karaoke-gen 0.57.0__py3-none-any.whl → 0.71.23__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- karaoke_gen/audio_fetcher.py +461 -0
- karaoke_gen/audio_processor.py +407 -30
- karaoke_gen/config.py +62 -113
- karaoke_gen/file_handler.py +32 -59
- karaoke_gen/karaoke_finalise/karaoke_finalise.py +148 -67
- karaoke_gen/karaoke_gen.py +270 -61
- karaoke_gen/lyrics_processor.py +13 -1
- karaoke_gen/metadata.py +78 -73
- karaoke_gen/pipeline/__init__.py +87 -0
- karaoke_gen/pipeline/base.py +215 -0
- karaoke_gen/pipeline/context.py +230 -0
- karaoke_gen/pipeline/executors/__init__.py +21 -0
- karaoke_gen/pipeline/executors/local.py +159 -0
- karaoke_gen/pipeline/executors/remote.py +257 -0
- karaoke_gen/pipeline/stages/__init__.py +27 -0
- karaoke_gen/pipeline/stages/finalize.py +202 -0
- karaoke_gen/pipeline/stages/render.py +165 -0
- karaoke_gen/pipeline/stages/screens.py +139 -0
- karaoke_gen/pipeline/stages/separation.py +191 -0
- karaoke_gen/pipeline/stages/transcription.py +191 -0
- karaoke_gen/style_loader.py +531 -0
- karaoke_gen/utils/bulk_cli.py +6 -0
- karaoke_gen/utils/cli_args.py +424 -0
- karaoke_gen/utils/gen_cli.py +26 -261
- karaoke_gen/utils/remote_cli.py +1815 -0
- karaoke_gen/video_background_processor.py +351 -0
- karaoke_gen-0.71.23.dist-info/METADATA +610 -0
- karaoke_gen-0.71.23.dist-info/RECORD +275 -0
- {karaoke_gen-0.57.0.dist-info → karaoke_gen-0.71.23.dist-info}/WHEEL +1 -1
- {karaoke_gen-0.57.0.dist-info → karaoke_gen-0.71.23.dist-info}/entry_points.txt +1 -0
- lyrics_transcriber/__init__.py +10 -0
- lyrics_transcriber/cli/__init__.py +0 -0
- lyrics_transcriber/cli/cli_main.py +285 -0
- lyrics_transcriber/core/__init__.py +0 -0
- lyrics_transcriber/core/config.py +50 -0
- lyrics_transcriber/core/controller.py +520 -0
- lyrics_transcriber/correction/__init__.py +0 -0
- lyrics_transcriber/correction/agentic/__init__.py +9 -0
- lyrics_transcriber/correction/agentic/adapter.py +71 -0
- lyrics_transcriber/correction/agentic/agent.py +313 -0
- lyrics_transcriber/correction/agentic/feedback/aggregator.py +12 -0
- lyrics_transcriber/correction/agentic/feedback/collector.py +17 -0
- lyrics_transcriber/correction/agentic/feedback/retention.py +24 -0
- lyrics_transcriber/correction/agentic/feedback/store.py +76 -0
- lyrics_transcriber/correction/agentic/handlers/__init__.py +24 -0
- lyrics_transcriber/correction/agentic/handlers/ambiguous.py +44 -0
- lyrics_transcriber/correction/agentic/handlers/background_vocals.py +68 -0
- lyrics_transcriber/correction/agentic/handlers/base.py +51 -0
- lyrics_transcriber/correction/agentic/handlers/complex_multi_error.py +46 -0
- lyrics_transcriber/correction/agentic/handlers/extra_words.py +74 -0
- lyrics_transcriber/correction/agentic/handlers/no_error.py +42 -0
- lyrics_transcriber/correction/agentic/handlers/punctuation.py +44 -0
- lyrics_transcriber/correction/agentic/handlers/registry.py +60 -0
- lyrics_transcriber/correction/agentic/handlers/repeated_section.py +44 -0
- lyrics_transcriber/correction/agentic/handlers/sound_alike.py +126 -0
- lyrics_transcriber/correction/agentic/models/__init__.py +5 -0
- lyrics_transcriber/correction/agentic/models/ai_correction.py +31 -0
- lyrics_transcriber/correction/agentic/models/correction_session.py +30 -0
- lyrics_transcriber/correction/agentic/models/enums.py +38 -0
- lyrics_transcriber/correction/agentic/models/human_feedback.py +30 -0
- lyrics_transcriber/correction/agentic/models/learning_data.py +26 -0
