karaoke-gen 0.81.1__py3-none-any.whl → 0.86.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -51,22 +51,34 @@ class ResponseParser:
51
51
 
52
52
  def _attempt_json_fix(self, content: str) -> str:
53
53
  """Attempt to fix common JSON formatting issues.
54
-
54
+
55
55
  Args:
56
56
  content: Raw JSON string
57
-
57
+
58
58
  Returns:
59
59
  Fixed JSON string (or original if no fixes applied)
60
60
  """
61
+ import re
62
+
63
+ # Fix 0: Strip markdown code fences (```json ... ``` or ``` ... ```)
64
+ # Models often wrap JSON in markdown code blocks
65
+ fixed = content.strip()
66
+ if fixed.startswith("```"):
67
+ # Remove opening fence (with optional language identifier)
68
+ fixed = re.sub(r'^```\w*\s*\n?', '', fixed)
69
+ # Remove closing fence
70
+ fixed = re.sub(r'\n?```\s*$', '', fixed)
71
+ fixed = fixed.strip()
72
+ logger.debug("🤖 Stripped markdown code fences from response")
73
+
61
74
  # Fix 1: Replace invalid escape sequences like \' with '
62
75
  # (JSON only allows \", \\, \/, \b, \f, \n, \r, \t)
63
- fixed = content.replace("\\'", "'")
64
-
76
+ fixed = fixed.replace("\\'", "'")
77
+
65
78
  # Fix 2: Remove any trailing commas before } or ]
66
- import re
67
79
  fixed = re.sub(r',\s*}', '}', fixed)
68
80
  fixed = re.sub(r',\s*]', ']', fixed)
69
-
81
+
70
82
  return fixed
71
83
 
72
84
  def _normalize_json_response(self, data: Any) -> List[Dict[str, Any]]:
@@ -6,6 +6,7 @@ from typing import Dict, Any
6
6
  from .providers.config import ProviderConfig
7
7
 
8
8
  # Default model for cloud deployments - Gemini 3 Flash via Vertex AI
9
+ # Note: Gemini 3 models require 'global' location (not regional like us-central1)
9
10
  DEFAULT_CLOUD_MODEL = "vertexai/gemini-3-flash-preview"
10
11
 
11
12
 
@@ -33,7 +34,7 @@ class ModelRouter:
33
34
  if self._config.privacy_mode:
34
35
  return "ollama/llama3.2:latest"
35
36
 
36
- # Default to Gemini 3 Flash for all cases (fast, cost-effective)
37
+ # Default to Gemini 3 Flash for all cases (fast, cost-effective, latest capabilities)
37
38
  return DEFAULT_CLOUD_MODEL
38
39
 
39
40
 
@@ -4,9 +4,9 @@ from pathlib import Path
4
4
  from copy import deepcopy
5
5
  import os
6
6
  import shortuuid
7
+ import time
7
8
 
8
9
  from lyrics_transcriber.correction.handlers.levenshtein import LevenshteinHandler
9
- from lyrics_transcriber.correction.handlers.llm import LLMHandler
10
10
  from lyrics_transcriber.correction.handlers.no_space_punct_match import NoSpacePunctuationMatchHandler
11
11
  from lyrics_transcriber.correction.handlers.relaxed_word_count_match import RelaxedWordCountMatchHandler
12
12
  from lyrics_transcriber.correction.handlers.repeat import RepeatCorrectionHandler
@@ -27,7 +27,6 @@ from lyrics_transcriber.correction.anchor_sequence import AnchorSequenceFinder
27
27
  from lyrics_transcriber.correction.handlers.base import GapCorrectionHandler
28
28
  from lyrics_transcriber.correction.handlers.extend_anchor import ExtendAnchorHandler
29
29
  from lyrics_transcriber.utils.word_utils import WordUtils
30
- from lyrics_transcriber.correction.handlers.llm_providers import OllamaProvider, OpenAIProvider
31
30
 
32
31
 
33
32
  class LyricsCorrector:
@@ -57,60 +56,18 @@ class LyricsCorrector:
57
56
  ]
58
57
 
