keras-hub-nightly 0.15.0.dev20240823171555__py3-none-any.whl → 0.16.0.dev20240915160609__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/api/__init__.py +1 -0
- keras_hub/api/bounding_box/__init__.py +36 -0
- keras_hub/api/layers/__init__.py +14 -0
- keras_hub/api/models/__init__.py +97 -48
- keras_hub/api/tokenizers/__init__.py +30 -0
- keras_hub/src/bounding_box/__init__.py +13 -0
- keras_hub/src/bounding_box/converters.py +529 -0
- keras_hub/src/bounding_box/formats.py +162 -0
- keras_hub/src/bounding_box/iou.py +263 -0
- keras_hub/src/bounding_box/to_dense.py +95 -0
- keras_hub/src/bounding_box/to_ragged.py +99 -0
- keras_hub/src/bounding_box/utils.py +194 -0
- keras_hub/src/bounding_box/validate_format.py +99 -0
- keras_hub/src/layers/preprocessing/audio_converter.py +121 -0
- keras_hub/src/layers/preprocessing/image_converter.py +130 -0
- keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +2 -0
- keras_hub/src/layers/preprocessing/multi_segment_packer.py +9 -8
- keras_hub/src/layers/preprocessing/preprocessing_layer.py +2 -29
- keras_hub/src/layers/preprocessing/random_deletion.py +33 -31
- keras_hub/src/layers/preprocessing/random_swap.py +33 -31
- keras_hub/src/layers/preprocessing/resizing_image_converter.py +101 -0
- keras_hub/src/layers/preprocessing/start_end_packer.py +3 -2
- keras_hub/src/models/albert/__init__.py +1 -2
- keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +6 -86
- keras_hub/src/models/albert/{albert_classifier.py → albert_text_classifier.py} +34 -10
- keras_hub/src/models/albert/{albert_preprocessor.py → albert_text_classifier_preprocessor.py} +14 -70
- keras_hub/src/models/albert/albert_tokenizer.py +17 -36
- keras_hub/src/models/backbone.py +12 -34
- keras_hub/src/models/bart/__init__.py +1 -2
- keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +21 -148
- keras_hub/src/models/bart/bart_tokenizer.py +12 -39
- keras_hub/src/models/bert/__init__.py +1 -5
- keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +6 -87
- keras_hub/src/models/bert/bert_presets.py +1 -4
- keras_hub/src/models/bert/{bert_classifier.py → bert_text_classifier.py} +19 -12
- keras_hub/src/models/bert/{bert_preprocessor.py → bert_text_classifier_preprocessor.py} +14 -70
- keras_hub/src/models/bert/bert_tokenizer.py +17 -35
- keras_hub/src/models/bloom/__init__.py +1 -2
- keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +6 -91
- keras_hub/src/models/bloom/bloom_tokenizer.py +12 -41
- keras_hub/src/models/causal_lm.py +10 -29
- keras_hub/src/models/causal_lm_preprocessor.py +195 -0
- keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +54 -15
- keras_hub/src/models/deberta_v3/__init__.py +1 -4
- keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +14 -77
- keras_hub/src/models/deberta_v3/{deberta_v3_classifier.py → deberta_v3_text_classifier.py} +16 -11
- keras_hub/src/models/deberta_v3/{deberta_v3_preprocessor.py → deberta_v3_text_classifier_preprocessor.py} +23 -64
- keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +30 -25
- keras_hub/src/models/densenet/densenet_backbone.py +46 -22
- keras_hub/src/models/distil_bert/__init__.py +1 -4
- keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +14 -76
- keras_hub/src/models/distil_bert/{distil_bert_classifier.py → distil_bert_text_classifier.py} +17 -12
- keras_hub/src/models/distil_bert/{distil_bert_preprocessor.py → distil_bert_text_classifier_preprocessor.py} +23 -63
- keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +19 -35
- keras_hub/src/models/efficientnet/__init__.py +13 -0
- keras_hub/src/models/efficientnet/efficientnet_backbone.py +569 -0
- keras_hub/src/models/efficientnet/fusedmbconv.py +229 -0
- keras_hub/src/models/efficientnet/mbconv.py +238 -0
- keras_hub/src/models/electra/__init__.py +1 -2
- keras_hub/src/models/electra/electra_tokenizer.py +17 -32
- keras_hub/src/models/f_net/__init__.py +1 -2
- keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +12 -78
- keras_hub/src/models/f_net/{f_net_classifier.py → f_net_text_classifier.py} +17 -10
- keras_hub/src/models/f_net/{f_net_preprocessor.py → f_net_text_classifier_preprocessor.py} +19 -63
- keras_hub/src/models/f_net/f_net_tokenizer.py +17 -35
- keras_hub/src/models/falcon/__init__.py +1 -2
- keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +6 -89
- keras_hub/src/models/falcon/falcon_tokenizer.py +12 -35
- keras_hub/src/models/gemma/__init__.py +1 -2
- keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +6 -90
- keras_hub/src/models/gemma/gemma_tokenizer.py +12 -23
- keras_hub/src/models/gpt2/__init__.py +1 -2
- keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +6 -89
- keras_hub/src/models/gpt2/gpt2_preprocessor.py +12 -90
- keras_hub/src/models/gpt2/gpt2_tokenizer.py +12 -34
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +6 -91
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +12 -34
- keras_hub/src/models/image_classifier.py +0 -5
- keras_hub/src/models/image_classifier_preprocessor.py +83 -0
- keras_hub/src/models/llama/__init__.py +1 -2
- keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +6 -85
- keras_hub/src/models/llama/llama_tokenizer.py +12 -25
- keras_hub/src/models/llama3/__init__.py +1 -2
- keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +6 -89
- keras_hub/src/models/llama3/llama3_tokenizer.py +12 -33
- keras_hub/src/models/masked_lm.py +0 -2
- keras_hub/src/models/masked_lm_preprocessor.py +156 -0
- keras_hub/src/models/mistral/__init__.py +1 -2
- keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +6 -91
- keras_hub/src/models/mistral/mistral_tokenizer.py +12 -23
- keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +2 -2
- keras_hub/src/models/mobilenet/__init__.py +13 -0
- keras_hub/src/models/mobilenet/mobilenet_backbone.py +530 -0
- keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +114 -0
- keras_hub/src/models/opt/__init__.py +1 -2
- keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +6 -93
- keras_hub/src/models/opt/opt_tokenizer.py +12 -41
- keras_hub/src/models/pali_gemma/__init__.py +1 -4
- keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +28 -28
- keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +25 -0
- keras_hub/src/models/pali_gemma/pali_gemma_presets.py +5 -5
- keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +11 -3
- keras_hub/src/models/phi3/__init__.py +1 -2
- keras_hub/src/models/phi3/phi3_causal_lm.py +3 -9
- keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +6 -89
- keras_hub/src/models/phi3/phi3_tokenizer.py +12 -36
- keras_hub/src/models/preprocessor.py +72 -83
- keras_hub/src/models/resnet/__init__.py +6 -0
- keras_hub/src/models/resnet/resnet_backbone.py +390 -42
- keras_hub/src/models/resnet/resnet_image_classifier.py +24 -3
- keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +28 -0
- keras_hub/src/models/{llama3/llama3_preprocessor.py → resnet/resnet_image_converter.py} +7 -5
- keras_hub/src/models/resnet/resnet_presets.py +95 -0
- keras_hub/src/models/roberta/__init__.py +1 -2
- keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +22 -74
- keras_hub/src/models/roberta/{roberta_classifier.py → roberta_text_classifier.py} +16 -11
- keras_hub/src/models/roberta/{roberta_preprocessor.py → roberta_text_classifier_preprocessor.py} +21 -53
- keras_hub/src/models/roberta/roberta_tokenizer.py +13 -52
- keras_hub/src/models/seq_2_seq_lm_preprocessor.py +269 -0
- keras_hub/src/models/stable_diffusion_v3/__init__.py +13 -0
- keras_hub/src/models/stable_diffusion_v3/clip_encoder_block.py +103 -0
- keras_hub/src/models/stable_diffusion_v3/clip_preprocessor.py +93 -0
- keras_hub/src/models/stable_diffusion_v3/clip_text_encoder.py +149 -0
- keras_hub/src/models/stable_diffusion_v3/clip_tokenizer.py +167 -0
- keras_hub/src/models/stable_diffusion_v3/mmdit.py +427 -0
- keras_hub/src/models/stable_diffusion_v3/mmdit_block.py +317 -0
- keras_hub/src/models/stable_diffusion_v3/t5_xxl_preprocessor.py +74 -0
- keras_hub/src/models/stable_diffusion_v3/t5_xxl_text_encoder.py +155 -0
- keras_hub/src/models/stable_diffusion_v3/vae_attention.py +126 -0
- keras_hub/src/models/stable_diffusion_v3/vae_image_decoder.py +186 -0
- keras_hub/src/models/t5/__init__.py +1 -2
- keras_hub/src/models/t5/t5_tokenizer.py +13 -23
- keras_hub/src/models/task.py +71 -116
- keras_hub/src/models/{classifier.py → text_classifier.py} +19 -13
- keras_hub/src/models/text_classifier_preprocessor.py +138 -0
- keras_hub/src/models/whisper/__init__.py +1 -2
- keras_hub/src/models/whisper/{whisper_audio_feature_extractor.py → whisper_audio_converter.py} +20 -18
- keras_hub/src/models/whisper/whisper_backbone.py +0 -3
- keras_hub/src/models/whisper/whisper_presets.py +10 -10
- keras_hub/src/models/whisper/whisper_tokenizer.py +20 -16
- keras_hub/src/models/xlm_roberta/__init__.py +1 -4
- keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +26 -72
- keras_hub/src/models/xlm_roberta/{xlm_roberta_classifier.py → xlm_roberta_text_classifier.py} +16 -11
- keras_hub/src/models/xlm_roberta/{xlm_roberta_preprocessor.py → xlm_roberta_text_classifier_preprocessor.py} +26 -53
- keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +25 -10
- keras_hub/src/tests/test_case.py +38 -0