- lyrics_transcriber/correction/agentic/models/observability_metrics.py +28 -0
- lyrics_transcriber/correction/agentic/models/schemas.py +46 -0
- lyrics_transcriber/correction/agentic/models/utils.py +19 -0
- lyrics_transcriber/correction/agentic/observability/__init__.py +5 -0
- lyrics_transcriber/correction/agentic/observability/langfuse_integration.py +35 -0
- lyrics_transcriber/correction/agentic/observability/metrics.py +46 -0
- lyrics_transcriber/correction/agentic/observability/performance.py +19 -0
- lyrics_transcriber/correction/agentic/prompts/__init__.py +2 -0
- lyrics_transcriber/correction/agentic/prompts/classifier.py +227 -0
- lyrics_transcriber/correction/agentic/providers/__init__.py +6 -0
- lyrics_transcriber/correction/agentic/providers/base.py +36 -0
- lyrics_transcriber/correction/agentic/providers/circuit_breaker.py +145 -0
- lyrics_transcriber/correction/agentic/providers/config.py +73 -0
- lyrics_transcriber/correction/agentic/providers/constants.py +24 -0
- lyrics_transcriber/correction/agentic/providers/health.py +28 -0
- lyrics_transcriber/correction/agentic/providers/langchain_bridge.py +212 -0
- lyrics_transcriber/correction/agentic/providers/model_factory.py +209 -0
- lyrics_transcriber/correction/agentic/providers/response_cache.py +218 -0
- lyrics_transcriber/correction/agentic/providers/response_parser.py +111 -0
- lyrics_transcriber/correction/agentic/providers/retry_executor.py +127 -0
- lyrics_transcriber/correction/agentic/router.py +35 -0
- lyrics_transcriber/correction/agentic/workflows/__init__.py +5 -0
- lyrics_transcriber/correction/agentic/workflows/consensus_workflow.py +24 -0
- lyrics_transcriber/correction/agentic/workflows/correction_graph.py +59 -0
- lyrics_transcriber/correction/agentic/workflows/feedback_workflow.py +24 -0
- lyrics_transcriber/correction/anchor_sequence.py +1043 -0
- lyrics_transcriber/correction/corrector.py +760 -0
- lyrics_transcriber/correction/feedback/__init__.py +2 -0
- lyrics_transcriber/correction/feedback/schemas.py +107 -0
- lyrics_transcriber/correction/feedback/store.py +236 -0
- lyrics_transcriber/correction/handlers/__init__.py +0 -0
- lyrics_transcriber/correction/handlers/base.py +52 -0
- lyrics_transcriber/correction/handlers/extend_anchor.py +149 -0
- lyrics_transcriber/correction/handlers/levenshtein.py +189 -0
- lyrics_transcriber/correction/handlers/llm.py +293 -0
- lyrics_transcriber/correction/handlers/llm_providers.py +60 -0
- lyrics_transcriber/correction/handlers/no_space_punct_match.py +154 -0
- lyrics_transcriber/correction/handlers/relaxed_word_count_match.py +85 -0
- lyrics_transcriber/correction/handlers/repeat.py +88 -0
- lyrics_transcriber/correction/handlers/sound_alike.py +259 -0
- lyrics_transcriber/correction/handlers/syllables_match.py +252 -0
- lyrics_transcriber/correction/handlers/word_count_match.py +80 -0
- lyrics_transcriber/correction/handlers/word_operations.py +187 -0
- lyrics_transcriber/correction/operations.py +352 -0
- lyrics_transcriber/correction/phrase_analyzer.py +435 -0
- lyrics_transcriber/correction/text_utils.py +30 -0
- lyrics_transcriber/frontend/.gitignore +23 -0
- lyrics_transcriber/frontend/.yarn/releases/yarn-4.7.0.cjs +935 -0
- lyrics_transcriber/frontend/.yarnrc.yml +3 -0
- lyrics_transcriber/frontend/README.md +50 -0
- lyrics_transcriber/frontend/REPLACE_ALL_FUNCTIONALITY.md +210 -0
- lyrics_transcriber/frontend/__init__.py +25 -0
- lyrics_transcriber/frontend/eslint.config.js +28 -0