59
58
  # Create all handlers but respect enabled_handlers if provided
59
+ # Note: Legacy LLMHandler removed - use AgenticCorrector via USE_AGENTIC_AI=1 instead
60
60
  all_handlers = [
61
61
  ("ExtendAnchorHandler", ExtendAnchorHandler(logger=self.logger)),
62
62
  ("WordCountMatchHandler", WordCountMatchHandler(logger=self.logger)),
63
63
  ("SyllablesMatchHandler", SyllablesMatchHandler(logger=self.logger)),
64
64
  ("RelaxedWordCountMatchHandler", RelaxedWordCountMatchHandler(logger=self.logger)),
65
65
  ("NoSpacePunctuationMatchHandler", NoSpacePunctuationMatchHandler(logger=self.logger)),
66
- (
67
- "LLMHandler_Ollama_R17B",
68
- LLMHandler(
69
- provider=OllamaProvider(model="deepseek-r1:7b", logger=self.logger),
70
- name="LLMHandler_Ollama_R17B",
71
- logger=self.logger,
72
- cache_dir=self._cache_dir,
73
- ),
74
- ),
75
66
  ("RepeatCorrectionHandler", RepeatCorrectionHandler(logger=self.logger)),
76
67
  ("SoundAlikeHandler", SoundAlikeHandler(logger=self.logger)),
77
68
  ("LevenshteinHandler", LevenshteinHandler(logger=self.logger)),
78
69
  ]
79
70
 
80
- # Add OpenRouter handlers only if API key is available
81
- if os.getenv("OPENROUTER_API_KEY"):
82
- openrouter_handlers = [
83
- (
84
- "LLMHandler_OpenRouter_Sonnet",
85
- LLMHandler(
86
- provider=OpenAIProvider(
87
- model="anthropic/claude-3-sonnet",
88
- api_key=os.getenv("OPENROUTER_API_KEY"),
89
- base_url="https://openrouter.ai/api/v1",
90
- logger=self.logger,
91
- ),
92
- name="LLMHandler_OpenRouter_Sonnet",
93
- logger=self.logger,
94
- cache_dir=self._cache_dir,
95
- ),
96
- ),
97
- (
98
- "LLMHandler_OpenRouter_R1",
99
- LLMHandler(
100
- provider=OpenAIProvider(
101
- model="deepseek/deepseek-r1",
102
- api_key=os.getenv("OPENROUTER_API_KEY"),
103
- base_url="https://openrouter.ai/api/v1",
104
- logger=self.logger,
105
- ),
106
- name="LLMHandler_OpenRouter_R1",
107
- logger=self.logger,
108
- cache_dir=self._cache_dir,
109
- ),
110
- ),
111
- ]
112
- all_handlers.extend(openrouter_handlers)
113
-
114
71
  # Store all handler information
115
72
  self.all_handlers = [
116
73
  {
@@ -151,8 +108,24 @@ class LyricsCorrector:
151
108
  transcription_results: List[TranscriptionResult],
152
109
  lyrics_results: Dict[str, LyricsData],
153
110
  metadata: Optional[Dict[str, Any]] = None,
111
+ agentic_deadline: Optional[float] = None,
154
112
  ) -> CorrectionResult:
155
- """Execute the correction process."""
113
+ """Execute the correction process.
114
+
115
+ Args:
116
+ transcription_results: List of transcription results to correct.
117
+ lyrics_results: Dictionary of lyrics data from various sources.
118
+ metadata: Optional metadata including artist, title, audio file hash.
119
+ agentic_deadline: Optional Unix timestamp (from time.time()). If agentic
120
+ correction is still running after this time, it will abort and return
121
+ uncorrected results for human review.
122
+
123
+ Note:
124
+ The deadline is checked between gap iterations, not during LLM processing.
125
+ A single long-running LLM call may exceed the deadline. The caller should
126
+ wrap this method with an outer timeout (e.g., asyncio.wait_for) as a safety
127
+ net for hung operations.
128
+ """
156
129
  # Optional agentic routing flag from environment; default off for safety
157
130
  agentic_enabled = os.getenv("USE_AGENTIC_AI", "").lower() in {"1", "true", "yes"}
158
131
  self.logger.info(f"🤖 AGENTIC MODE: {'ENABLED' if agentic_enabled else 'DISABLED'} (USE_AGENTIC_AI={os.getenv('USE_AGENTIC_AI', 'NOT_SET')})")
@@ -176,9 +149,9 @@ class LyricsCorrector:
176
149
  # Store anchor sequences for use in correction handlers
177
150
  self._anchor_sequences = anchor_sequences
178
151
 
179
- # Process corrections with metadata
152
+ # Process corrections with metadata and optional deadline for agentic timeout
180
153
  corrections, corrected_segments, correction_steps, word_id_map, segment_id_map = self._process_corrections(
181
- primary_transcription.segments, gap_sequences, metadata=metadata
154
+ primary_transcription.segments, gap_sequences, metadata=metadata, deadline=agentic_deadline
182
155
  )
183
156
 
