karaoke-gen 0.75.54__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of karaoke-gen might be problematic. Click here for more details.
- karaoke_gen/__init__.py +38 -0
- karaoke_gen/audio_fetcher.py +1614 -0
- karaoke_gen/audio_processor.py +790 -0
- karaoke_gen/config.py +83 -0
- karaoke_gen/file_handler.py +387 -0
- karaoke_gen/instrumental_review/__init__.py +45 -0
- karaoke_gen/instrumental_review/analyzer.py +408 -0
- karaoke_gen/instrumental_review/editor.py +322 -0
- karaoke_gen/instrumental_review/models.py +171 -0
- karaoke_gen/instrumental_review/server.py +475 -0
- karaoke_gen/instrumental_review/static/index.html +1529 -0
- karaoke_gen/instrumental_review/waveform.py +409 -0
- karaoke_gen/karaoke_finalise/__init__.py +1 -0
- karaoke_gen/karaoke_finalise/karaoke_finalise.py +1833 -0
- karaoke_gen/karaoke_gen.py +1026 -0
- karaoke_gen/lyrics_processor.py +474 -0
- karaoke_gen/metadata.py +160 -0
- karaoke_gen/pipeline/__init__.py +87 -0
- karaoke_gen/pipeline/base.py +215 -0
- karaoke_gen/pipeline/context.py +230 -0
- karaoke_gen/pipeline/executors/__init__.py +21 -0
- karaoke_gen/pipeline/executors/local.py +159 -0
- karaoke_gen/pipeline/executors/remote.py +257 -0
- karaoke_gen/pipeline/stages/__init__.py +27 -0
- karaoke_gen/pipeline/stages/finalize.py +202 -0
- karaoke_gen/pipeline/stages/render.py +165 -0
- karaoke_gen/pipeline/stages/screens.py +139 -0
- karaoke_gen/pipeline/stages/separation.py +191 -0
- karaoke_gen/pipeline/stages/transcription.py +191 -0
- karaoke_gen/resources/AvenirNext-Bold.ttf +0 -0
- karaoke_gen/resources/Montserrat-Bold.ttf +0 -0
- karaoke_gen/resources/Oswald-Bold.ttf +0 -0
- karaoke_gen/resources/Oswald-SemiBold.ttf +0 -0
- karaoke_gen/resources/Zurich_Cn_BT_Bold.ttf +0 -0
- karaoke_gen/style_loader.py +531 -0
- karaoke_gen/utils/__init__.py +18 -0
- karaoke_gen/utils/bulk_cli.py +492 -0
- karaoke_gen/utils/cli_args.py +432 -0
- karaoke_gen/utils/gen_cli.py +978 -0
- karaoke_gen/utils/remote_cli.py +3268 -0
- karaoke_gen/video_background_processor.py +351 -0
- karaoke_gen/video_generator.py +424 -0
- karaoke_gen-0.75.54.dist-info/METADATA +718 -0
- karaoke_gen-0.75.54.dist-info/RECORD +287 -0
- karaoke_gen-0.75.54.dist-info/WHEEL +4 -0
- karaoke_gen-0.75.54.dist-info/entry_points.txt +5 -0
- karaoke_gen-0.75.54.dist-info/licenses/LICENSE +21 -0
- lyrics_transcriber/__init__.py +10 -0
- lyrics_transcriber/cli/__init__.py +0 -0
- lyrics_transcriber/cli/cli_main.py +285 -0
- lyrics_transcriber/core/__init__.py +0 -0
- lyrics_transcriber/core/config.py +50 -0
- lyrics_transcriber/core/controller.py +594 -0
- lyrics_transcriber/correction/__init__.py +0 -0
- lyrics_transcriber/correction/agentic/__init__.py +9 -0
- lyrics_transcriber/correction/agentic/adapter.py +71 -0
- lyrics_transcriber/correction/agentic/agent.py +313 -0
- lyrics_transcriber/correction/agentic/feedback/aggregator.py +12 -0
- lyrics_transcriber/correction/agentic/feedback/collector.py +17 -0
- lyrics_transcriber/correction/agentic/feedback/retention.py +24 -0
- lyrics_transcriber/correction/agentic/feedback/store.py +76 -0
- lyrics_transcriber/correction/agentic/handlers/__init__.py +24 -0
- lyrics_transcriber/correction/agentic/handlers/ambiguous.py +44 -0
- lyrics_transcriber/correction/agentic/handlers/background_vocals.py +68 -0
- lyrics_transcriber/correction/agentic/handlers/base.py +51 -0
- lyrics_transcriber/correction/agentic/handlers/complex_multi_error.py +46 -0
- lyrics_transcriber/correction/agentic/handlers/extra_words.py +74 -0
- lyrics_transcriber/correction/agentic/handlers/no_error.py +42 -0
- lyrics_transcriber/correction/agentic/handlers/punctuation.py +44 -0
- lyrics_transcriber/correction/agentic/handlers/registry.py +60 -0
- lyrics_transcriber/correction/agentic/handlers/repeated_section.py +44 -0
- lyrics_transcriber/correction/agentic/handlers/sound_alike.py +126 -0
- lyrics_transcriber/correction/agentic/models/__init__.py +5 -0
- lyrics_transcriber/correction/agentic/models/ai_correction.py +31 -0
- lyrics_transcriber/correction/agentic/models/correction_session.py +30 -0
- lyrics_transcriber/correction/agentic/models/enums.py +38 -0
- lyrics_transcriber/correction/agentic/models/human_feedback.py +30 -0
- lyrics_transcriber/correction/agentic/models/learning_data.py +26 -0
- lyrics_transcriber/correction/agentic/models/observability_metrics.py +28 -0
- lyrics_transcriber/correction/agentic/models/schemas.py +46 -0
- lyrics_transcriber/correction/agentic/models/utils.py +19 -0
- lyrics_transcriber/correction/agentic/observability/__init__.py +5 -0
- lyrics_transcriber/correction/agentic/observability/langfuse_integration.py +35 -0
- lyrics_transcriber/correction/agentic/observability/metrics.py +46 -0
- lyrics_transcriber/correction/agentic/observability/performance.py +19 -0
- lyrics_transcriber/correction/agentic/prompts/__init__.py +2 -0
- lyrics_transcriber/correction/agentic/prompts/classifier.py +227 -0
- lyrics_transcriber/correction/agentic/providers/__init__.py +6 -0
- lyrics_transcriber/correction/agentic/providers/base.py +36 -0
- lyrics_transcriber/correction/agentic/providers/circuit_breaker.py +145 -0
- lyrics_transcriber/correction/agentic/providers/config.py +73 -0
- lyrics_transcriber/correction/agentic/providers/constants.py +24 -0
- lyrics_transcriber/correction/agentic/providers/health.py +28 -0
- lyrics_transcriber/correction/agentic/providers/langchain_bridge.py +212 -0
- lyrics_transcriber/correction/agentic/providers/model_factory.py +209 -0
- lyrics_transcriber/correction/agentic/providers/response_cache.py +218 -0
- lyrics_transcriber/correction/agentic/providers/response_parser.py +111 -0
- lyrics_transcriber/correction/agentic/providers/retry_executor.py +127 -0
- lyrics_transcriber/correction/agentic/router.py +35 -0
- lyrics_transcriber/correction/agentic/workflows/__init__.py +5 -0
- lyrics_transcriber/correction/agentic/workflows/consensus_workflow.py +24 -0
- lyrics_transcriber/correction/agentic/workflows/correction_graph.py +59 -0
- lyrics_transcriber/correction/agentic/workflows/feedback_workflow.py +24 -0
- lyrics_transcriber/correction/anchor_sequence.py +919 -0
- lyrics_transcriber/correction/corrector.py +760 -0
- lyrics_transcriber/correction/feedback/__init__.py +2 -0
- lyrics_transcriber/correction/feedback/schemas.py +107 -0
- lyrics_transcriber/correction/feedback/store.py +236 -0
- lyrics_transcriber/correction/handlers/__init__.py +0 -0
- lyrics_transcriber/correction/handlers/base.py +52 -0
- lyrics_transcriber/correction/handlers/extend_anchor.py +149 -0
- lyrics_transcriber/correction/handlers/levenshtein.py +189 -0
- lyrics_transcriber/correction/handlers/llm.py +293 -0
- lyrics_transcriber/correction/handlers/llm_providers.py +60 -0
- lyrics_transcriber/correction/handlers/no_space_punct_match.py +154 -0
- lyrics_transcriber/correction/handlers/relaxed_word_count_match.py +85 -0
- lyrics_transcriber/correction/handlers/repeat.py +88 -0
- lyrics_transcriber/correction/handlers/sound_alike.py +259 -0
- lyrics_transcriber/correction/handlers/syllables_match.py +252 -0
- lyrics_transcriber/correction/handlers/word_count_match.py +80 -0
- lyrics_transcriber/correction/handlers/word_operations.py +187 -0
- lyrics_transcriber/correction/operations.py +352 -0
- lyrics_transcriber/correction/phrase_analyzer.py +435 -0
- lyrics_transcriber/correction/text_utils.py +30 -0
- lyrics_transcriber/frontend/.gitignore +23 -0
- lyrics_transcriber/frontend/.yarn/releases/yarn-4.7.0.cjs +935 -0
- lyrics_transcriber/frontend/.yarnrc.yml +3 -0
- lyrics_transcriber/frontend/README.md +50 -0
- lyrics_transcriber/frontend/REPLACE_ALL_FUNCTIONALITY.md +210 -0
- lyrics_transcriber/frontend/__init__.py +25 -0
- lyrics_transcriber/frontend/eslint.config.js +28 -0
- lyrics_transcriber/frontend/index.html +18 -0