- keras_hub/src/tokenizers/byte_pair_tokenizer.py +29 -17
- keras_hub/src/tokenizers/byte_tokenizer.py +14 -15
- keras_hub/src/tokenizers/sentence_piece_tokenizer.py +19 -7
- keras_hub/src/tokenizers/tokenizer.py +67 -32
- keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +14 -15
- keras_hub/src/tokenizers/word_piece_tokenizer.py +33 -47
- keras_hub/src/utils/keras_utils.py +0 -50
- keras_hub/src/utils/preset_utils.py +220 -67
- keras_hub/src/utils/tensor_utils.py +187 -69
- keras_hub/src/utils/timm/convert_resnet.py +19 -16
- keras_hub/src/utils/timm/preset_loader.py +66 -0
- keras_hub/src/utils/transformers/convert_albert.py +193 -0
- keras_hub/src/utils/transformers/convert_bart.py +373 -0
- keras_hub/src/utils/transformers/convert_bert.py +7 -17
- keras_hub/src/utils/transformers/convert_distilbert.py +10 -20
- keras_hub/src/utils/transformers/convert_gemma.py +5 -19
- keras_hub/src/utils/transformers/convert_gpt2.py +5 -18
- keras_hub/src/utils/transformers/convert_llama3.py +7 -18
- keras_hub/src/utils/transformers/convert_mistral.py +129 -0
- keras_hub/src/utils/transformers/convert_pali_gemma.py +7 -29
- keras_hub/src/utils/transformers/preset_loader.py +77 -0
- keras_hub/src/utils/transformers/safetensor_utils.py +2 -2
- keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.15.0.dev20240823171555.dist-info → keras_hub_nightly-0.16.0.dev20240915160609.dist-info}/METADATA +1 -2
- {keras_hub_nightly-0.15.0.dev20240823171555.dist-info → keras_hub_nightly-0.16.0.dev20240915160609.dist-info}/RECORD +173 -143
- {keras_hub_nightly-0.15.0.dev20240823171555.dist-info → keras_hub_nightly-0.16.0.dev20240915160609.dist-info}/WHEEL +1 -1
- keras_hub/src/models/bart/bart_preprocessor.py +0 -276
- keras_hub/src/models/bloom/bloom_preprocessor.py +0 -185
- keras_hub/src/models/electra/electra_preprocessor.py +0 -154
- keras_hub/src/models/falcon/falcon_preprocessor.py +0 -187
- keras_hub/src/models/gemma/gemma_preprocessor.py +0 -191
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +0 -145
- keras_hub/src/models/llama/llama_preprocessor.py +0 -189
- keras_hub/src/models/mistral/mistral_preprocessor.py +0 -190
- keras_hub/src/models/opt/opt_preprocessor.py +0 -188
- keras_hub/src/models/phi3/phi3_preprocessor.py +0 -190
- keras_hub/src/models/whisper/whisper_preprocessor.py +0 -326
- keras_hub/src/utils/timm/convert.py +0 -37
- keras_hub/src/utils/transformers/convert.py +0 -101
- {keras_hub_nightly-0.15.0.dev20240823171555.dist-info → keras_hub_nightly-0.16.0.dev20240915160609.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,269 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
import keras
|
15
|
+
|
16
|
+
from keras_hub.src.api_export import keras_hub_export
|
17
|
+
from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
|
18
|
+
from keras_hub.src.models.preprocessor import Preprocessor
|
19
|
+
from keras_hub.src.utils.tensor_utils import preprocessing_function
|
20
|
+
from keras_hub.src.utils.tensor_utils import strip_to_ragged
|
21
|
+
|
22
|
+
try:
|
23
|
+
import tensorflow as tf
|
24
|
+
except ImportError:
|
25
|
+
tf = None
|
26
|
+
|
27
|
+
|
28
|
+
@keras_hub_export("keras_hub.models.Seq2SeqLMPreprocessor")
|
29
|
+
class Seq2SeqLMPreprocessor(Preprocessor):
|
30
|
+
"""Base class for seq2seq language modeling preprocessing layers.
|
31
|
+
|
32
|
+
`Seq2SeqLMPreprocessor` tasks wrap a `keras_hub.tokenizer.Tokenizer` to
|
33
|
+
create a preprocessing layer for seq2seq language modeling tasks. It is
|
34
|
+
intended to be paired with a `keras.models.Seq2SeqLM` task.
|
35
|
+
|
36
|
+
All `Seq2SeqLMPreprocessor` layers take inputs a dictionary input with keys
|
37
|
+
`"encoder_text"` and `"decoder_text"`.
|
38
|
+
|
39
|
+
This layer will always output a `(x, y, sample_weight)` tuple, where `x`
|
40
|
+
is a dictionary with the tokenized inputs, `y` contains the tokens from `x`
|
41
|
+
offset by 1, and `sample_weight` marks where `y` contains padded
|
42
|
+
values. The exact contents of `x` will vary depending on the model being
|
43
|
+
used.
|
44
|
+
|
45
|
+
a `Seq2SeqLMPreprocessor` contains two extra methods, `generate_preprocess`
|
46
|
+
and `generate_postprocess` for use with generation. See examples below.
|
47
|
+
|
48
|
+
All `Seq2SeqLMPreprocessor` tasks include a `from_preset()` constructor
|
49
|
+
which can be used to load a pre-trained config and vocabularies. You can
|
50
|
+
call the `from_preset()` constructor directly on this base class, in which
|
51
|
+
case the correct class for you model will be automatically instantiated.