- lyrics_transcriber/frontend/index.html +18 -0
- lyrics_transcriber/frontend/package.json +42 -0
- lyrics_transcriber/frontend/public/android-chrome-192x192.png +0 -0
- lyrics_transcriber/frontend/public/android-chrome-512x512.png +0 -0
- lyrics_transcriber/frontend/public/apple-touch-icon.png +0 -0
- lyrics_transcriber/frontend/public/favicon-16x16.png +0 -0
- lyrics_transcriber/frontend/public/favicon-32x32.png +0 -0
- lyrics_transcriber/frontend/public/favicon.ico +0 -0
- lyrics_transcriber/frontend/public/nomad-karaoke-logo.png +0 -0
- lyrics_transcriber/frontend/src/App.tsx +212 -0
- lyrics_transcriber/frontend/src/api.ts +239 -0
- lyrics_transcriber/frontend/src/components/AIFeedbackModal.tsx +77 -0
- lyrics_transcriber/frontend/src/components/AddLyricsModal.tsx +114 -0
- lyrics_transcriber/frontend/src/components/AgenticCorrectionMetrics.tsx +204 -0
- lyrics_transcriber/frontend/src/components/AudioPlayer.tsx +180 -0
- lyrics_transcriber/frontend/src/components/CorrectedWordWithActions.tsx +167 -0
- lyrics_transcriber/frontend/src/components/CorrectionAnnotationModal.tsx +359 -0
- lyrics_transcriber/frontend/src/components/CorrectionDetailCard.tsx +281 -0
- lyrics_transcriber/frontend/src/components/CorrectionMetrics.tsx +162 -0
- lyrics_transcriber/frontend/src/components/DurationTimelineView.tsx +257 -0
- lyrics_transcriber/frontend/src/components/EditActionBar.tsx +68 -0
- lyrics_transcriber/frontend/src/components/EditModal.tsx +702 -0
- lyrics_transcriber/frontend/src/components/EditTimelineSection.tsx +496 -0
- lyrics_transcriber/frontend/src/components/EditWordList.tsx +379 -0
- lyrics_transcriber/frontend/src/components/FileUpload.tsx +77 -0
- lyrics_transcriber/frontend/src/components/FindReplaceModal.tsx +467 -0
- lyrics_transcriber/frontend/src/components/Header.tsx +387 -0
- lyrics_transcriber/frontend/src/components/LyricsAnalyzer.tsx +1373 -0
- lyrics_transcriber/frontend/src/components/MetricsDashboard.tsx +51 -0
- lyrics_transcriber/frontend/src/components/ModeSelector.tsx +67 -0
- lyrics_transcriber/frontend/src/components/ModelSelector.tsx +23 -0
- lyrics_transcriber/frontend/src/components/PreviewVideoSection.tsx +144 -0
- lyrics_transcriber/frontend/src/components/ReferenceView.tsx +268 -0
- lyrics_transcriber/frontend/src/components/ReplaceAllLyricsModal.tsx +688 -0
- lyrics_transcriber/frontend/src/components/ReviewChangesModal.tsx +354 -0
- lyrics_transcriber/frontend/src/components/SegmentDetailsModal.tsx +64 -0
- lyrics_transcriber/frontend/src/components/TimelineEditor.tsx +376 -0
- lyrics_transcriber/frontend/src/components/TimingOffsetModal.tsx +131 -0
- lyrics_transcriber/frontend/src/components/TranscriptionView.tsx +256 -0
- lyrics_transcriber/frontend/src/components/WordDivider.tsx +187 -0
- lyrics_transcriber/frontend/src/components/shared/components/HighlightedText.tsx +379 -0
- lyrics_transcriber/frontend/src/components/shared/components/SourceSelector.tsx +56 -0
- lyrics_transcriber/frontend/src/components/shared/components/Word.tsx +87 -0
- lyrics_transcriber/frontend/src/components/shared/constants.ts +20 -0
- lyrics_transcriber/frontend/src/components/shared/hooks/useWordClick.ts +180 -0
- lyrics_transcriber/frontend/src/components/shared/styles.ts +13 -0
- lyrics_transcriber/frontend/src/components/shared/types.js +2 -0
- lyrics_transcriber/frontend/src/components/shared/types.ts +129 -0
- lyrics_transcriber/frontend/src/components/shared/utils/keyboardHandlers.ts +177 -0