- lyrics_transcriber/frontend/package.json +42 -0
- lyrics_transcriber/frontend/public/android-chrome-192x192.png +0 -0
- lyrics_transcriber/frontend/public/android-chrome-512x512.png +0 -0
- lyrics_transcriber/frontend/public/apple-touch-icon.png +0 -0
- lyrics_transcriber/frontend/public/favicon-16x16.png +0 -0
- lyrics_transcriber/frontend/public/favicon-32x32.png +0 -0
- lyrics_transcriber/frontend/public/favicon.ico +0 -0
- lyrics_transcriber/frontend/public/nomad-karaoke-logo.png +0 -0
- lyrics_transcriber/frontend/src/App.tsx +214 -0
- lyrics_transcriber/frontend/src/api.ts +254 -0
- lyrics_transcriber/frontend/src/components/AIFeedbackModal.tsx +77 -0
- lyrics_transcriber/frontend/src/components/AddLyricsModal.tsx +114 -0
- lyrics_transcriber/frontend/src/components/AgenticCorrectionMetrics.tsx +204 -0
- lyrics_transcriber/frontend/src/components/AudioPlayer.tsx +180 -0
- lyrics_transcriber/frontend/src/components/CorrectedWordWithActions.tsx +167 -0
- lyrics_transcriber/frontend/src/components/CorrectionAnnotationModal.tsx +359 -0
- lyrics_transcriber/frontend/src/components/CorrectionDetailCard.tsx +281 -0
- lyrics_transcriber/frontend/src/components/CorrectionMetrics.tsx +162 -0
- lyrics_transcriber/frontend/src/components/DurationTimelineView.tsx +257 -0
- lyrics_transcriber/frontend/src/components/EditActionBar.tsx +68 -0
- lyrics_transcriber/frontend/src/components/EditModal.tsx +702 -0
- lyrics_transcriber/frontend/src/components/EditTimelineSection.tsx +496 -0
- lyrics_transcriber/frontend/src/components/EditWordList.tsx +379 -0
- lyrics_transcriber/frontend/src/components/FileUpload.tsx +77 -0
- lyrics_transcriber/frontend/src/components/FindReplaceModal.tsx +467 -0
- lyrics_transcriber/frontend/src/components/Header.tsx +413 -0
- lyrics_transcriber/frontend/src/components/LyricsAnalyzer.tsx +1387 -0
- lyrics_transcriber/frontend/src/components/LyricsSynchronizer/SyncControls.tsx +185 -0
- lyrics_transcriber/frontend/src/components/LyricsSynchronizer/TimelineCanvas.tsx +704 -0
- lyrics_transcriber/frontend/src/components/LyricsSynchronizer/UpcomingWordsBar.tsx +80 -0
- lyrics_transcriber/frontend/src/components/LyricsSynchronizer/index.tsx +905 -0
- lyrics_transcriber/frontend/src/components/MetricsDashboard.tsx +51 -0
- lyrics_transcriber/frontend/src/components/ModeSelectionModal.tsx +127 -0
- lyrics_transcriber/frontend/src/components/ModeSelector.tsx +67 -0
- lyrics_transcriber/frontend/src/components/ModelSelector.tsx +23 -0
- lyrics_transcriber/frontend/src/components/PreviewVideoSection.tsx +144 -0
- lyrics_transcriber/frontend/src/components/ReferenceView.tsx +268 -0
- lyrics_transcriber/frontend/src/components/ReplaceAllLyricsModal.tsx +336 -0
- lyrics_transcriber/frontend/src/components/ReviewChangesModal.tsx +354 -0
- lyrics_transcriber/frontend/src/components/SegmentDetailsModal.tsx +64 -0
- lyrics_transcriber/frontend/src/components/TimelineEditor.tsx +376 -0
- lyrics_transcriber/frontend/src/components/TimingOffsetModal.tsx +131 -0
- lyrics_transcriber/frontend/src/components/TranscriptionView.tsx +256 -0
- lyrics_transcriber/frontend/src/components/WordDivider.tsx +187 -0
- lyrics_transcriber/frontend/src/components/shared/components/HighlightedText.tsx +379 -0
- lyrics_transcriber/frontend/src/components/shared/components/SourceSelector.tsx +56 -0
- lyrics_transcriber/frontend/src/components/shared/components/Word.tsx +87 -0
- lyrics_transcriber/frontend/src/components/shared/constants.ts +20 -0
- lyrics_transcriber/frontend/src/components/shared/hooks/useWordClick.ts +180 -0
- lyrics_transcriber/frontend/src/components/shared/styles.ts +13 -0
- lyrics_transcriber/frontend/src/components/shared/types.js +2 -0
- lyrics_transcriber/frontend/src/components/shared/types.ts +129 -0
- lyrics_transcriber/frontend/src/components/shared/utils/keyboardHandlers.ts +177 -0
- lyrics_transcriber/frontend/src/components/shared/utils/localStorage.ts +78 -0
- lyrics_transcriber/frontend/src/components/shared/utils/referenceLineCalculator.ts +75 -0
- lyrics_transcriber/frontend/src/components/shared/utils/segmentOperations.ts +360 -0
- lyrics_transcriber/frontend/src/components/shared/utils/timingUtils.ts +110 -0
- lyrics_transcriber/frontend/src/components/shared/utils/wordUtils.ts +22 -0
- lyrics_transcriber/frontend/src/hooks/useManualSync.ts +435 -0
- lyrics_transcriber/frontend/src/main.tsx +17 -0
- lyrics_transcriber/frontend/src/theme.ts +177 -0
- lyrics_transcriber/frontend/src/types/global.d.ts +9 -0
- lyrics_transcriber/frontend/src/types.js +2 -0
- lyrics_transcriber/frontend/src/types.ts +199 -0
- lyrics_transcriber/frontend/src/validation.ts +132 -0
- lyrics_transcriber/frontend/src/vite-env.d.ts +1 -0
- lyrics_transcriber/frontend/tsconfig.app.json +26 -0
- lyrics_transcriber/frontend/tsconfig.json +25 -0
- lyrics_transcriber/frontend/tsconfig.node.json +23 -0
- lyrics_transcriber/frontend/tsconfig.tsbuildinfo +1 -0
- lyrics_transcriber/frontend/update_version.js +11 -0
- lyrics_transcriber/frontend/vite.config.d.ts +2 -0
- lyrics_transcriber/frontend/vite.config.js +10 -0
- lyrics_transcriber/frontend/vite.config.ts +11 -0
- lyrics_transcriber/frontend/web_assets/android-chrome-192x192.png +0 -0
- lyrics_transcriber/frontend/web_assets/android-chrome-512x512.png +0 -0
- lyrics_transcriber/frontend/web_assets/apple-touch-icon.png +0 -0
- lyrics_transcriber/frontend/web_assets/assets/index-BECn1o8Q.js +43288 -0
- lyrics_transcriber/frontend/web_assets/assets/index-BECn1o8Q.js.map +1 -0
- lyrics_transcriber/frontend/web_assets/favicon-16x16.png +0 -0
- lyrics_transcriber/frontend/web_assets/favicon-32x32.png +0 -0
- lyrics_transcriber/frontend/web_assets/favicon.ico +0 -0
- lyrics_transcriber/frontend/web_assets/index.html +18 -0
- lyrics_transcriber/frontend/web_assets/nomad-karaoke-logo.png +0 -0
- lyrics_transcriber/frontend/yarn.lock +3752 -0
- lyrics_transcriber/lyrics/__init__.py +0 -0
- lyrics_transcriber/lyrics/base_lyrics_provider.py +211 -0
- lyrics_transcriber/lyrics/file_provider.py +95 -0
- lyrics_transcriber/lyrics/genius.py +384 -0
- lyrics_transcriber/lyrics/lrclib.py +231 -0
- lyrics_transcriber/lyrics/musixmatch.py +156 -0
- lyrics_transcriber/lyrics/spotify.py +290 -0
- lyrics_transcriber/lyrics/user_input_provider.py +44 -0
- lyrics_transcriber/output/__init__.py +0 -0
- lyrics_transcriber/output/ass/__init__.py +21 -0
- lyrics_transcriber/output/ass/ass.py +2088 -0
- lyrics_transcriber/output/ass/ass_specs.txt +732 -0
- lyrics_transcriber/output/ass/config.py +180 -0
- lyrics_transcriber/output/ass/constants.py +23 -0
- lyrics_transcriber/output/ass/event.py +94 -0
- lyrics_transcriber/output/ass/formatters.py +132 -0
- lyrics_transcriber/output/ass/lyrics_line.py +265 -0
- lyrics_transcriber/output/ass/lyrics_screen.py +252 -0
- lyrics_transcriber/output/ass/section_detector.py +89 -0
- lyrics_transcriber/output/ass/section_screen.py +106 -0
- lyrics_transcriber/output/ass/style.py +187 -0
- lyrics_transcriber/output/cdg.py +619 -0
- lyrics_transcriber/output/cdgmaker/__init__.py +0 -0
- lyrics_transcriber/output/cdgmaker/cdg.py +262 -0
- lyrics_transcriber/output/cdgmaker/composer.py +2260 -0
- lyrics_transcriber/output/cdgmaker/config.py +151 -0
- lyrics_transcriber/output/cdgmaker/images/instrumental.png +0 -0
- lyrics_transcriber/output/cdgmaker/images/intro.png +0 -0
- lyrics_transcriber/output/cdgmaker/pack.py +507 -0
- lyrics_transcriber/output/cdgmaker/render.py +346 -0
- lyrics_transcriber/output/cdgmaker/transitions/centertexttoplogobottomtext.png +0 -0
- lyrics_transcriber/output/cdgmaker/transitions/circlein.png +0 -0
- lyrics_transcriber/output/cdgmaker/transitions/circleout.png +0 -0
- lyrics_transcriber/output/cdgmaker/transitions/fizzle.png +0 -0