184
157
  # Calculate correction ratio
@@ -222,10 +195,22 @@ class LyricsCorrector:
222
195
  return leading_space + new_word.strip() + trailing_space
223
196
 
224
197
  def _process_corrections(
225
- self, segments: List[LyricsSegment], gap_sequences: List[GapSequence], metadata: Optional[Dict[str, Any]] = None
198
+ self, segments: List[LyricsSegment], gap_sequences: List[GapSequence], metadata: Optional[Dict[str, Any]] = None,
199
+ deadline: Optional[float] = None
226
200
  ) -> Tuple[List[WordCorrection], List[LyricsSegment], List[CorrectionStep], Dict[str, str], Dict[str, str]]:
227
201
  """Process corrections using handlers.
228
202
 
203
+ Args:
204
+ segments: List of lyrics segments to process.
205
+ gap_sequences: List of gap sequences to correct.
206
+ metadata: Optional metadata including artist, title, audio file hash.
207
+ deadline: Optional Unix timestamp (from time.time()). When agentic mode is
208
+ enabled and this deadline is exceeded, remaining gaps are skipped and
209
+ the method returns with whatever corrections have been made (likely none).
210
+
211
+ Returns:
212
+ Tuple of (corrections, corrected_segments, correction_steps, word_id_map, segment_id_map).
213
+
229
214
  The correction flow works as follows:
230
215
  1. First pass: Process all gaps
231
216
  - Iterate through each gap sequence
@@ -459,6 +444,16 @@ class LyricsCorrector:
459
444
  # === END TEMPORARY CODE ===
460
445
 
461
446
  for i, gap in enumerate(gap_sequences, 1):
447
+ # Check deadline before processing each gap (agentic mode only)
448
+ # This allows us to abort early and return uncorrected results for human review
449
+ if deadline and use_agentic_env and time.time() > deadline:
450
+ self.logger.warning(
451
+ f"⏰ AGENTIC TIMEOUT: Deadline exceeded after processing {i-1}/{len(gap_sequences)} gaps. "
452
+ "Skipping remaining gaps - human review will correct any issues."
453
+ )
454
+ # Break out of loop - continue with whatever corrections we have (likely none)
455
+ break
456
+
462
457
  self.logger.info(f"Processing gap {i}/{len(gap_sequences)} at position {gap.transcription_position}")
463
458
 