- lyrics_transcriber/frontend/src/components/shared/utils/localStorage.ts +78 -0
- lyrics_transcriber/frontend/src/components/shared/utils/referenceLineCalculator.ts +75 -0
- lyrics_transcriber/frontend/src/components/shared/utils/segmentOperations.ts +360 -0
- lyrics_transcriber/frontend/src/components/shared/utils/timingUtils.ts +110 -0
- lyrics_transcriber/frontend/src/components/shared/utils/wordUtils.ts +22 -0
- lyrics_transcriber/frontend/src/hooks/useManualSync.ts +435 -0
- lyrics_transcriber/frontend/src/main.tsx +17 -0
- lyrics_transcriber/frontend/src/theme.ts +177 -0
- lyrics_transcriber/frontend/src/types/global.d.ts +9 -0
- lyrics_transcriber/frontend/src/types.js +2 -0
- lyrics_transcriber/frontend/src/types.ts +199 -0
- lyrics_transcriber/frontend/src/validation.ts +132 -0
- lyrics_transcriber/frontend/src/vite-env.d.ts +1 -0
- lyrics_transcriber/frontend/tsconfig.app.json +26 -0
- lyrics_transcriber/frontend/tsconfig.json +25 -0
- lyrics_transcriber/frontend/tsconfig.node.json +23 -0
- lyrics_transcriber/frontend/tsconfig.tsbuildinfo +1 -0
- lyrics_transcriber/frontend/update_version.js +11 -0
- lyrics_transcriber/frontend/vite.config.d.ts +2 -0
- lyrics_transcriber/frontend/vite.config.js +10 -0
- lyrics_transcriber/frontend/vite.config.ts +11 -0
- lyrics_transcriber/frontend/web_assets/android-chrome-192x192.png +0 -0
- lyrics_transcriber/frontend/web_assets/android-chrome-512x512.png +0 -0
- lyrics_transcriber/frontend/web_assets/apple-touch-icon.png +0 -0
- lyrics_transcriber/frontend/web_assets/assets/index-DdJTDWH3.js +42039 -0
- lyrics_transcriber/frontend/web_assets/assets/index-DdJTDWH3.js.map +1 -0
- lyrics_transcriber/frontend/web_assets/favicon-16x16.png +0 -0
- lyrics_transcriber/frontend/web_assets/favicon-32x32.png +0 -0
- lyrics_transcriber/frontend/web_assets/favicon.ico +0 -0
- lyrics_transcriber/frontend/web_assets/index.html +18 -0
- lyrics_transcriber/frontend/web_assets/nomad-karaoke-logo.png +0 -0
- lyrics_transcriber/frontend/yarn.lock +3752 -0
- lyrics_transcriber/lyrics/__init__.py +0 -0
- lyrics_transcriber/lyrics/base_lyrics_provider.py +211 -0
- lyrics_transcriber/lyrics/file_provider.py +95 -0
- lyrics_transcriber/lyrics/genius.py +384 -0
- lyrics_transcriber/lyrics/lrclib.py +231 -0
- lyrics_transcriber/lyrics/musixmatch.py +156 -0
- lyrics_transcriber/lyrics/spotify.py +290 -0
- lyrics_transcriber/lyrics/user_input_provider.py +44 -0
- lyrics_transcriber/output/__init__.py +0 -0
- lyrics_transcriber/output/ass/__init__.py +21 -0
- lyrics_transcriber/output/ass/ass.py +2088 -0
- lyrics_transcriber/output/ass/ass_specs.txt +732 -0
- lyrics_transcriber/output/ass/config.py +180 -0
- lyrics_transcriber/output/ass/constants.py +23 -0
- lyrics_transcriber/output/ass/event.py +94 -0
- lyrics_transcriber/output/ass/formatters.py +132 -0
- lyrics_transcriber/output/ass/lyrics_line.py +265 -0
- lyrics_transcriber/output/ass/lyrics_screen.py +252 -0
- lyrics_transcriber/output/ass/section_detector.py +89 -0
- lyrics_transcriber/output/ass/section_screen.py +106 -0
- lyrics_transcriber/output/ass/style.py +187 -0
- lyrics_transcriber/output/cdg.py +619 -0
- lyrics_transcriber/output/cdgmaker/__init__.py +0 -0
- lyrics_transcriber/output/cdgmaker/cdg.py +262 -0
- lyrics_transcriber/output/cdgmaker/composer.py +2260 -0
- lyrics_transcriber/output/cdgmaker/config.py +151 -0
- lyrics_transcriber/output/cdgmaker/images/instrumental.png +0 -0