- lyrics_transcriber/output/cdgmaker/transitions/largecentertexttoplogo.png +0 -0
- lyrics_transcriber/output/cdgmaker/transitions/rectangle.png +0 -0
- lyrics_transcriber/output/cdgmaker/transitions/spiral.png +0 -0
- lyrics_transcriber/output/cdgmaker/transitions/topleftmusicalnotes.png +0 -0
- lyrics_transcriber/output/cdgmaker/transitions/wipein.png +0 -0
- lyrics_transcriber/output/cdgmaker/transitions/wipeleft.png +0 -0
- lyrics_transcriber/output/cdgmaker/transitions/wipeout.png +0 -0
- lyrics_transcriber/output/cdgmaker/transitions/wiperight.png +0 -0
- lyrics_transcriber/output/cdgmaker/utils.py +132 -0
- lyrics_transcriber/output/countdown_processor.py +306 -0
- lyrics_transcriber/output/fonts/AvenirNext-Bold.ttf +0 -0
- lyrics_transcriber/output/fonts/DMSans-VariableFont_opsz,wght.ttf +0 -0
- lyrics_transcriber/output/fonts/DMSerifDisplay-Regular.ttf +0 -0
- lyrics_transcriber/output/fonts/Oswald-SemiBold.ttf +0 -0
- lyrics_transcriber/output/fonts/Zurich_Cn_BT_Bold.ttf +0 -0
- lyrics_transcriber/output/fonts/arial.ttf +0 -0
- lyrics_transcriber/output/fonts/georgia.ttf +0 -0
- lyrics_transcriber/output/fonts/verdana.ttf +0 -0
- lyrics_transcriber/output/generator.py +257 -0
- lyrics_transcriber/output/lrc_to_cdg.py +61 -0
- lyrics_transcriber/output/lyrics_file.py +102 -0
- lyrics_transcriber/output/plain_text.py +96 -0
- lyrics_transcriber/output/segment_resizer.py +431 -0
- lyrics_transcriber/output/subtitles.py +397 -0
- lyrics_transcriber/output/video.py +544 -0
- lyrics_transcriber/review/__init__.py +0 -0
- lyrics_transcriber/review/server.py +676 -0
- lyrics_transcriber/storage/__init__.py +0 -0
- lyrics_transcriber/storage/dropbox.py +225 -0
- lyrics_transcriber/transcribers/__init__.py +0 -0
- lyrics_transcriber/transcribers/audioshake.py +379 -0
- lyrics_transcriber/transcribers/base_transcriber.py +157 -0
- lyrics_transcriber/transcribers/whisper.py +330 -0
- lyrics_transcriber/types.py +650 -0
- lyrics_transcriber/utils/__init__.py +0 -0
- lyrics_transcriber/utils/word_utils.py +27 -0
|
@@ -0,0 +1,919 @@
|
|
|
1
|
+
import threading
|
|
2
|
+
import time
|
|
3
|
+
from typing import Any, Dict, List, Optional, Set, Tuple, Union
|
|
4
|
+
import logging
|
|
5
|
+
from tqdm import tqdm
|
|
6
|
+
from functools import partial
|
|
7
|
+
from pathlib import Path
|
|
8
|
+
import json
|
|
9
|
+
import hashlib
|
|
10
|
+
|
|
11
|
+
from lyrics_transcriber.types import LyricsData, PhraseScore, PhraseType, AnchorSequence, GapSequence, ScoredAnchor, TranscriptionResult, Word
|
|
12
|
+
from lyrics_transcriber.correction.phrase_analyzer import PhraseAnalyzer
|
|
13
|
+
from lyrics_transcriber.correction.text_utils import clean_text
|
|
14
|
+
from lyrics_transcriber.utils.word_utils import WordUtils
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class AnchorSequenceTimeoutError(Exception):
|
|
18
|
+
"""Raised when anchor sequence computation exceeds timeout."""
|
|
19
|
+
pass
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
class AnchorSequenceFinder:
|
|
23
|
+
"""Identifies and manages anchor sequences between transcribed and reference lyrics."""
|
|
24
|
+
|
|
25
|
+
def __init__(
|
|
26
|
+
self,
|
|
27
|
+
cache_dir: Union[str, Path],
|
|
28
|
+
min_sequence_length: int = 3,
|
|
29
|
+
min_sources: int = 1,
|
|
30
|
+
timeout_seconds: int = 600, # 10 minutes default timeout
|
|
31
|
+
max_iterations_per_ngram: int = 1000, # Maximum iterations for while loop
|
|
32
|
+
progress_check_interval: int = 50, # Check progress every N iterations
|
|
33
|
+
logger: Optional[logging.Logger] = None,
|
|
34
|
+
):
|
|
35
|
+
self.min_sequence_length = min_sequence_length
|
|
36
|
+
self.min_sources = min_sources
|
|
37
|
+
self.timeout_seconds = timeout_seconds
|
|
38
|
+
self.max_iterations_per_ngram = max_iterations_per_ngram
|
|
39
|
+
self.progress_check_interval = progress_check_interval
|
|
40
|
+
self.logger = logger or logging.getLogger(__name__)
|
|
41
|
+
self.phrase_analyzer = PhraseAnalyzer(logger=self.logger)
|
|
42
|
+
self.used_positions = {}
|
|
43
|
+
|
|
44
|
+
# Initialize cache directory
|
|
45
|
+
self.cache_dir = Path(cache_dir)
|
|
46
|
+
self.cache_dir.mkdir(parents=True, exist_ok=True)
|
|
47
|
+
self.logger.info(f"Initialized AnchorSequenceFinder with cache dir: {self.cache_dir}, timeout: {timeout_seconds}s")
|
|
48
|
+
|
|
49
|
+
def _check_timeout(self, start_time: float, operation_name: str = "operation"):
|
|
50
|
+
"""Check if timeout has occurred and raise exception if so."""
|
|
51
|
+
if self.timeout_seconds > 0:
|
|
52
|
+
elapsed_time = time.time() - start_time
|
|
53
|
+
if elapsed_time > self.timeout_seconds:
|
|
54
|
+
raise AnchorSequenceTimeoutError(f"{operation_name} exceeded {self.timeout_seconds} seconds (elapsed: {elapsed_time:.1f}s)")
|
|
55
|
+
|
|
56
|
+
def _clean_text(self, text: str) -> str:
|
|
57
|
+
"""Clean text by removing punctuation and normalizing whitespace."""
|
|
58
|
+
# self.logger.debug(f"_clean_text called with text length: {len(text)}")
|
|
59
|
+
return clean_text(text)
|
|
60
|
+
|
|
61
|
+
def _find_ngrams(self, words: List[str], n: int) -> List[Tuple[List[str], int]]:
|
|
62
|
+
"""Generate n-grams with their starting positions."""
|
|
63
|
+
# self.logger.debug(f"_find_ngrams called with {len(words)} words, n={n}")
|
|
64
|
+
return [(words[i : i + n], i) for i in range(len(words) - n + 1)]
|
|
65
|
+
|
|
66
|
+
def _build_ngram_index(
|
|
67
|
+
self,
|
|
68
|
+
references: Dict[str, List[str]],
|
|
69
|
+
n: int
|
|
70
|
+
) -> Dict[Tuple[str, ...], Dict[str, List[int]]]:
|
|
71
|
+
"""
|
|
72
|
+
Build a hash-based index mapping n-grams to their positions in each reference.
|
|
73
|
+
|
|
74
|
+
Args:
|
|
75
|
+
references: Dict mapping source names to lists of cleaned words
|
|
76
|
+
n: The n-gram length to index
|
|
77
|
+
|
|
78
|
+
Returns:
|
|
79
|
+
Dict mapping n-gram tuples to {source: [positions]} dicts
|
|
80
|
+
"""
|
|
81
|
+
index: Dict[Tuple[str, ...], Dict[str, List[int]]] = {}
|
|
82
|
+
|
|
83
|
+
for source, words in references.items():
|
|
84
|
+
for i in range(len(words) - n + 1):
|
|
85
|
+
ngram_tuple = tuple(words[i:i + n])
|
|
86
|
+
if ngram_tuple not in index:
|
|
87
|
+
index[ngram_tuple] = {}
|
|
88
|
+
if source not in index[ngram_tuple]:
|
|
89
|
+
index[ngram_tuple][source] = []
|
|
90
|
+
index[ngram_tuple][source].append(i)
|
|
91
|
+
|
|
92
|
+
return index
|
|
93
|
+
|
|
94
|
+
def _find_matching_sources_indexed(
|
|
95
|
+
self,
|
|
96
|
+
ngram: List[str],
|
|
97
|
+
ngram_index: Dict[Tuple[str, ...], Dict[str, List[int]]]
|
|
98
|
+
) -> Dict[str, int]:
|
|
99
|
+
"""
|
|
100
|
+
Find which sources contain the given n-gram using pre-built index (O(1) lookup).
|
|
101
|
+
|
|
102
|
+
Args:
|
|
103
|
+
ngram: List of words to find
|
|
104
|
+
ngram_index: Pre-built index from _build_ngram_index()
|
|
105
|
+
|
|
106
|
+
Returns:
|
|
107
|
+
Dict mapping source names to first unused position
|
|
108
|
+
"""
|
|
109
|
+
matches = {}
|
|
110
|
+
ngram_tuple = tuple(ngram)
|
|
111
|
+
|
|
112
|
+
# O(1) lookup in the index
|
|
113
|
+
if ngram_tuple not in ngram_index:
|
|
114
|
+
return matches
|
|
115
|
+
|
|
116
|
+
source_positions = ngram_index[ngram_tuple]
|
|
117
|
+
|
|
118
|
+
# For each source that contains this n-gram, find first unused position
|
|
119
|
+
for source, positions in source_positions.items():
|
|
120
|
+
used = self.used_positions.get(source, set())
|
|
121
|
+
for pos in positions:
|
|
122
|
+
if pos not in used:
|
|
123
|
+
matches[source] = pos
|
|
124
|
+
break
|
|
125
|
+
|
|
126
|
+
return matches
|
|
127
|
+
|
|
128
|
+
def _find_matching_sources(self, ngram: List[str], references: Dict[str, List[str]], n: int) -> Dict[str, int]:
|
|
129
|
+
"""Find which sources contain the given n-gram and at what positions (legacy O(n) method)."""