464
459
  # Get the actual words for logging
@@ -1,293 +0,0 @@
1
- from typing import List, Optional, Tuple, Dict, Any, Union
2
- import logging
3
- import json
4
- from datetime import datetime
5
- from pathlib import Path
6
-
7
- from lyrics_transcriber.types import GapSequence, WordCorrection
8
- from lyrics_transcriber.correction.handlers.base import GapCorrectionHandler
9
- from lyrics_transcriber.correction.handlers.word_operations import WordOperations
10
- from lyrics_transcriber.correction.handlers.llm_providers import LLMProvider
11
-
12
-
13
- class LLMHandler(GapCorrectionHandler):
14
- """Uses an LLM to analyze and correct gaps by comparing with reference lyrics."""
15
-
16
- def __init__(
17
- self, provider: LLMProvider, name: str, logger: Optional[logging.Logger] = None, cache_dir: Optional[Union[str, Path]] = None
18
- ):
19
- super().__init__(logger)
20
- self.logger = logger or logging.getLogger(__name__)
21
- self.provider = provider
22
- self.name = name
23
- self.cache_dir = Path(cache_dir) if cache_dir else None
24
-
25
- def _format_prompt(self, gap: GapSequence, data: Optional[Dict[str, Any]] = None) -> str:
26
- """Format the prompt for the LLM with context about the gap and reference lyrics."""
27
- word_map = data.get("word_map", {})
28
- metadata = data.get("metadata", {}) if data else {}
29
-
30
- if not word_map:
31
- self.logger.error("No word_map provided in data")
32
- return ""
33
-
34
- # Format transcribed words with their IDs
35
- transcribed_words = [{"id": word_id, "text": word_map[word_id].text} for word_id in gap.transcribed_word_ids if word_id in word_map]
36
-
37
- prompt = (
38
- "You are a lyrics correction expert. You will be given transcribed lyrics that may contain errors "
39
- "and reference lyrics from multiple sources. Your task is to analyze each word in the transcribed text "
40
- "and suggest specific corrections based on the reference lyrics.\n\n"
41
- "Each word has a unique ID. When suggesting corrections, you must specify the ID of the word being corrected. "
42
- "This ensures accuracy in applying your corrections.\n\n"
43
- "For each correction, specify:\n"
44
- "1. The word ID being corrected\n"
45
- "2. The correction type ('replace', 'split', 'combine', or 'delete')\n"
46
- "3. The corrected text\n"
47
- "4. Your confidence level\n"
48
- "5. The reason for the correction\n\n"
49
- )
50
-
51
- # Add song context if available
52
- if metadata and metadata.get("artist") and metadata.get("title"):
53
- prompt += f"Song: {metadata['title']}\nArtist: {metadata['artist']}\n\n"
54
-
55
- # Format transcribed words with IDs
56
- prompt += "Transcribed words:\n"
57
- for word in transcribed_words:
58
- prompt += f"- ID: {word['id']}, Text: '{word['text']}'\n"
59
-
60
- prompt += "\nReference lyrics from different sources:\n"
61
-
62
- # Add each reference source with words and their IDs
63
- for source, word_ids in gap.reference_word_ids.items():
64
- reference_words = [{"id": word_id, "text": word_map[word_id].text} for word_id in word_ids if word_id in word_map]
65
- prompt += f"\n{source} immediate context:\n"
66
- for word in reference_words:
67
- prompt += f"- ID: {word['id']}, Text: '{word['text']}'\n"
68
-
69
- # Add full lyrics if available
70
- if metadata and metadata.get("full_reference_texts", {}).get(source):
71
- prompt += f"\nFull {source} lyrics:\n{metadata['full_reference_texts'][source]}\n"
72
-
73
- # Add context about surrounding anchors if available
74
- if gap.preceding_anchor_id:
75
- preceding_anchor = next((a.anchor for a in data.get("anchor_sequences", []) if a.anchor.id == gap.preceding_anchor_id), None)
76
- if preceding_anchor:
77
- anchor_words = [
78
- {"id": word_id, "text": word_map[word_id].text}
79
- for word_id in preceding_anchor.transcribed_word_ids
80
- if word_id in word_map
81
- ]
82
- prompt += "\nPreceding correct words:\n"
83
- for word in anchor_words:
84
- prompt += f"- ID: {word['id']}, Text: '{word['text']}'\n"
85
-
86
- prompt += (
87
- "\nProvide corrections in the following JSON format:\n"
88
- "{\n"
89
- ' "corrections": [\n'
90
- " {\n"
91
- ' "word_id": "id_of_word_to_correct",\n'
92
- ' "type": "replace|split|combine|delete",\n'
93
- ' "corrected_text": "new text",\n'
94
- ' "reference_word_id": "id_from_reference_lyrics", // Optional, use when matching a specific reference word\n'
95
- ' "confidence": 0.9,\n'
96
- ' "reason": "explanation of correction"\n'
97
- " }\n"
98
- " ]\n"
99
- "}\n\n"
100
- "Important rules:\n"
101
- "1. Always include the word_id for each correction\n"
102
- "2. For 'split' type, corrected_text should contain the space-separated words\n"
103
- "3. For 'combine' type, word_id should be the first word to combine\n"
104
- "4. Include reference_word_id when the correction matches a specific reference word\n"