|
52
|
+
|
53
|
+
Examples.
|
54
|
+
```python
|
55
|
+
preprocessor = keras_hub.models.Seq2SeqLMPreprocessor.from_preset(
|
56
|
+
"bart_base_en",
|
57
|
+
encoder_sequence_length=256,
|
58
|
+
decoder_sequence_length=256,
|
59
|
+
)
|
60
|
+
|
61
|
+
# Tokenize, mask and pack a single sentence.
|
62
|
+
x = {
|
63
|
+
"encoder_text": "The fox was sleeping.",
|
64
|
+
"decoder_text": "The fox was awake.",
|
65
|
+
}
|
66
|
+
x, y, sample_weight = preprocessor(x)
|
67
|
+
|
68
|
+
# Tokenize and pad/truncate a batch of labeled sentences.
|
69
|
+
x = {
|
70
|
+
"encoder_text": ["The fox was sleeping."],
|
71
|
+
"decoder_text": ["The fox was awake."],
|
72
|
+
x, y, sample_weight = preprocessor(x)
|
73
|
+
|
74
|
+
# With a `tf.data.Dataset`.
|
75
|
+
ds = tf.data.Dataset.from_tensor_slices(x)
|
76
|
+
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
77
|
+
|
78
|
+
# Generate preprocess and postprocess.
|
79
|
+
x = preprocessor.generate_preprocess(x) # Tokenized numeric inputs.
|
80
|
+
x = preprocessor.generate_postprocess(x) # Detokenized string outputs.
|
81
|
+
```
|
82
|
+
"""
|
83
|
+
|
84
|
+
def __init__(
|
85
|
+
self,
|
86
|
+
tokenizer,
|
87
|
+
encoder_sequence_length=1024,
|
88
|
+
decoder_sequence_length=1024,
|
89
|
+
**kwargs,
|
90
|
+
):
|
91
|
+
super().__init__(**kwargs)
|
92
|
+
self.tokenizer = tokenizer
|
93
|
+
self.encoder_packer = None
|
94
|
+
self.decoder_packer = None
|
95
|
+
self.encoder_sequence_length = encoder_sequence_length
|
96
|
+
self.decoder_sequence_length = decoder_sequence_length
|
97
|
+
|
98
|
+
def build(self, input_shape):
|
99
|
+
# Defer packer creation to `build()` so that we can be sure tokenizer
|
100
|
+
# assets have loaded when restoring a saved model.
|
101
|
+
self.encoder_packer = StartEndPacker(
|
102
|
+
start_value=self.tokenizer.start_token_id,
|
103
|
+
end_value=self.tokenizer.end_token_id,
|
104
|
+
pad_value=self.tokenizer.pad_token_id,
|
105
|
+
sequence_length=self.encoder_sequence_length,
|
106
|
+
return_padding_mask=True,
|
107
|
+
)
|
108
|
+
self.decoder_packer = StartEndPacker(
|
109
|
+
start_value=self.tokenizer.start_token_id,
|
110
|
+
end_value=self.tokenizer.end_token_id,
|
111
|
+
pad_value=self.tokenizer.pad_token_id,
|
112
|
+
sequence_length=self.decoder_sequence_length,
|
113
|
+
return_padding_mask=True,
|
114
|
+
)
|
115
|
+
self.built = True
|
116
|
+
|
117
|
+
@preprocessing_function
|
118
|
+
def call(
|
119
|
+
self,
|
120
|
+
x,
|
121
|
+
y=None,
|
122
|
+
sample_weight=None,
|
123
|
+
*,
|
124
|
+
encoder_sequence_length=None,
|
125
|
+
decoder_sequence_length=None,
|
126
|
+
# `sequence_length` is an alias for `decoder_sequence_length`
|
127
|
+
sequence_length=None,
|
128
|
+
):
|
129
|
+
if encoder_sequence_length is None:
|
130
|
+
encoder_sequence_length = self.encoder_sequence_length
|
131
|
+
decoder_sequence_length = decoder_sequence_length or sequence_length
|
132
|
+
if decoder_sequence_length is None:
|
133
|
+
decoder_sequence_length = self.decoder_sequence_length
|
134
|
+
|
135
|
+
encoder_inputs = self.tokenizer(x["encoder_text"])
|
136
|
+
encoder_token_ids, encoder_padding_mask = self.encoder_packer(
|
137
|
+
encoder_inputs,
|
138
|
+
sequence_length=encoder_sequence_length,
|
139
|
+
)
|
140
|
+
decoder_inputs = self.tokenizer(x["decoder_text"])
|
141
|
+
decoder_token_ids, decoder_padding_mask = self.decoder_packer(
|
142
|
+
decoder_inputs,
|
143
|
+
sequence_length=decoder_sequence_length + 1,
|
144
|
+
)