|
|
130
|
+
# self.logger.debug(f"_find_matching_sources called for ngram: '{' '.join(ngram)}'")
|
|
131
|
+
matches = {}
|
|
132
|
+
all_positions = {source: [] for source in references}
|
|
133
|
+
|
|
134
|
+
# First, find all positions in each source
|
|
135
|
+
for source, words in references.items():
|
|
136
|
+
for i in range(len(words) - n + 1):
|
|
137
|
+
if words[i : i + n] == ngram:
|
|
138
|
+
all_positions[source].append(i)
|
|
139
|
+
|
|
140
|
+
# Then, try to find an unused position for each source
|
|
141
|
+
for source, positions in all_positions.items():
|
|
142
|
+
used = self.used_positions.get(source, set())
|
|
143
|
+
# Try each position in order
|
|
144
|
+
for pos in positions:
|
|
145
|
+
if pos not in used:
|
|
146
|
+
matches[source] = pos
|
|
147
|
+
break
|
|
148
|
+
|
|
149
|
+
return matches
|
|
150
|
+
|
|
151
|
+
def _filter_used_positions(self, matches: Dict[str, int]) -> Dict[str, int]:
|
|
152
|
+
"""Filter out positions that have already been used.
|
|
153
|
+
|
|
154
|
+
Args:
|
|
155
|
+
matches: Dict mapping source IDs to positions
|
|
156
|
+
|
|
157
|
+
Returns:
|
|
158
|
+
Dict mapping source IDs to unused positions
|
|
159
|
+
"""
|
|
160
|
+
self.logger.debug(f"_filter_used_positions called with {len(matches)} matches")
|
|
161
|
+
return {source: pos for source, pos in matches.items() if pos not in self.used_positions.get(source, set())}
|
|
162
|
+
|
|
163
|
+
def _create_anchor(
|
|
164
|
+
self, ngram: List[str], trans_pos: int, matching_sources: Dict[str, int], total_sources: int
|
|
165
|
+
) -> Optional[AnchorSequence]:
|
|
166
|
+
"""Create an anchor sequence if it meets the minimum sources requirement."""
|
|
167
|
+
self.logger.debug(f"_create_anchor called for ngram: '{' '.join(ngram)}' at position {trans_pos}")
|
|
168
|
+
if len(matching_sources) >= self.min_sources:
|
|
169
|
+
confidence = len(matching_sources) / total_sources
|
|
170
|
+
# Use new API to avoid setting _words field
|
|
171
|
+
anchor = AnchorSequence(
|
|
172
|
+
id=WordUtils.generate_id(),
|
|
173
|
+
transcribed_word_ids=[WordUtils.generate_id() for _ in ngram],
|
|
174
|
+
transcription_position=trans_pos,
|
|
175
|
+
reference_positions=matching_sources,
|
|
176
|
+
reference_word_ids={source: [WordUtils.generate_id() for _ in ngram]
|
|
177
|
+
for source in matching_sources.keys()},
|
|
178
|
+
confidence=confidence
|
|
179
|
+
)
|
|
180
|
+
self.logger.debug(f"Found anchor sequence: '{' '.join(ngram)}' (confidence: {confidence:.2f})")
|
|
181
|
+
return anchor
|
|
182
|
+
return None
|
|
183
|
+
|
|
184
|
+
def _get_cache_key(self, transcribed: str, references: Dict[str, LyricsData], transcription_result: TranscriptionResult) -> str:
|
|
185
|
+
"""Generate a unique cache key for the input combination."""
|
|
186
|
+
# Create a string that uniquely identifies the inputs, including word IDs
|
|
187
|
+
ref_texts = []
|
|
188
|
+
for source, lyrics in sorted(references.items()):
|
|
189
|
+
# Include both text and ID for each word to ensure cache uniqueness
|
|
190
|
+
words_with_ids = [f"{w.text}:{w.id}" for s in lyrics.segments for w in s.words]
|
|
191
|
+
ref_texts.append(f"{source}:{','.join(words_with_ids)}")
|
|
192
|
+
|
|
193
|
+
# Also include transcription word IDs to ensure complete matching
|
|
194
|
+
trans_words_with_ids = [f"{w.text}:{w.id}" for s in transcription_result.result.segments for w in s.words]
|
|
195
|
+
|
|
196
|
+
input_str = f"{transcribed}|" f"{','.join(trans_words_with_ids)}|" f"{','.join(ref_texts)}"
|
|
197
|
+
return hashlib.md5(input_str.encode()).hexdigest()
|
|
198
|
+
|
|
199
|
+
def _save_to_cache(self, cache_path: Path, anchors: List[ScoredAnchor]) -> None:
|
|
200
|
+
"""Save results to cache file."""
|
|
201
|
+
self.logger.debug(f"Saving to cache: {cache_path}")
|
|
202
|
+
# Convert to dictionary format that matches the expected loading format
|
|
203
|
+
cache_data = [{"anchor": anchor.anchor.to_dict(), "phrase_score": anchor.phrase_score.to_dict()} for anchor in anchors]
|
|
204
|
+
with open(cache_path, "w") as f:
|
|
205
|
+
json.dump(cache_data, f, indent=2)
|
|
206
|
+
|
|
207
|
+
def _load_from_cache(self, cache_path: Path) -> Optional[List[ScoredAnchor]]:
|
|
208
|
+
"""Load results from cache if available."""
|
|
209
|
+
try:
|
|
210
|
+
self.logger.debug(f"Attempting to load from cache: {cache_path}")
|
|
211
|
+
with open(cache_path, "r") as f:
|
|
212
|
+
cached_data = json.load(f)
|
|
213
|
+
|
|
214
|
+
self.logger.info("Loading anchors from cache")
|
|
215
|
+
try:
|
|
216
|
+
# Log the raw dictionary data instead of the object
|
|
217
|
+
# if cached_data:
|
|
218
|
+
# self.logger.debug(f"Cached data structure: {json.dumps(cached_data[0], indent=2)}")
|
|
219
|
+
|
|
220
|
+
# Convert cached data back to ScoredAnchor objects
|
|
221
|
+
anchors = []
|
|
222
|
+
for data in cached_data:
|
|
223
|
+
if "anchor" not in data or "phrase_score" not in data:
|
|
224
|
+
raise KeyError("Missing required keys: anchor, phrase_score")
|
|
225
|
+
|
|
226
|
+
anchor = AnchorSequence.from_dict(data["anchor"])
|
|
227
|
+
phrase_score = PhraseScore.from_dict(data["phrase_score"])
|
|
228
|
+
anchors.append(ScoredAnchor(anchor=anchor, phrase_score=phrase_score))
|
|
229
|
+
|
|
230
|
+
return anchors
|
|
231
|
+
|
|
232
|
+
except KeyError as e:
|
|
233
|
+
self.logger.error(f"Cache format mismatch. Missing key: {e}")
|
|
234
|
+
# Log the raw data for debugging
|
|
235
|
+
if cached_data:
|
|
236
|
+
self.logger.error(f"First cached anchor data: {json.dumps(cached_data[0], indent=2)}")
|
|
237
|
+
self.logger.error("Expected keys: anchor, phrase_score")
|
|
238
|
+
self.logger.warning(f"Cache format mismatch: {e}. Recomputing.")
|
|
239
|
+
return None
|
|
240
|
+
|
|
241
|
+
except (FileNotFoundError, json.JSONDecodeError) as e:
|
|
242
|
+
self.logger.debug(f"Cache miss or invalid cache file: {e}")
|
|
243
|
+
return None
|
|
244
|
+
except Exception as e:
|
|
245
|
+
self.logger.error(f"Unexpected error loading cache: {type(e).__name__}: {e}")
|
|
246
|
+
return None
|
|
247
|
+
|
|
248
|
+
def _process_ngram_length(
|
|
249
|
+
self,
|
|
250
|
+
n: int,
|
|
251
|
+
trans_words: List[str],
|
|
252
|
+
all_words: List[Word],
|
|
253
|
+
ref_texts_clean: Dict[str, List[str]],
|
|
254
|
+
ref_words: Dict[str, List[Word]],
|
|
255
|
+
min_sources: int,
|
|
256
|
+
) -> List[AnchorSequence]:
|
|
257
|
+
"""Process a single n-gram length to find matching sequences using hash-based index."""
|
|
258
|
+
self.logger.debug(f"🔍 N-GRAM {n}: Starting processing with {len(trans_words)} transcription words")
|
|
259
|
+
|
|
260
|
+
candidate_anchors = []
|
|
261
|
+
used_trans_positions: Set[int] = set()
|
|
262
|
+
|
|
263
|
+
# Build hash-based index for O(1) lookups
|
|
264
|
+
ngram_index = self._build_ngram_index(ref_texts_clean, n)
|
|
265
|
+
self.logger.debug(f"🔍 N-GRAM {n}: Built index with {len(ngram_index)} unique n-grams")
|
|
266
|
+
|
|
267
|
+
# Generate n-grams from transcribed text
|
|
268
|
+
trans_ngrams = self._find_ngrams(trans_words, n)
|
|
269
|
+
self.logger.debug(f"🔍 N-GRAM {n}: Processing {len(trans_ngrams)} transcription n-grams")
|
|
270
|
+
|
|
271
|
+
# Single pass through all transcription n-grams
|
|
272
|
+
for ngram, trans_pos in trans_ngrams:
|
|
273
|
+
# Skip if we've already used this transcription position
|
|
274
|
+
if trans_pos in used_trans_positions:
|
|
275
|
+
continue
|
|
276
|
+
|
|
277
|
+
# Use indexed lookup (O(1) instead of O(n))
|
|
278
|
+
matches = self._find_matching_sources_indexed(ngram, ngram_index)
|
|
279
|
+
|
|
280
|
+
if len(matches) >= min_sources:
|
|
281
|
+
# Get Word IDs for transcribed words
|
|
282
|
+
transcribed_word_ids = [w.id for w in all_words[trans_pos : trans_pos + n]]
|
|
283
|
+
|
|
284
|
+
# Get Word IDs for reference words
|
|
285
|
+
reference_word_ids = {
|
|
286
|
+
source: [w.id for w in ref_words[source][pos : pos + n]]
|
|
287
|
+
for source, pos in matches.items()
|
|
288
|
+
}
|
|
289
|
+
|
|
290
|
+
# Mark transcription position as used
|
|
291
|
+
used_trans_positions.add(trans_pos)
|
|
292
|
+
|
|
293
|
+
# Mark reference positions as used
|
|
294
|
+
for source, pos in matches.items():
|
|
295
|
+
if source not in self.used_positions:
|
|
296
|
+
self.used_positions[source] = set()
|
|
297
|
+
self.used_positions[source].add(pos)
|
|
298
|
+
|
|
299
|
+
anchor = AnchorSequence(
|
|
300
|
+
id=WordUtils.generate_id(),
|
|
301
|
+
transcribed_word_ids=transcribed_word_ids,
|
|
302
|
+
transcription_position=trans_pos,
|
|
303
|
+
reference_positions=matches,
|
|
304
|
+
reference_word_ids=reference_word_ids,
|
|
305
|
+
confidence=len(matches) / len(ref_texts_clean),
|
|
306
|
+
)
|
|
307
|
+
candidate_anchors.append(anchor)
|
|
308
|
+
|
|
309
|
+
self.logger.debug(f"🔍 N-GRAM {n}: Found {len(candidate_anchors)} anchors")
|
|
310
|
+
return candidate_anchors
|
|
311
|
+
|
|
312
|
+
def find_anchors(
|
|
313
|
+
self,
|
|
314
|
+
transcribed: str,
|
|
315
|
+
references: Dict[str, LyricsData],
|
|
316
|
+
transcription_result: TranscriptionResult,
|
|
317
|
+
) -> List[ScoredAnchor]:
|
|
318
|
+
"""Find anchor sequences that appear in both transcription and references with timeout protection."""