105
- "5. Only suggest corrections when you're confident they improve the lyrics\n"
106
- "6. Preserve any existing words that match the reference lyrics\n"
107
- "7. Respond ONLY with the JSON object, no other text"
108
- )
109
-
110
- return prompt
111
-
112
- def can_handle(self, gap: GapSequence, data: Optional[Dict[str, Any]] = None) -> Tuple[bool, Dict[str, Any]]:
113
- """LLM handler can attempt to handle any gap with reference words."""
114
- if not gap.reference_word_ids:
115
- self.logger.debug("No reference words available")
116
- return False, {}
117
-
118
- return True, {}
119
-
120
- def _write_debug_info(self, prompt: str, response: str, gap_index: int, audio_file_hash: Optional[str] = None) -> None:
121
- """Write prompt and response to debug files."""
122
- if not self.cache_dir:
123
- self.logger.warning("No cache directory provided, skipping LLM debug output")
124
- return
125
-
126
- timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
127
- debug_dir = self.cache_dir / "llm_debug"
128
- debug_dir.mkdir(exist_ok=True, parents=True)
129
-
130
- hash_prefix = f"{audio_file_hash}_" if audio_file_hash else ""
131
- filename = debug_dir / f"llm_debug_{hash_prefix}{gap_index}_{timestamp}.txt"
132
-
133
- debug_content = "=== LLM PROMPT ===\n" f"{prompt}\n\n" "=== LLM RESPONSE ===\n" f"{response}\n"
134
-
135
- try:
136
- with open(filename, "w", encoding="utf-8") as f:
137
- f.write(debug_content)
138
- except IOError as e:
139
- self.logger.error(f"Failed to write LLM debug file: {e}")
140
-
141
- def handle(self, gap: GapSequence, data: Optional[Dict[str, Any]] = None) -> List[WordCorrection]:
142
- """Process the gap using the LLM and create corrections based on its response."""
143
- if not data or "word_map" not in data:
144
- self.logger.error("No word_map provided in data")
145
- return []
146
-
147
- word_map = data["word_map"]
148
- transcribed_words = [word_map[word_id].text for word_id in gap.transcribed_word_ids if word_id in word_map]
149
-
150
- # Calculate reference positions using the centralized method
151
- reference_positions = (
152
- WordOperations.calculate_reference_positions(gap, anchor_sequences=data.get("anchor_sequences", [])) or {}
153
- ) # Ensure empty dict if None
154
-
155
- prompt = self._format_prompt(gap, data)
156
- if not prompt:
157
- return []
158
-
159
- # Get a unique index for this gap based on its position
160
- gap_index = gap.transcription_position
161
-
162
- try:
163
- self.logger.debug(f"Processing gap words: {transcribed_words}")
164
- self.logger.debug(f"Reference word IDs: {gap.reference_word_ids}")
165
-
166
- response = self.provider.generate_response(prompt)
167
-
168
- # Write debug info to files
169
- self._write_debug_info(prompt, response, gap_index, audio_file_hash=data.get("audio_file_hash"))
170
-
171
- try:
172
- corrections_data = json.loads(response)
173
- except json.JSONDecodeError as e:
174
- self.logger.error(f"Failed to parse LLM response as JSON: {e}")
175
- self.logger.error(f"Raw response content: {response}")
176
- return []
177
-
178
- # Check if corrections exist and are non-empty
179
- if not corrections_data.get("corrections"):
180
- self.logger.debug("No corrections suggested by LLM")
181
- return []
182
-
183
- corrections = []
184
- for correction in corrections_data["corrections"]:
185
- # Validate word_id exists in gap
186
- if correction["word_id"] not in gap.transcribed_word_ids:
187
- self.logger.error(f"LLM suggested correction for word_id {correction['word_id']} which is not in the gap")
188
- continue
189
-
190
- # Get original word from word map
191
- original_word = word_map[correction["word_id"]]
192
- position = gap.transcription_position + gap.transcribed_word_ids.index(correction["word_id"])
193
-
194
- self.logger.debug(f"Processing correction: {correction}")
195
-
196
- if correction["type"] == "replace":
197
- self.logger.debug(
198
- f"Creating replacement: '{original_word.text}' -> '{correction['corrected_text']}' " f"at position {position}"
199
- )
200
- corrections.append(
201
- WordOperations.create_word_replacement_correction(
202
- original_word=original_word.text,
203
- corrected_word=correction["corrected_text"],
204
- original_position=position,
205
- source="LLM",
206
- confidence=correction["confidence"],
207
- reason=correction["reason"],
208
- handler=self.name,
209
- reference_positions=reference_positions,
210
- original_word_id=correction["word_id"],
211
- corrected_word_id=correction.get("reference_word_id"),
212
- )
213
- )
214
- elif correction["type"] == "split":
215
- split_words = correction["corrected_text"].split()
216
- self.logger.debug(f"Creating split: '{original_word.text}' -> {split_words} " f"at position {position}")
217
-
218
- # Get reference word IDs if provided
219