|
145
|
+
x = {
|
146
|
+
"encoder_token_ids": encoder_token_ids,
|
147
|
+
"encoder_padding_mask": encoder_padding_mask,
|
148
|
+
"decoder_token_ids": decoder_token_ids[..., :-1],
|
149
|
+
"decoder_padding_mask": decoder_padding_mask[..., :-1],
|
150
|
+
}
|
151
|
+
# Target `y` will be the decoder input sequence shifted one step to the
|
152
|
+
# left (i.e., the next token).
|
153
|
+
y = decoder_token_ids[..., 1:]
|
154
|
+
sample_weight = decoder_padding_mask[..., 1:]
|
155
|
+
return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
|
156
|
+
|
157
|
+
@preprocessing_function
|
158
|
+
def generate_preprocess(
|
159
|
+
self,
|
160
|
+
x,
|
161
|
+
*,
|
162
|
+
encoder_sequence_length=None,
|
163
|
+
decoder_sequence_length=None,
|
164
|
+
# `sequence_length` is an alias for `decoder_sequence_length`
|
165
|
+
sequence_length=None,
|
166
|
+
):
|
167
|
+
"""Convert encoder and decoder input strings to integer token inputs for generation.
|
168
|
+
|
169
|
+
Similar to calling the layer for training, this method takes in a dict
|
170
|
+
containing `"encoder_text"` and `"decoder_text"`, with strings or tensor
|
171
|
+
strings for values, tokenizes and packs the input, and computes a
|
172
|
+
padding mask masking all inputs not filled in with a padded value.
|
173
|
+
|
174
|
+
Unlike calling the layer for training, this method does not compute
|
175
|
+
labels and will never append a tokenizer.end_token_id to the end of
|
176
|
+
the decoder sequence (as generation is expected to continue at the end
|
177
|
+
of the inputted decoder prompt).
|
178
|
+
"""
|
179
|
+
if not self.built:
|
180
|
+
self.build(None)
|
181
|
+
|
182
|
+
if isinstance(x, dict):
|
183
|
+
encoder_text = x["encoder_text"]
|
184
|
+
decoder_text = x["decoder_text"]
|
185
|
+
else:
|
186
|
+
encoder_text = x
|
187
|
+
# Initialize empty prompt for the decoder.
|
188
|
+
decoder_text = tf.fill((tf.shape(encoder_text)[0],), "")
|
189
|
+
|
190
|
+
if encoder_sequence_length is None:
|
191
|
+
encoder_sequence_length = self.encoder_sequence_length
|
192
|
+
decoder_sequence_length = decoder_sequence_length or sequence_length
|
193
|
+
if decoder_sequence_length is None:
|
194
|
+
decoder_sequence_length = self.decoder_sequence_length
|
195
|
+
|
196
|
+
# Tokenize and pack the encoder inputs.
|
197
|
+
encoder_token_ids = self.tokenizer(encoder_text)
|
198
|
+
encoder_token_ids, encoder_padding_mask = self.encoder_packer(
|
199
|
+
encoder_token_ids,
|
200
|
+
sequence_length=encoder_sequence_length,
|
201
|
+
)
|
202
|
+
|
203
|
+
# Tokenize and pack the decoder inputs.
|
204
|
+
decoder_token_ids = self.tokenizer(decoder_text)
|
205
|
+
decoder_token_ids, decoder_padding_mask = self.decoder_packer(
|
206
|
+
decoder_token_ids,
|
207
|
+
sequence_length=decoder_sequence_length,
|
208
|
+
add_end_value=False,
|
209
|
+
)
|
210
|
+
|
211
|
+
return {
|
212
|
+
"encoder_token_ids": encoder_token_ids,
|
213
|
+
"encoder_padding_mask": encoder_padding_mask,
|
214
|
+
"decoder_token_ids": decoder_token_ids,
|
215
|
+
"decoder_padding_mask": decoder_padding_mask,
|
216
|
+
}
|
217
|
+
|
218
|
+
@preprocessing_function
|
219
|
+
def generate_postprocess(
|
220
|
+
self,
|
221
|
+
x,
|
222
|
+
):
|
223
|
+
"""Convert integer token output to strings for generation.
|
224
|
+
|
225
|
+
This method reverses `generate_preprocess()`, by first removing all
|
226
|
+
padding and start/end tokens, and then converting the integer sequence
|
227
|
+
back to a string.
|
228
|
+
"""
|
229
|
+
if not self.built:
|
230
|
+
self.build(None)
|
231
|
+
|
232
|
+
token_ids, padding_mask = (
|
233
|
+
x["decoder_token_ids"],
|
234
|
+
x["decoder_padding_mask"],
|
235
|
+
)
|
236
|
+
ids_to_strip = self.tokenizer.special_token_ids
|
237
|
+
token_ids = strip_to_ragged(token_ids, padding_mask, ids_to_strip)
|
238
|
+
return self.tokenizer.detokenize(token_ids)
|
239
|
+
|
240
|
+
@property
|
241
|
+
def encoder_sequence_length(self):
|
242
|
+
"""The padded length of encoder input sequences."""
|
243
|
+
return self._encoder_sequence_length
|
244
|
+
|
245
|
+
@encoder_sequence_length.setter
|
246
|
+
def encoder_sequence_length(self, value):
|
247
|
+
self._encoder_sequence_length = value
|
248
|
+
if self.encoder_packer is not None:
|
249
|
+
self.encoder_packer.sequence_length = value
|
250
|
+
|
251
|
+
@property
|
252
|
+
def decoder_sequence_length(self):
|
253
|
+
"""The padded length of decoder input sequences."""