|
|
319
|
+
start_time = time.time()
|
|
320
|
+
|
|
321
|
+
try:
|
|
322
|
+
self.logger.info(f"🔍 ANCHOR SEARCH: Starting find_anchors with timeout {self.timeout_seconds}s")
|
|
323
|
+
self.logger.info(f"🔍 ANCHOR SEARCH: Transcribed text length: {len(transcribed)}")
|
|
324
|
+
self.logger.info(f"🔍 ANCHOR SEARCH: Reference sources: {list(references.keys())}")
|
|
325
|
+
|
|
326
|
+
cache_key = self._get_cache_key(transcribed, references, transcription_result)
|
|
327
|
+
cache_path = self.cache_dir / f"anchors_{cache_key}.json"
|
|
328
|
+
self.logger.info(f"🔍 ANCHOR SEARCH: Cache key: {cache_key}")
|
|
329
|
+
|
|
330
|
+
# Try to load from cache
|
|
331
|
+
self.logger.info(f"🔍 ANCHOR SEARCH: Checking cache at {cache_path}")
|
|
332
|
+
if cached_data := self._load_from_cache(cache_path):
|
|
333
|
+
self.logger.info("🔍 ANCHOR SEARCH: ✅ Cache hit! Loading anchors from cache")
|
|
334
|
+
try:
|
|
335
|
+
# Convert cached_data to dictionary before logging
|
|
336
|
+
if cached_data:
|
|
337
|
+
first_anchor = {"anchor": cached_data[0].anchor.to_dict(), "phrase_score": cached_data[0].phrase_score.to_dict()}
|
|
338
|
+
return cached_data
|
|
339
|
+
except Exception as e:
|
|
340
|
+
self.logger.error(f"🔍 ANCHOR SEARCH: ❌ Error loading cache: {type(e).__name__}: {e}")
|
|
341
|
+
if cached_data:
|
|
342
|
+
try:
|
|
343
|
+
first_anchor = {"anchor": cached_data[0].anchor.to_dict(), "phrase_score": cached_data[0].phrase_score.to_dict()}
|
|
344
|
+
self.logger.error(f"First cached anchor data: {json.dumps(first_anchor, indent=2)}")
|
|
345
|
+
except:
|
|
346
|
+
self.logger.error("Could not serialize first cached anchor for logging")
|
|
347
|
+
|
|
348
|
+
# If not in cache or cache format invalid, perform the computation
|
|
349
|
+
self.logger.info(f"🔍 ANCHOR SEARCH: Cache miss - computing anchors")
|
|
350
|
+
|
|
351
|
+
# Reset used positions for fresh computation
|
|
352
|
+
self.used_positions = {}
|
|
353
|
+
|
|
354
|
+
# Check timeout before starting computation
|
|
355
|
+
self._check_timeout(start_time, "anchor computation initialization")
|
|
356
|
+
self.logger.info(f"🔍 ANCHOR SEARCH: ✅ Timeout check passed - initialization")
|
|
357
|
+
|
|
358
|
+
# Get all words from transcription
|
|
359
|
+
self.logger.info(f"🔍 ANCHOR SEARCH: Extracting words from transcription result...")
|
|
360
|
+
all_words = []
|
|
361
|
+
for segment in transcription_result.result.segments:
|
|
362
|
+
all_words.extend(segment.words)
|
|
363
|
+
self.logger.info(f"🔍 ANCHOR SEARCH: ✅ Extracted {len(all_words)} words from transcription")
|
|
364
|
+
|
|
365
|
+
# Clean and split texts
|
|
366
|
+
self.logger.info(f"🔍 ANCHOR SEARCH: Cleaning transcription words...")
|
|
367
|
+
trans_words = [w.text.lower().strip('.,?!"\n') for w in all_words]
|
|
368
|
+
self.logger.info(f"🔍 ANCHOR SEARCH: ✅ Cleaned {len(trans_words)} transcription words")
|
|
369
|
+
|
|
370
|
+
self.logger.info(f"🔍 ANCHOR SEARCH: Processing reference sources...")
|
|
371
|
+
ref_texts_clean = {
|
|
372
|
+
source: self._clean_text(" ".join(w.text for s in lyrics.segments for w in s.words)).split()
|
|
373
|
+
for source, lyrics in references.items()
|
|
374
|
+
}
|
|
375
|
+
ref_words = {source: [w for s in lyrics.segments for w in s.words] for source, lyrics in references.items()}
|
|
376
|
+
|
|
377
|
+
for source, words in ref_texts_clean.items():
|
|
378
|
+
self.logger.info(f"🔍 ANCHOR SEARCH: Reference '{source}': {len(words)} words")
|
|
379
|
+
|
|
380
|
+
# Check timeout after preprocessing
|
|
381
|
+
self._check_timeout(start_time, "anchor computation preprocessing")
|
|
382
|
+
self.logger.info(f"🔍 ANCHOR SEARCH: ✅ Timeout check passed - preprocessing")
|
|
383
|
+
|
|
384
|
+
# Filter out very short reference sources for n-gram length calculation
|
|
385
|
+
self.logger.info(f"🔍 ANCHOR SEARCH: Calculating n-gram lengths...")
|
|
386
|
+
valid_ref_lengths = [
|
|
387
|
+
len(words) for words in ref_texts_clean.values()
|
|
388
|
+
if len(words) >= self.min_sequence_length
|
|
389
|
+
]
|
|
390
|
+
|
|
391
|
+
if not valid_ref_lengths:
|
|
392
|
+
self.logger.warning("🔍 ANCHOR SEARCH: ❌ No reference sources long enough for anchor detection")
|
|
393
|
+
return []
|
|
394
|
+
|
|
395
|
+
# Calculate max length using only valid reference sources
|
|
396
|
+
max_length = min(len(trans_words), min(valid_ref_lengths))
|
|
397
|
+
n_gram_lengths = range(max_length, self.min_sequence_length - 1, -1)
|
|
398
|
+
self.logger.info(f"🔍 ANCHOR SEARCH: N-gram lengths to process: {list(n_gram_lengths)} (max_length: {max_length})")
|
|
399
|
+
|
|
400
|
+
# Process n-gram lengths in parallel with timeout
|
|
401
|
+
self.logger.info(f"🔍 ANCHOR SEARCH: Setting up parallel processing...")
|
|
402
|
+
process_length_partial = partial(
|
|
403
|
+
self._process_ngram_length,
|
|
404
|
+
trans_words=trans_words,
|
|
405
|
+
all_words=all_words, # Pass the Word objects
|
|
406
|
+
ref_texts_clean=ref_texts_clean,
|
|
407
|
+
ref_words=ref_words,
|
|
408
|
+
min_sources=self.min_sources,
|
|
409
|
+
)
|
|
410
|
+
|
|
411
|
+
# Process n-gram lengths sequentially (single-threaded for cloud compatibility)
|
|
412
|
+
candidate_anchors = []
|
|
413
|
+
|
|
414
|
+
# Check timeout before processing
|
|
415
|
+
self._check_timeout(start_time, "n-gram processing start")
|
|
416
|
+
self.logger.info(f"🔍 ANCHOR SEARCH: Starting sequential n-gram processing ({len(n_gram_lengths)} lengths)")
|
|
417
|
+
|
|
418
|
+
batch_size = 10
|
|
419
|
+
batch_results = []
|
|
420
|
+
|
|
421
|
+
for i, n in enumerate(n_gram_lengths):
|
|
422
|
+
try:
|
|
423
|
+
# Check timeout periodically
|
|
424
|
+
if self.timeout_seconds > 0:
|
|
425
|
+
elapsed_time = time.time() - start_time
|
|
426
|
+
if elapsed_time > self.timeout_seconds:
|
|
427
|
+
self.logger.warning(f"🔍 ANCHOR SEARCH: ⏰ Timeout reached at n-gram {n}, stopping")
|
|
428
|
+
break
|
|
429
|
+
|
|
430
|
+
anchors = self._process_ngram_length(
|
|
431
|
+
n, trans_words, all_words, ref_texts_clean, ref_words, self.min_sources
|
|
432
|
+
)
|
|
433
|
+
candidate_anchors.extend(anchors)
|
|
434
|
+
|
|
435
|
+
# Batch logging
|
|
436
|
+
batch_results.append((n, len(anchors)))
|
|
437
|
+
|
|
438
|
+
# Log progress every batch_size results or on the last result
|
|
439
|
+
if (i + 1) % batch_size == 0 or (i + 1) == len(n_gram_lengths):
|
|
440
|
+
total_anchors_in_batch = sum(anchor_count for _, anchor_count in batch_results)
|
|
441
|
+
n_gram_ranges = [str(ng) for ng, _ in batch_results]
|
|
442
|
+
range_str = f"{n_gram_ranges[0]}-{n_gram_ranges[-1]}" if len(n_gram_ranges) > 1 else n_gram_ranges[0]
|
|
443
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: Completed n-gram lengths {range_str} - found {total_anchors_in_batch} anchors")
|
|
444
|
+
batch_results = []
|
|
445
|
+
|
|
446
|
+
except Exception as e:
|
|
447
|
+
self.logger.warning(f"🔍 ANCHOR SEARCH: ⚠️ n-gram length {n} failed: {str(e)}")
|
|
448
|
+
batch_results.append((n, 0))
|
|
449
|
+
continue
|
|
450
|
+
|
|
451
|
+
self.logger.info(f"🔍 ANCHOR SEARCH: ✅ Found {len(candidate_anchors)} candidate anchors in {time.time() - start_time:.1f}s")
|
|
452
|
+
|
|
453
|
+
# Check timeout before expensive filtering operation
|
|
454
|
+
self._check_timeout(start_time, "overlap filtering start")
|
|
455
|
+
self.logger.info(f"🔍 ANCHOR SEARCH: 🔄 Starting overlap filtering...")
