
- keras_hub/src/utils/tensor_utils.py,sha256=ucUWlGjb293YpVt_k9TcyBST4-IP6JxpdgfwgenTh9I,11235
313
+ keras_hub/src/utils/tensor_utils.py,sha256=XpWORE8iUzHXv1E1akiYDep07ndZJRKvjsKVljMvtUU,11362
314
+ keras_hub/src/utils/imagenet/__init__.py,sha256=AK2s8L-VARI5OmlT6G3vtlKIVyjwLfgVwXfxzhhSCq4,585
315
+ keras_hub/src/utils/imagenet/imagenet_utils.py,sha256=0iHrAQbh5DCa9Dh7tJiQeJc7AGzNO7j0cFEWS2Of16w,39889
309
316
  keras_hub/src/utils/timm/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
310
- keras_hub/src/utils/timm/convert_resnet.py,sha256=hZNj_kpwSA9Jp3NRDHtCPzHFzRKKPnidKQUAoqcdENk,6810
311
- keras_hub/src/utils/timm/preset_loader.py,sha256=EgS5xBP3sWYiTgKmOAMmj3b3kRWcPnsWLieReLHZ178,2928
317
+ keras_hub/src/utils/timm/convert_resnet.py,sha256=X2N9lk8sqRMzOMXkcIThAu6ZEtw8u8_Y4Kol82iTuW4,6417
318
+ keras_hub/src/utils/timm/preset_loader.py,sha256=ac2PwGkfe-bikhQEFeIM25gDs3xk0E9SS5A1YEzZYQU,3602
312
319
  keras_hub/src/utils/transformers/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
313
320
  keras_hub/src/utils/transformers/convert_albert.py,sha256=7b9X1TLrWfHieoeX_K-EXTagkl4Rp9AfPjsPrwArBGY,8280
314
321
  keras_hub/src/utils/transformers/convert_bart.py,sha256=RXmPf_XUZrUyqDaOV9T7qVNEP4rAVR44oK1aRZI0v78,14996
@@ -321,7 +328,7 @@ keras_hub/src/utils/transformers/convert_mistral.py,sha256=4QStizMS6ESEPjSI-ls6j
321
328
  keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=BT5eX1QzbjCQCopbMstiejQQWQiB_N77bpD5FMUygEo,11234
322
329
  keras_hub/src/utils/transformers/preset_loader.py,sha256=9x9hLhDh_6PAHG5gay5rVoEVyt-gXTQGrnprjMLKvCM,3294
323
330
  keras_hub/src/utils/transformers/safetensor_utils.py,sha256=2O8lcCf9yIFt5xiRVOtF1ZkPb5pfhOfDJotBaanD9Zo,3547
324
- keras_hub_nightly-0.16.0.dev20240915160609.dist-info/METADATA,sha256=88G8f1BGkGqtfPHs5_01Qs1svrqnOnDen0oeSHSJTxM,1251
325
- keras_hub_nightly-0.16.0.dev20240915160609.dist-info/WHEEL,sha256=5Mi1sN9lKoFv_gxcPtisEVrJZihrm_beibeg5R6xb4I,91
326
- keras_hub_nightly-0.16.0.dev20240915160609.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
327
- keras_hub_nightly-0.16.0.dev20240915160609.dist-info/RECORD,,
331
+ keras_hub_nightly-0.16.1.dev202409210335.dist-info/METADATA,sha256=XDJP6zqkNwmPIjLkOEAHp9hh8z1JLqO09nMcGLlnmtU,7061
332
+ keras_hub_nightly-0.16.1.dev202409210335.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
333
+ keras_hub_nightly-0.16.1.dev202409210335.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
334
+ keras_hub_nightly-0.16.1.dev202409210335.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.0.0)
2
+ Generator: setuptools (75.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,33 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: keras-hub-nightly
3
- Version: 0.16.0.dev20240915160609
4
- Summary: 🚧🚧🚧 Work in progress. 🚧🚧🚧 More details soon!
5
- Home-page: https://github.com/keras-team/keras-hub
6
- Author: Keras team
7
- Author-email: keras-hub@google.com
8
- License: Apache License 2.0
9
- Classifier: Development Status :: 3 - Alpha
10
- Classifier: Programming Language :: Python :: 3
11
- Classifier: Programming Language :: Python :: 3.9
12
- Classifier: Programming Language :: Python :: 3.10
13
- Classifier: Programming Language :: Python :: 3.11
14
- Classifier: Programming Language :: Python :: 3 :: Only
15
- Classifier: Operating System :: Unix
16
- Classifier: Operating System :: Microsoft :: Windows
17
- Classifier: Operating System :: MacOS
18
- Classifier: Intended Audience :: Science/Research
19
- Classifier: Topic :: Scientific/Engineering
20
- Classifier: Topic :: Software Development
21
- Requires-Python: >=3.9
22
- Requires-Dist: absl-py
23
- Requires-Dist: numpy
24
- Requires-Dist: packaging
25
- Requires-Dist: regex
26
- Requires-Dist: rich
27
- Requires-Dist: kagglehub
28
- Requires-Dist: tensorflow-text ; platform_system != "Darwin"
29
- Provides-Extra: extras
30
- Requires-Dist: rouge-score ; extra == 'extras'
31
- Requires-Dist: sentencepiece ; extra == 'extras'
32
-
33
- 🚧🚧🚧 Work in progress. 🚧🚧🚧 More details soon!