|
254
|
+
return self._decoder_sequence_length
|
255
|
+
|
256
|
+
@decoder_sequence_length.setter
|
257
|
+
def decoder_sequence_length(self, value):
|
258
|
+
self._decoder_sequence_length = value
|
259
|
+
if self.decoder_packer is not None:
|
260
|
+
self.decoder_packer.sequence_length = value
|
261
|
+
|
262
|
+
@property
|
263
|
+
def sequence_length(self):
|
264
|
+
"""Alias for `decoder_sequence_length`."""
|
265
|
+
return self.decoder_sequence_length
|
266
|
+
|
267
|
+
@sequence_length.setter
|
268
|
+
def sequence_length(self, value):
|
269
|
+
self.decoder_sequence_length = value
|
@@ -0,0 +1,13 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
@@ -0,0 +1,103 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
from keras import layers
|
15
|
+
from keras import ops
|
16
|
+
|
17
|
+
|
18
|
+
def quick_gelu(x):
|
19
|
+
return x * ops.sigmoid(1.702 * x)
|
20
|
+
|
21
|
+
|
22
|
+
class CLIPEncoderBlock(layers.Layer):
|
23
|
+
def __init__(
|
24
|
+
self,
|
25
|
+
hidden_dim,
|
26
|
+
num_heads,
|
27
|
+
intermediate_dim,
|
28
|
+
intermediate_activation="quick_gelu",
|
29
|
+
**kwargs,
|
30
|
+
):
|
31
|
+
super().__init__(**kwargs)
|
32
|
+
if hidden_dim % num_heads != 0:
|
33
|
+
raise ValueError(
|
34
|
+
"`hidden_dim` must be divisible by `num_heads`. "
|
35
|
+
f"Received: hidden_dim={hidden_dim}, num_heads={num_heads}"
|
36
|
+
)
|
37
|
+
self.hidden_dim = hidden_dim
|
38
|
+
self.num_heads = num_heads
|
39
|
+
self.intermediate_dim = intermediate_dim
|
40
|
+
self.intermediate_activation = intermediate_activation
|
41
|
+
|
42
|
+
if intermediate_activation == "quick_gelu":
|
43
|
+
intermediate_activation = quick_gelu
|
44
|
+
|
45
|
+
self.layer_norm_1 = layers.LayerNormalization(
|
46
|
+
epsilon=0.00001, dtype=self.dtype_policy, name="layer_norm_1"
|
47
|
+
)
|
48
|
+
self.attention = layers.MultiHeadAttention(
|
49
|
+
num_heads,
|
50
|
+
hidden_dim // num_heads,
|
51
|
+
dtype=self.dtype_policy,
|
52
|
+
name="attention",
|
53
|
+
)
|
54
|
+
self.layer_norm_2 = layers.LayerNormalization(
|
55
|
+
epsilon=0.00001, dtype=self.dtype_policy, name="layer_norm_2"
|
56
|
+
)
|
57
|
+
self.dense_1 = layers.Dense(
|
58
|
+
self.intermediate_dim, dtype=self.dtype_policy, name="dense_1"
|
59
|
+
)
|
60
|
+
self.activation = layers.Activation(
|
61
|
+
intermediate_activation, dtype=self.dtype_policy, name="activation"
|
62
|
+
)
|
63
|
+
self.dense_2 = layers.Dense(
|
64
|
+
self.hidden_dim, dtype=self.dtype_policy, name="dense_2"
|
65
|
+
)
|
66
|
+
|
67
|
+
def build(self, input_shape):
|
68
|
+
self.layer_norm_1.build(input_shape)
|
69
|
+
self.attention.build(input_shape, input_shape, input_shape)
|
70
|
+
self.layer_norm_2.build(input_shape)
|
71
|
+
self.dense_1.build(input_shape)
|
72
|
+
input_shape = self.dense_1.compute_output_shape(input_shape)
|
73
|
+
self.dense_2.build(input_shape)
|
74
|
+
|
75
|
+
def compute_output_shape(self, inputs_shape):
|
76
|
+
outputs_shape = list(inputs_shape)
|
77
|
+
outputs_shape[-1] = self.hidden_dim
|
78
|
+
return outputs_shape
|
79
|
+
|
80
|
+
def call(self, x, training=None):
|
81
|
+
residual = x
|
82
|
+
x = self.layer_norm_1(x)
|
83
|
+
x = self.attention(x, x, x, training=training, use_causal_mask=True)
|
84
|
+
x = ops.add(residual, x)
|
85
|
+
|
86
|
+
residual = x
|
87
|
+
x = self.dense_1(self.layer_norm_2(residual))
|
88
|
+
x = self.activation(x)
|
89
|
+
x = self.dense_2(x)
|
90
|
+
x = ops.add(residual, x)
|
91
|
+
return x
|
92
|
+
|
93
|
+
def get_config(self):
|
94
|
+
config = super().get_config()
|
95
|
+
config.update(
|
96
|
+
{
|
97
|
+
"hidden_dim": self.hidden_dim,
|
98
|
+
"num_heads": self.num_heads,
|
99
|
+
"intermediate_dim": self.intermediate_dim,
|
100
|
+
"intermediate_activation": self.intermediate_activation,
|
101