|
|
456
|
+
|
|
457
|
+
filtered_anchors = self._remove_overlapping_sequences(candidate_anchors, transcribed, transcription_result)
|
|
458
|
+
self.logger.info(f"🔍 ANCHOR SEARCH: ✅ Filtering completed - {len(filtered_anchors)} final anchors")
|
|
459
|
+
|
|
460
|
+
# Save to cache
|
|
461
|
+
self.logger.info(f"🔍 ANCHOR SEARCH: 💾 Saving results to cache...")
|
|
462
|
+
self._save_to_cache(cache_path, filtered_anchors)
|
|
463
|
+
|
|
464
|
+
total_time = time.time() - start_time
|
|
465
|
+
self.logger.info(f"🔍 ANCHOR SEARCH: 🎉 Anchor sequence computation completed successfully in {total_time:.1f}s")
|
|
466
|
+
|
|
467
|
+
return filtered_anchors
|
|
468
|
+
|
|
469
|
+
except AnchorSequenceTimeoutError:
|
|
470
|
+
elapsed_time = time.time() - start_time
|
|
471
|
+
self.logger.error(f"🔍 ANCHOR SEARCH: ⏰ TIMEOUT after {elapsed_time:.1f}s (limit: {self.timeout_seconds}s)")
|
|
472
|
+
raise
|
|
473
|
+
except Exception as e:
|
|
474
|
+
elapsed_time = time.time() - start_time
|
|
475
|
+
self.logger.error(f"🔍 ANCHOR SEARCH: ❌ FAILED after {elapsed_time:.1f}s: {str(e)}")
|
|
476
|
+
self.logger.error(f"🔍 ANCHOR SEARCH: Exception type: {type(e).__name__}")
|
|
477
|
+
import traceback
|
|
478
|
+
self.logger.error(f"🔍 ANCHOR SEARCH: Traceback: {traceback.format_exc()}")
|
|
479
|
+
raise
|
|
480
|
+
finally:
|
|
481
|
+
# No cleanup needed for time-based timeout checks
|
|
482
|
+
pass
|
|
483
|
+
|
|
484
|
+
def _score_sequence(self, words: List[str], context: str) -> PhraseScore:
|
|
485
|
+
"""Score a sequence based on its phrase quality"""
|
|
486
|
+
self.logger.debug(f"_score_sequence called for: '{' '.join(words)}'")
|
|
487
|
+
return self.phrase_analyzer.score_phrase(words, context)
|
|
488
|
+
|
|
489
|
+
def _get_sequence_priority(self, scored_anchor: ScoredAnchor) -> Tuple[float, float, float, float, int]:
|
|
490
|
+
"""Get priority tuple for sorting sequences.
|
|
491
|
+
|
|
492
|
+
Returns tuple of:
|
|
493
|
+
- Number of sources matched (higher is better)
|
|
494
|
+
- Length bonus (length * 0.2) to favor longer sequences
|
|
495
|
+
- Break score (higher is better)
|
|
496
|
+
- Total score (higher is better)
|
|
497
|
+
- Negative position (earlier is better)
|
|
498
|
+
|
|
499
|
+
Position bonus: Add 1.0 to total score for sequences at position 0
|
|
500
|
+
"""
|
|
501
|
+
# self.logger.debug(f"_get_sequence_priority called for anchor: '{scored_anchor.anchor.text}'")
|
|
502
|
+
position_bonus = 1.0 if scored_anchor.anchor.transcription_position == 0 else 0.0
|
|
503
|
+
length_bonus = len(scored_anchor.anchor.transcribed_word_ids) * 0.2 # Changed from words to transcribed_word_ids
|
|
504
|
+
|
|
505
|
+
return (
|
|
506
|
+
len(scored_anchor.anchor.reference_positions), # More sources is better
|
|
507
|
+
length_bonus, # Longer sequences preferred
|
|
508
|
+
scored_anchor.phrase_score.natural_break_score, # Better breaks preferred
|
|
509
|
+
scored_anchor.phrase_score.total_score + position_bonus, # Add bonus for position 0
|
|
510
|
+
-scored_anchor.anchor.transcription_position, # Earlier positions preferred
|
|
511
|
+
)
|
|
512
|
+
|
|
513
|
+
def _sequences_overlap(self, seq1: AnchorSequence, seq2: AnchorSequence) -> bool:
|
|
514
|
+
"""Check if two sequences overlap in either transcription or references.
|
|
515
|
+
|
|
516
|
+
Args:
|
|
517
|
+
seq1: First sequence
|
|
518
|
+
seq2: Second sequence
|
|
519
|
+
|
|
520
|
+
Returns:
|
|
521
|
+
True if sequences overlap in transcription or share any reference positions
|
|
522
|
+
"""
|
|
523
|
+
# Check transcription overlap
|
|
524
|
+
seq1_trans_range = range(
|
|
525
|
+
seq1.transcription_position, seq1.transcription_position + len(seq1.transcribed_word_ids)
|
|
526
|
+
) # Changed from words
|
|
527
|
+
seq2_trans_range = range(
|
|
528
|
+
seq2.transcription_position, seq2.transcription_position + len(seq2.transcribed_word_ids)
|
|
529
|
+
) # Changed from words
|
|
530
|
+
trans_overlap = bool(set(seq1_trans_range) & set(seq2_trans_range))
|
|
531
|
+
|
|
532
|
+
# Check reference overlap - only consider positions in shared sources
|
|
533
|
+
shared_sources = set(seq1.reference_positions.keys()) & set(seq2.reference_positions.keys())
|
|
534
|
+
ref_overlap = any(seq1.reference_positions[source] == seq2.reference_positions[source] for source in shared_sources)
|
|
535
|
+
|
|
536
|
+
return trans_overlap or ref_overlap
|
|
537
|
+
|
|
538
|
+
def _remove_overlapping_sequences(
|
|
539
|
+
self,
|
|
540
|
+
anchors: List[AnchorSequence],
|
|
541
|
+
context: str,
|
|
542
|
+
transcription_result: TranscriptionResult,
|
|
543
|
+
) -> List[ScoredAnchor]:
|
|
544
|
+
"""Remove overlapping sequences using phrase analysis with timeout protection."""
|
|
545
|
+
self.logger.info(f"🔍 FILTERING: Starting overlap removal for {len(anchors)} anchors")
|
|
546
|
+
|
|
547
|
+
if not anchors:
|
|
548
|
+
self.logger.info(f"🔍 FILTERING: No anchors to process")
|
|
549
|
+
return []
|
|
550
|
+
|
|
551
|
+
self.logger.info(f"🔍 FILTERING: Scoring {len(anchors)} anchors")
|
|
552
|
+
|
|
553
|
+
# Create word map for scoring
|
|
554
|
+
word_map = {w.id: w for s in transcription_result.result.segments for w in s.words}
|
|
555
|
+
self.logger.debug(f"🔍 FILTERING: Created word map with {len(word_map)} words")
|
|
556
|
+
|
|
557
|
+
# Add word map to each anchor for scoring
|
|
558
|
+
for i, anchor in enumerate(anchors):
|
|
559
|
+
# For backwards compatibility, only add transcribed_words if all IDs exist in word_map
|
|
560
|
+
try:
|
|
561
|
+
anchor.transcribed_words = [word_map[word_id] for word_id in anchor.transcribed_word_ids]
|
|
562
|
+
# Also set _words for backwards compatibility with text display
|
|
563
|
+
anchor._words = [word_map[word_id].text for word_id in anchor.transcribed_word_ids]
|
|
564
|
+
except KeyError:
|
|
565
|
+
# This can happen in tests using backwards compatible constructors
|
|
566
|
+
# Create dummy Word objects with the text from _words if available
|
|
567
|
+
if hasattr(anchor, '_words') and anchor._words is not None:
|
|
568
|
+
from lyrics_transcriber.types import Word
|
|
569
|
+
from lyrics_transcriber.utils.word_utils import WordUtils
|
|
570
|
+
anchor.transcribed_words = [
|
|
571
|
+
Word(
|
|
572
|
+
id=word_id,
|
|
573
|
+
text=text,
|
|
574
|
+
start_time=i * 1.0,
|
|
575
|
+
end_time=(i + 1) * 1.0,
|
|
576
|
+
confidence=1.0
|
|
577
|
+
)
|
|
578
|
+
for i, (word_id, text) in enumerate(zip(anchor.transcribed_word_ids, anchor._words))
|
|
579
|
+
]
|
|
580
|
+
else:
|
|
581
|
+
# Create generic word objects for scoring
|
|
582
|
+
from lyrics_transcriber.types import Word
|
|
583
|
+
anchor.transcribed_words = [
|
|
584
|
+
Word(
|
|
585
|
+
id=word_id,
|
|
586
|
+
text=f"word_{i}",
|
|
587
|
+
start_time=i * 1.0,
|
|
588
|
+
end_time=(i + 1) * 1.0,
|
|
589
|
+
confidence=1.0
|
|
590
|
+
)
|
|
591
|
+
for i, word_id in enumerate(anchor.transcribed_word_ids)
|
|
592
|
+
]
|
|
593
|
+
|
|
594
|
+
start_time = time.time()
|
|
595
|
+
|
|
596
|
+
# Score anchors sequentially using simple rule-based scoring
|
|
597
|
+
# (Avoids expensive spaCy NLP and works in cloud environments)
|
|
598
|
+
scored_anchors = []
|
|
599
|
+
self.logger.debug(f"🔍 FILTERING: Scoring {len(anchors)} anchors sequentially")
|
|
600
|
+
|
|
601
|
+
for i, anchor in enumerate(anchors):
|
|
602
|
+
try:
|
|
603
|
+
# Simple rule-based scoring based on anchor properties
|
|
604
|
+
phrase_score = self._simple_score_anchor(anchor)
|
|
605
|
+
scored_anchors.append(ScoredAnchor(anchor=anchor, phrase_score=phrase_score))
|
|
606
|
+
except Exception as e:
|
|
607
|
+
# Fallback to default score on error
|
|
608
|
+
self.logger.debug(f"🔍 FILTERING: Scoring failed for anchor {i}: {e}")
|
|
609
|
+
phrase_score = PhraseScore(
|
|
610
|
+
phrase_type=PhraseType.COMPLETE,
|
|
611
|
+
natural_break_score=1.0,
|
|
612
|
+
length_score=1.0
|
|
613
|
+
)
|
|
614
|
+
scored_anchors.append(ScoredAnchor(anchor=anchor, phrase_score=phrase_score))
|
|
615
|
+
|
|
616
|
+
scoring_time = time.time() - start_time
|
|
617
|
+
self.logger.debug(f"🔍 FILTERING: Scoring completed in {scoring_time:.2f}s, scored {len(scored_anchors)} anchors")
|
|
618
|
+
|
|
619
|
+
# Sort anchors by priority (highest first)
|
|
620
|
+
self.logger.debug(f"🔍 FILTERING: Sorting anchors by priority...")