- reference_word_ids = correction.get("reference_word_ids", [None] * len(split_words))
220
-
221
- corrections.extend(
222
- WordOperations.create_word_split_corrections(
223
- original_word=original_word.text,
224
- reference_words=split_words,
225
- original_position=position,
226
- source="LLM",
227
- confidence=correction["confidence"],
228
- reason=correction["reason"],
229
- handler=self.name,
230
- reference_positions=reference_positions,
231
- original_word_id=correction["word_id"],
232
- corrected_word_ids=reference_word_ids,
233
- )
234
- )
235
- elif correction["type"] == "combine":
236
- # Get all word IDs to combine
237
- word_ids_to_combine = []
238
- current_idx = gap.transcribed_word_ids.index(correction["word_id"])
239
- words_needed = len(correction["corrected_text"].split())
240
-
241
- if current_idx + words_needed <= len(gap.transcribed_word_ids):
242
- word_ids_to_combine = gap.transcribed_word_ids[current_idx : current_idx + words_needed]
243
- else:
244
- self.logger.error(f"Not enough words available to combine at position {position}")
245
- continue
246
-
247
- words_to_combine = [word_map[word_id].text for word_id in word_ids_to_combine]
248
-
249
- self.logger.debug(
250
- f"Creating combine: {words_to_combine} -> '{correction['corrected_text']}' " f"at position {position}"
251
- )
252
-
253
- corrections.extend(
254
- WordOperations.create_word_combine_corrections(
255
- original_words=words_to_combine,
256
- reference_word=correction["corrected_text"],
257
- original_position=position,
258
- source="LLM",
259
- confidence=correction["confidence"],
260
- combine_reason=correction["reason"],
261
- delete_reason=f"Part of combining words: {correction['reason']}",
262
- handler=self.name,
263
- reference_positions=reference_positions,
264
- original_word_ids=word_ids_to_combine,
265
- corrected_word_id=correction.get("reference_word_id"),
266
- )
267
- )
268
- elif correction["type"] == "delete":
269
- self.logger.debug(f"Creating deletion: '{original_word.text}' at position {position}")
270
- corrections.append(
271
- WordCorrection(
272
- original_word=original_word.text,
273
- corrected_word="",
274
- segment_index=0,
275
- original_position=position,
276
- confidence=correction["confidence"],
277
- source="LLM",
278
- reason=correction["reason"],
279
- alternatives={},
280
- is_deletion=True,
281
- handler=self.name,
282
- reference_positions=reference_positions,
283
- word_id=correction["word_id"],
284
- corrected_word_id=None,
285
- )
286
- )
287
-
288
- self.logger.debug(f"Created {len(corrections)} corrections: {[f'{c.original_word}->{c.corrected_word}' for c in corrections]}")
289
- return corrections
290
-
291
- except Exception as e:
292
- self.logger.error(f"Unexpected error in LLM handler: {e}")
293
- return []
@@ -1,60 +0,0 @@
1
- from abc import ABC, abstractmethod
2
- from typing import Optional
3
- import logging
4
- from ollama import chat as ollama_chat
5
- import openai
6
-
7
-
8
- class LLMProvider(ABC):
9
- """Abstract base class for LLM providers."""
10
-
11
- def __init__(self, logger: Optional[logging.Logger] = None):
12
- self.logger = logger or logging.getLogger(__name__)
13
-
14
- @abstractmethod
15
- def generate_response(self, prompt: str, **kwargs) -> str:
16
- """Generate a response from the LLM.
17
-
18
- Args:
19
- prompt: The prompt to send to the LLM
20
- **kwargs: Additional provider-specific parameters
21
-
22
- Returns:
23
- str: The LLM's response
24
- """
25
- pass
26
-
27
-
28
- class OllamaProvider(LLMProvider):
29
- """Provider for local Ollama models."""
30
-
31
- def __init__(self, model: str, logger: Optional[logging.Logger] = None):
32
- super().__init__(logger)
33
- self.model = model
34
-
35
- def generate_response(self, prompt: str, **kwargs) -> str:
36
- try:
37
- response = ollama_chat(model=self.model, messages=[{"role": "user", "content": prompt}], format="json")
38
- return response.message.content
39
- except Exception as e:
40
- self.logger.error(f"Error generating Ollama response: {e}")
41
- raise
42
-
43
-
44
- class OpenAIProvider(LLMProvider):
45
- """Provider for OpenAI-compatible APIs (including OpenRouter)."""
46
-
47
- def __init__(self, model: str, api_key: str, base_url: Optional[str] = None, logger: Optional[logging.Logger] = None):
48
- super().__init__(logger)
49
- self.model = model
50
- self.client = openai.OpenAI(api_key=api_key, base_url=base_url)
51
-
52
- def generate_response(self, prompt: str, **kwargs) -> str:
53
- try:
54
- response = self.client.chat.completions.create(
55
- model=self.model, messages=[{"role": "user", "content": prompt}], response_format={"type": "json_object"}, **kwargs
56
- )
57
- return response.choices[0].message.content
58
- except Exception as e:
59
- self.logger.error(f"Error generating OpenAI response: {e}")
60
- raise