|
+
}
|
102
|
+
)
|
103
|
+
return config
|
@@ -0,0 +1,93 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
import keras
|
15
|
+
|
16
|
+
from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
|
17
|
+
from keras_hub.src.models.preprocessor import Preprocessor
|
18
|
+
from keras_hub.src.models.stable_diffusion_v3.clip_tokenizer import (
|
19
|
+
CLIPTokenizer,
|
20
|
+
)
|
21
|
+
from keras_hub.src.utils.tensor_utils import preprocessing_function
|
22
|
+
|
23
|
+
try:
|
24
|
+
import tensorflow as tf
|
25
|
+
except ImportError:
|
26
|
+
tf = None
|
27
|
+
|
28
|
+
|
29
|
+
class CLIPPreprocessor(Preprocessor):
|
30
|
+
tokenizer_cls = CLIPTokenizer
|
31
|
+
|
32
|
+
def __init__(
|
33
|
+
self,
|
34
|
+
tokenizer,
|
35
|
+
sequence_length=77,
|
36
|
+
add_start_token=True,
|
37
|
+
add_end_token=False,
|
38
|
+
to_lower=True,
|
39
|
+
pad_with_end_token=True,
|
40
|
+
**kwargs,
|
41
|
+
):
|
42
|
+
super().__init__(**kwargs)
|
43
|
+
self.tokenizer = tokenizer
|
44
|
+
self.sequence_length = sequence_length
|
45
|
+
self.add_start_token = add_start_token
|
46
|
+
self.add_end_token = add_end_token
|
47
|
+
self.to_lower = to_lower
|
48
|
+
self.pad_with_end_token = pad_with_end_token
|
49
|
+
|
50
|
+
def build(self, input_shape):
|
51
|
+
# Defer packer creation to `build()` so that we can be sure tokenizer
|
52
|
+
# assets have loaded when restoring a saved model.
|
53
|
+
pad_value = self.tokenizer.pad_token_id
|
54
|
+
if self.pad_with_end_token:
|
55
|
+
pad_value = self.tokenizer.end_token_id
|
56
|
+
|
57
|
+
self.packer = StartEndPacker(
|
58
|
+
start_value=self.tokenizer.start_token_id,
|
59
|
+
end_value=self.tokenizer.end_token_id,
|
60
|
+
pad_value=pad_value,
|
61
|
+
sequence_length=self.sequence_length,
|
62
|
+
return_padding_mask=True,
|
63
|
+
)
|
64
|
+
self.built = True
|
65
|
+
|
66
|
+
@preprocessing_function
|
67
|
+
def call(self, x, y=None, sample_weight=None, sequence_length=None):
|
68
|
+
if self.to_lower:
|
69
|
+
x = tf.strings.lower(x)
|
70
|
+
token_ids, padding_mask = self.packer(
|
71
|
+
self.tokenizer(x),
|
72
|
+
sequence_length=sequence_length or self.sequence_length,
|
73
|
+
add_start_value=self.add_start_token,
|
74
|
+
add_end_value=self.add_end_token,
|
75
|
+
)
|
76
|
+
x = {
|
77
|
+
"token_ids": token_ids,
|
78
|
+
"padding_mask": padding_mask,
|
79
|
+
}
|
80
|
+
return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
|
81
|
+
|
82
|
+
def get_config(self):
|
83
|
+
config = super().get_config()
|
84
|
+
config.update(
|
85
|
+
{
|
86
|
+
"sequence_length": self.sequence_length,
|
87
|
+
"add_start_token": self.add_start_token,
|
88
|
+
"add_end_token": self.add_end_token,
|
89
|
+
"to_lower": self.to_lower,
|
90
|
+
"pad_with_end_token": self.pad_with_end_token,
|
91
|
+
}
|
92
|
+
)
|
93
|
+
return config
|
@@ -0,0 +1,149 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
import keras
|
15
|
+
from keras import layers
|
16
|
+
from keras import ops
|
17
|
+
|
18
|
+
from keras_hub.src.layers.modeling.token_and_position_embedding import (
|
19
|
+
TokenAndPositionEmbedding,
|
20
|
+
)
|
21
|
+
from keras_hub.src.models.stable_diffusion_v3.clip_encoder_block import (
|
22
|
+
CLIPEncoderBlock,
|
23
|
+
)
|
24
|
+
|
25
|
+
|
26
|
+
class CLIPTextEncoder(keras.Model):
|
27
|
+
def __init__(
|
28
|
+
self,
|
29
|
+
embedding_dim,
|
30
|
+
hidden_dim,
|
31
|
+
num_layers,
|
32
|
+
num_heads,
|
33
|
+
intermediate_dim,
|
34
|
+
intermediate_activation="quick_gelu",
|
35
|
+
intermediate_output_index=None,
|
36
|
+
vocabulary_size=49408,
|
37
|
+
sequence_length=77,
|
38
|
+
dtype=None,
|
39
|
+
**kwargs,
|
40
|
+
):
|
41
|
+
if (
|
42
|
+
intermediate_output_index is not None
|
43
|
+
and intermediate_output_index < 0
|
44
|
+
):
|
45
|
+