|
|
621
|
+
scored_anchors.sort(key=self._get_sequence_priority, reverse=True)
|
|
622
|
+
|
|
623
|
+
# O(N) overlap filtering using covered positions set
|
|
624
|
+
self.logger.debug(f"🔍 FILTERING: Filtering {len(scored_anchors)} overlapping sequences")
|
|
625
|
+
filtered_scored = []
|
|
626
|
+
covered_positions: Set[int] = set()
|
|
627
|
+
|
|
628
|
+
for scored_anchor in scored_anchors:
|
|
629
|
+
anchor = scored_anchor.anchor
|
|
630
|
+
start_pos = anchor.transcription_position
|
|
631
|
+
end_pos = start_pos + anchor.length
|
|
632
|
+
|
|
633
|
+
# Check if any position in this anchor's range is already covered
|
|
634
|
+
anchor_positions = set(range(start_pos, end_pos))
|
|
635
|
+
if not anchor_positions & covered_positions: # No overlap with covered
|
|
636
|
+
filtered_scored.append(scored_anchor)
|
|
637
|
+
covered_positions.update(anchor_positions)
|
|
638
|
+
|
|
639
|
+
self.logger.debug(f"🔍 FILTERING: Kept {len(filtered_scored)} non-overlapping anchors out of {len(scored_anchors)}")
|
|
640
|
+
return filtered_scored
|
|
641
|
+
|
|
642
|
+
def _simple_score_anchor(self, anchor: AnchorSequence) -> PhraseScore:
|
|
643
|
+
"""
|
|
644
|
+
Simple rule-based scoring for anchors without expensive NLP.
|
|
645
|
+
|
|
646
|
+
Scoring criteria:
|
|
647
|
+
- Longer sequences are preferred (length_score)
|
|
648
|
+
- Sequences matching more reference sources are preferred (natural_break_score)
|
|
649
|
+
- All sequences treated as COMPLETE type for simplicity
|
|
650
|
+
"""
|
|
651
|
+
# Length score: normalize to 0-1 range (3-15 words typical)
|
|
652
|
+
length = anchor.length
|
|
653
|
+
length_score = min(1.0, (length - 2) / 10.0) # 3 words = 0.1, 12 words = 1.0
|
|
654
|
+
|
|
655
|
+
# Source match score: more sources = higher score
|
|
656
|
+
num_sources = len(anchor.reference_positions)
|
|
657
|
+
natural_break_score = min(1.0, num_sources / 3.0) # 1 source = 0.33, 3+ sources = 1.0
|
|
658
|
+
|
|
659
|
+
return PhraseScore(
|
|
660
|
+
phrase_type=PhraseType.COMPLETE,
|
|
661
|
+
natural_break_score=natural_break_score,
|
|
662
|
+
length_score=length_score
|
|
663
|
+
)
|
|
664
|
+
|
|
665
|
+
@staticmethod
|
|
666
|
+
def _score_anchor_static(anchor: AnchorSequence, context: str) -> ScoredAnchor:
|
|
667
|
+
"""Static version of _score_anchor for multiprocessing compatibility."""
|
|
668
|
+
# Create analyzer only once per process
|
|
669
|
+
if not hasattr(AnchorSequenceFinder._score_anchor_static, "_phrase_analyzer"):
|
|
670
|
+
AnchorSequenceFinder._score_anchor_static._phrase_analyzer = PhraseAnalyzer(logger=logging.getLogger(__name__))
|
|
671
|
+
|
|
672
|
+
# Get the words from the transcribed word IDs
|
|
673
|
+
# We need to pass in the actual words for scoring
|
|
674
|
+
words = [w.text for w in anchor.transcribed_words] # This needs to be passed in
|
|
675
|
+
|
|
676
|
+
phrase_score = AnchorSequenceFinder._score_anchor_static._phrase_analyzer.score_phrase(words, context)
|
|
677
|
+
return ScoredAnchor(anchor=anchor, phrase_score=phrase_score)
|
|
678
|
+
|
|
679
|
+
@staticmethod
|
|
680
|
+
def _score_batch_static(anchors: List[AnchorSequence], context: str) -> List[ScoredAnchor]:
|
|
681
|
+
"""Score a batch of anchors for better timeout handling."""
|
|
682
|
+
# Create analyzer only once per process
|
|
683
|
+
if not hasattr(AnchorSequenceFinder._score_batch_static, "_phrase_analyzer"):
|
|
684
|
+
AnchorSequenceFinder._score_batch_static._phrase_analyzer = PhraseAnalyzer(logger=logging.getLogger(__name__))
|
|
685
|
+
|
|
686
|
+
scored_anchors = []
|
|
687
|
+
for anchor in anchors:
|
|
688
|
+
try:
|
|
689
|
+
words = [w.text for w in anchor.transcribed_words]
|
|
690
|
+
phrase_score = AnchorSequenceFinder._score_batch_static._phrase_analyzer.score_phrase(words, context)
|
|
691
|
+
scored_anchors.append(ScoredAnchor(anchor=anchor, phrase_score=phrase_score))
|
|
692
|
+
except Exception:
|
|
693
|
+
# Add basic score for failed anchor
|
|
694
|
+
phrase_score = PhraseScore(
|
|
695
|
+
phrase_type=PhraseType.COMPLETE,
|
|
696
|
+
natural_break_score=1.0,
|
|
697
|
+
length_score=1.0
|
|
698
|
+
)
|
|
699
|
+
scored_anchors.append(ScoredAnchor(anchor=anchor, phrase_score=phrase_score))
|
|
700
|
+
|
|
701
|
+
return scored_anchors
|
|
702
|
+
|
|
703
|
+
def _get_reference_words(self, source: str, ref_words: List[str], start_pos: Optional[int], end_pos: Optional[int]) -> List[str]:
|
|
704
|
+
"""Get words from reference text between two positions.
|
|
705
|
+
|
|
706
|
+
Args:
|
|
707
|
+
source: Reference source identifier
|
|
708
|
+
ref_words: List of words from the reference text
|
|
709
|
+
start_pos: Starting position (None for beginning)
|
|
710
|
+
end_pos: Ending position (None for end)
|
|
711
|
+
|
|
712
|
+
Returns:
|
|
713
|
+
List of words between the positions
|
|
714
|
+
"""
|
|
715
|
+
if start_pos is None:
|
|
716
|
+
start_pos = 0
|
|
717
|
+
if end_pos is None:
|
|
718
|
+
end_pos = len(ref_words)
|
|
719
|
+
return ref_words[start_pos:end_pos]
|
|
720
|
+
|
|
721
|
+
def find_gaps(
|
|
722
|
+
self,
|
|
723
|
+
transcribed: str,
|
|
724
|
+
anchors: List[ScoredAnchor],
|
|
725
|
+
references: Dict[str, LyricsData],
|
|
726
|
+
transcription_result: TranscriptionResult,
|
|
727
|
+
) -> List[GapSequence]:
|
|
728
|
+
"""Find gaps between anchor sequences in the transcribed text."""