intermediate_output_index += num_layers
|
46
|
+
|
47
|
+
# === Layers ===
|
48
|
+
self.embedding = TokenAndPositionEmbedding(
|
49
|
+
vocabulary_size=vocabulary_size,
|
50
|
+
sequence_length=sequence_length,
|
51
|
+
embedding_dim=embedding_dim,
|
52
|
+
dtype=dtype,
|
53
|
+
name="embedding",
|
54
|
+
)
|
55
|
+
self.encoder_layers = [
|
56
|
+
CLIPEncoderBlock(
|
57
|
+
hidden_dim,
|
58
|
+
num_heads,
|
59
|
+
intermediate_dim,
|
60
|
+
intermediate_activation,
|
61
|
+
dtype=dtype,
|
62
|
+
)
|
63
|
+
for _ in range(num_layers)
|
64
|
+
]
|
65
|
+
self.layer_norm = layers.LayerNormalization(
|
66
|
+
epsilon=0.00001, dtype=dtype, name="layer_norm"
|
67
|
+
)
|
68
|
+
self.text_projection = layers.Dense(
|
69
|
+
hidden_dim,
|
70
|
+
use_bias=False,
|
71
|
+
dtype=dtype,
|
72
|
+
name="text_projection",
|
73
|
+
)
|
74
|
+
|
75
|
+
# === Functional Model ===
|
76
|
+
encoder_token_ids = layers.Input(
|
77
|
+
shape=(sequence_length,), dtype="int32", name="encoder_token_ids"
|
78
|
+
)
|
79
|
+
x = self.embedding(encoder_token_ids)
|
80
|
+
encoder_intermediate_output = None
|
81
|
+
# Encoder.
|
82
|
+
for i, block in enumerate(self.encoder_layers):
|
83
|
+
x = block(x)
|
84
|
+
if i == intermediate_output_index:
|
85
|
+
encoder_intermediate_output = x
|
86
|
+
x = self.layer_norm(x)
|
87
|
+
encoder_output = x
|
88
|
+
if encoder_intermediate_output is not None:
|
89
|
+
encoder_intermediate_output = self.layer_norm(
|
90
|
+
encoder_intermediate_output
|
91
|
+
)
|
92
|
+
# Projection.
|
93
|
+
indices = ops.expand_dims(
|
94
|
+
ops.cast(ops.argmax(encoder_token_ids, axis=-1), "int32"), axis=-1
|
95
|
+
)
|
96
|
+
pooled_output = ops.take_along_axis(x, indices[:, :, None], axis=1)
|
97
|
+
pooled_output = ops.squeeze(pooled_output, axis=1)
|
98
|
+
projection_output = self.text_projection(pooled_output)
|
99
|
+
|
100
|
+
outputs = {
|
101
|
+
"encoder_sequence_output": encoder_output,
|
102
|
+
"encoder_pooled_output": pooled_output,
|
103
|
+
"encoder_projection_output": projection_output,
|
104
|
+
}
|
105
|
+
if intermediate_output_index is not None:
|
106
|
+
outputs["encoder_intermediate_output"] = encoder_intermediate_output
|
107
|
+
|
108
|
+
super().__init__(
|
109
|
+
inputs={"encoder_token_ids": encoder_token_ids},
|
110
|
+
outputs=outputs,
|
111
|
+
**kwargs,
|
112
|
+
)
|
113
|
+
|
114
|
+
# === Config ===
|
115
|
+
self.embedding_dim = embedding_dim
|
116
|
+
self.hidden_dim = hidden_dim
|
117
|
+
self.num_layers = num_layers
|
118
|
+
self.num_heads = num_heads
|
119
|
+
self.intermediate_dim = intermediate_dim
|
120
|
+
self.intermediate_activation = intermediate_activation
|
121
|
+
self.intermediate_output_index = intermediate_output_index
|
122
|
+
self.vocabulary_size = vocabulary_size
|
123
|
+
self.sequence_length = sequence_length
|
124
|
+
|
125
|
+
if dtype is not None:
|
126
|
+
try:
|
127
|
+
self.dtype_policy = keras.dtype_policies.get(dtype)
|
128
|
+
# Before Keras 3.2, there is no `keras.dtype_policies.get`.
|
129
|
+
except AttributeError:
|
130
|
+
if isinstance(dtype, keras.DTypePolicy):
|
131
|
+
dtype = dtype.name
|
132
|
+
self.dtype_policy = keras.DTypePolicy(dtype)
|
133
|
+
|
134
|
+
def get_config(self):
|
135
|
+
config = super().get_config()
|
136
|
+
config.update(
|
137
|
+
{
|
138
|
+
"embedding_dim": self.embedding_dim,
|
139
|
+
"hidden_dim": self.hidden_dim,
|
140
|
+
"num_layers": self.num_layers,
|
141
|
+
"num_heads": self.num_heads,
|
142
|
+
"intermediate_dim": self.intermediate_dim,
|
143
|
+
"intermediate_activation": self.intermediate_activation,
|
144
|
+
"intermediate_output_index": self.intermediate_output_index,
|
145
|
+
"vocabulary_size": self.vocabulary_size,
|
146
|
+
"sequence_length": self.sequence_length,
|
147
|
+
}
|
148
|
+
)
|
149
|
+
return config
|