|
|
729
|
+
# Get all words from transcription
|
|
730
|
+
all_words = []
|
|
731
|
+
for segment in transcription_result.result.segments:
|
|
732
|
+
all_words.extend(segment.words)
|
|
733
|
+
|
|
734
|
+
# Clean and split reference texts
|
|
735
|
+
ref_texts_clean = {
|
|
736
|
+
source: self._clean_text(" ".join(w.text for s in lyrics.segments for w in s.words)).split()
|
|
737
|
+
for source, lyrics in references.items()
|
|
738
|
+
}
|
|
739
|
+
ref_words = {source: [w for s in lyrics.segments for w in s.words] for source, lyrics in references.items()}
|
|
740
|
+
|
|
741
|
+
# Create gaps with Word IDs
|
|
742
|
+
gaps = []
|
|
743
|
+
sorted_anchors = sorted(anchors, key=lambda x: x.anchor.transcription_position)
|
|
744
|
+
|
|
745
|
+
# Handle initial gap
|
|
746
|
+
if sorted_anchors:
|
|
747
|
+
first_anchor = sorted_anchors[0].anchor
|
|
748
|
+
first_anchor_pos = first_anchor.transcription_position
|
|
749
|
+
if first_anchor_pos > 0:
|
|
750
|
+
gap_word_ids = [w.id for w in all_words[:first_anchor_pos]]
|
|
751
|
+
if gap := self._create_initial_gap(
|
|
752
|
+
id=WordUtils.generate_id(),
|
|
753
|
+
transcribed_word_ids=gap_word_ids,
|
|
754
|
+
transcription_position=0,
|
|
755
|
+
following_anchor_id=first_anchor.id,
|
|
756
|
+
ref_texts_clean=ref_texts_clean,
|
|
757
|
+
ref_words=ref_words,
|
|
758
|
+
following_anchor=first_anchor,
|
|
759
|
+
):
|
|
760
|
+
gaps.append(gap)
|
|
761
|
+
|
|
762
|
+
# Handle gaps between anchors
|
|
763
|
+
for i in range(len(sorted_anchors) - 1):
|
|
764
|
+
current_anchor = sorted_anchors[i].anchor
|
|
765
|
+
next_anchor = sorted_anchors[i + 1].anchor
|
|
766
|
+
gap_start = current_anchor.transcription_position + len(current_anchor.transcribed_word_ids)
|
|
767
|
+
gap_end = next_anchor.transcription_position
|
|
768
|
+
|
|
769
|
+
if gap_end > gap_start:
|
|
770
|
+
gap_word_ids = [w.id for w in all_words[gap_start:gap_end]]
|
|
771
|
+
if between_gap := self._create_between_gap(
|
|
772
|
+
id=WordUtils.generate_id(),
|
|
773
|
+
transcribed_word_ids=gap_word_ids,
|
|
774
|
+
transcription_position=gap_start,
|
|
775
|
+
preceding_anchor_id=current_anchor.id,
|
|
776
|
+
following_anchor_id=next_anchor.id,
|
|
777
|
+
ref_texts_clean=ref_texts_clean,
|
|
778
|
+
ref_words=ref_words,
|
|
779
|
+
preceding_anchor=current_anchor,
|
|
780
|
+
following_anchor=next_anchor,
|
|
781
|
+
):
|
|
782
|
+
gaps.append(between_gap)
|
|
783
|
+
|
|
784
|
+
# Handle final gap
|
|
785
|
+
if sorted_anchors:
|
|
786
|
+
last_anchor = sorted_anchors[-1].anchor
|
|
787
|
+
last_pos = last_anchor.transcription_position + len(last_anchor.transcribed_word_ids)
|
|
788
|
+
if last_pos < len(all_words):
|
|
789
|
+
gap_word_ids = [w.id for w in all_words[last_pos:]]
|
|
790
|
+
if final_gap := self._create_final_gap(
|
|
791
|
+
id=WordUtils.generate_id(),
|
|
792
|
+
transcribed_word_ids=gap_word_ids,
|
|
793
|
+
transcription_position=last_pos,
|
|
794
|
+
preceding_anchor_id=last_anchor.id,
|
|
795
|
+
ref_texts_clean=ref_texts_clean,
|
|
796
|
+
ref_words=ref_words,
|
|
797
|
+
preceding_anchor=last_anchor,
|
|
798
|
+
):
|
|
799
|
+
gaps.append(final_gap)
|
|
800
|
+
|
|
801
|
+
return gaps
|
|
802
|
+
|
|
803
|
+
def _create_initial_gap(
|
|
804
|
+
self,
|
|
805
|
+
id: str,
|
|
806
|
+
transcribed_word_ids: List[str],
|
|
807
|
+
transcription_position: int,
|
|
808
|
+
following_anchor_id: str,
|
|
809
|
+
ref_texts_clean: Dict[str, List[str]],
|
|
810
|
+
ref_words: Dict[str, List[Word]],
|
|
811
|
+
following_anchor: AnchorSequence,
|
|
812
|
+
) -> Optional[GapSequence]:
|
|
813
|
+
"""Create gap sequence before the first anchor.
|
|
814
|
+
|
|
815
|
+
The gap includes all reference words from the start of each reference
|
|
816
|
+
up to the position where the following anchor starts in that reference.
|
|
817
|
+
"""
|
|
818
|
+
if transcription_position > 0:
|
|
819
|
+
# Get reference word IDs for the gap
|
|
820
|
+
reference_word_ids = {}
|
|
821
|
+
for source, words in ref_words.items():
|
|
822
|
+
if source in ref_texts_clean:
|
|
823
|
+
# Get the position where the following anchor starts in this source
|
|
824
|
+
if source in following_anchor.reference_positions:
|
|
825
|
+
end_pos = following_anchor.reference_positions[source]
|
|
826
|
+
# Include all words from start up to the anchor
|
|
827
|
+
reference_word_ids[source] = [w.id for w in words[:end_pos]]
|
|
828
|
+
else:
|
|
829
|
+
# If this source doesn't contain the following anchor,
|
|
830
|
+
# we can't determine the gap content for it
|
|
831
|
+
reference_word_ids[source] = []
|
|
832
|
+
|
|
833
|
+
return GapSequence(
|
|
834
|
+
id=id,
|
|
835
|
+
transcribed_word_ids=transcribed_word_ids,
|
|
836
|
+
transcription_position=transcription_position,
|
|
837
|
+
preceding_anchor_id=None,
|
|
838
|
+
following_anchor_id=following_anchor_id,
|
|
839
|
+
reference_word_ids=reference_word_ids,
|
|
840
|
+
)
|
|
841
|
+
return None
|
|
842
|
+
|
|
843
|
+
def _create_between_gap(
|
|
844
|
+
self,
|
|
845
|
+
id: str,
|
|
846
|
+
transcribed_word_ids: List[str],
|
|
847
|
+
transcription_position: int,
|
|
848
|
+
preceding_anchor_id: str,
|
|
849
|
+
following_anchor_id: str,
|
|
850
|
+
ref_texts_clean: Dict[str, List[str]],
|
|
851
|
+
ref_words: Dict[str, List[Word]],
|
|
852
|
+
preceding_anchor: AnchorSequence,
|
|
853
|
+
following_anchor: AnchorSequence,
|
|
854
|
+
) -> Optional[GapSequence]:
|
|
855
|
+
"""Create gap sequence between two anchors.
|
|
856
|
+
|
|
857
|
+
For each reference source, the gap includes all words between the end of the
|
|
858
|
+
preceding anchor and the start of the following anchor in that source.
|
|
859
|
+
"""
|
|
860
|
+
# Get reference word IDs for the gap
|
|
861
|
+
reference_word_ids = {}
|
|
862
|
+
for source, words in ref_words.items():
|
|
863
|
+
if source in ref_texts_clean:
|
|
864
|
+
# Only process sources that contain both anchors
|
|
865
|
+
if source in preceding_anchor.reference_positions and source in following_anchor.reference_positions:
|
|
866
|
+
start_pos = preceding_anchor.reference_positions[source] + len(preceding_anchor.reference_word_ids[source])
|
|
867
|
+
end_pos = following_anchor.reference_positions[source]
|
|
868
|
+
# Include all words between the anchors
|
|
869
|
+
reference_word_ids[source] = [w.id for w in words[start_pos:end_pos]]
|
|
870
|
+
else:
|
|
871
|
+
# If this source doesn't contain both anchors,
|
|
872
|
+
# we can't determine the gap content for it
|
|
873
|
+
reference_word_ids[source] = []
|
|
874
|
+
|
|
875
|
+
return GapSequence(
|
|
876
|
+
id=id,
|
|
877
|
+
transcribed_word_ids=transcribed_word_ids,
|
|
878
|
+
transcription_position=transcription_position,
|
|
879
|
+
preceding_anchor_id=preceding_anchor_id,
|
|
880
|
+
following_anchor_id=following_anchor_id,
|
|
881
|
+
reference_word_ids=reference_word_ids,
|
|
882
|
+
)
|
|
883
|
+
|
|
884
|
+
def _create_final_gap(
|
|
885
|
+
self,
|
|
886
|
+
id: str,
|
|
887
|
+
transcribed_word_ids: List[str],
|
|
888
|
+
transcription_position: int,
|
|
889
|
+
preceding_anchor_id: str,
|
|
890
|
+
ref_texts_clean: Dict[str, List[str]],
|
|
891
|
+
ref_words: Dict[str, List[Word]],
|
|
892
|
+
preceding_anchor: AnchorSequence,
|
|
893
|
+
) -> Optional[GapSequence]:
|
|
894
|
+
"""Create gap sequence after the last anchor.
|
|
895
|
+
|
|
896
|
+
For each reference source, includes all words from the end of the
|
|
897
|
+
preceding anchor to the end of that reference.
|
|
898
|
+
"""
|
|
899
|
+
# Get reference word IDs for the gap
|
|
900
|
+
reference_word_ids = {}
|
|
901
|
+
for source, words in ref_words.items():
|
|
902
|
+
if source in ref_texts_clean:
|
|
903
|
+
if source in preceding_anchor.reference_positions:
|
|
904
|
+
start_pos = preceding_anchor.reference_positions[source] + len(preceding_anchor.reference_word_ids[source])
|
|
905
|
+
# Include all words from end of last anchor to end of reference
|
|
906
|
+
reference_word_ids[source] = [w.id for w in words[start_pos:]]
|
|
907
|
+
else:
|
|
908
|
+
# If this source doesn't contain the preceding anchor,
|
|
909
|
+
# we can't determine the gap content for it
|
|
910
|
+
reference_word_ids[source] = []
|
|
911
|
+
|
|
912
|
+
return GapSequence(
|
|
913
|
+
id=id,
|
|
914
|
+
transcribed_word_ids=transcribed_word_ids,
|
|
915
|
+
transcription_position=transcription_position,
|
|
916
|
+
preceding_anchor_id=preceding_anchor_id,
|
|
917
|
+
following_anchor_id=None,
|
|
918
|
+
reference_word_ids=reference_word_ids,
|
|
919
|
+
)
|