- lyrics_transcriber/output/cdgmaker/images/intro.png +0 -0
- lyrics_transcriber/output/cdgmaker/pack.py +507 -0
- lyrics_transcriber/output/cdgmaker/render.py +346 -0
- lyrics_transcriber/output/cdgmaker/transitions/centertexttoplogobottomtext.png +0 -0
- lyrics_transcriber/output/cdgmaker/transitions/circlein.png +0 -0
- lyrics_transcriber/output/cdgmaker/transitions/circleout.png +0 -0
- lyrics_transcriber/output/cdgmaker/transitions/fizzle.png +0 -0
- lyrics_transcriber/output/cdgmaker/transitions/largecentertexttoplogo.png +0 -0
- lyrics_transcriber/output/cdgmaker/transitions/rectangle.png +0 -0
- lyrics_transcriber/output/cdgmaker/transitions/spiral.png +0 -0
- lyrics_transcriber/output/cdgmaker/transitions/topleftmusicalnotes.png +0 -0
- lyrics_transcriber/output/cdgmaker/transitions/wipein.png +0 -0
- lyrics_transcriber/output/cdgmaker/transitions/wipeleft.png +0 -0
- lyrics_transcriber/output/cdgmaker/transitions/wipeout.png +0 -0
- lyrics_transcriber/output/cdgmaker/transitions/wiperight.png +0 -0
- lyrics_transcriber/output/cdgmaker/utils.py +132 -0
- lyrics_transcriber/output/countdown_processor.py +267 -0
- lyrics_transcriber/output/fonts/AvenirNext-Bold.ttf +0 -0
- lyrics_transcriber/output/fonts/DMSans-VariableFont_opsz,wght.ttf +0 -0
- lyrics_transcriber/output/fonts/DMSerifDisplay-Regular.ttf +0 -0
- lyrics_transcriber/output/fonts/Oswald-SemiBold.ttf +0 -0
- lyrics_transcriber/output/fonts/Zurich_Cn_BT_Bold.ttf +0 -0
- lyrics_transcriber/output/fonts/arial.ttf +0 -0
- lyrics_transcriber/output/fonts/georgia.ttf +0 -0
- lyrics_transcriber/output/fonts/verdana.ttf +0 -0
- lyrics_transcriber/output/generator.py +257 -0
- lyrics_transcriber/output/lrc_to_cdg.py +61 -0
- lyrics_transcriber/output/lyrics_file.py +102 -0
- lyrics_transcriber/output/plain_text.py +96 -0
- lyrics_transcriber/output/segment_resizer.py +431 -0
- lyrics_transcriber/output/subtitles.py +397 -0
- lyrics_transcriber/output/video.py +544 -0
- lyrics_transcriber/review/__init__.py +0 -0
- lyrics_transcriber/review/server.py +676 -0
- lyrics_transcriber/storage/__init__.py +0 -0
- lyrics_transcriber/storage/dropbox.py +225 -0
- lyrics_transcriber/transcribers/__init__.py +0 -0
- lyrics_transcriber/transcribers/audioshake.py +290 -0
- lyrics_transcriber/transcribers/base_transcriber.py +157 -0
- lyrics_transcriber/transcribers/whisper.py +330 -0
- lyrics_transcriber/types.py +648 -0
- lyrics_transcriber/utils/__init__.py +0 -0
- lyrics_transcriber/utils/word_utils.py +27 -0
- karaoke_gen-0.57.0.dist-info/METADATA +0 -167
- karaoke_gen-0.57.0.dist-info/RECORD +0 -23
- {karaoke_gen-0.57.0.dist-info → karaoke_gen-0.71.23.dist-info/licenses}/LICENSE +0 -0
|
@@ -0,0 +1,1043 @@
|
|
|
1
|
+
import threading
|
|
2
|
+
import time
|
|
3
|
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
4
|
+
import logging
|
|
5
|
+
from tqdm import tqdm
|
|
6
|
+
from multiprocessing import Pool, cpu_count
|
|
7
|
+
from functools import partial
|
|
8
|
+
from pathlib import Path
|
|
9
|
+
import json
|
|
10
|
+
import hashlib
|
|
11
|
+
|
|
12
|
+
from lyrics_transcriber.types import LyricsData, PhraseScore, PhraseType, AnchorSequence, GapSequence, ScoredAnchor, TranscriptionResult, Word
|
|
13
|
+
from lyrics_transcriber.correction.phrase_analyzer import PhraseAnalyzer
|
|
14
|
+
from lyrics_transcriber.correction.text_utils import clean_text
|
|
15
|
+
from lyrics_transcriber.utils.word_utils import WordUtils
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class AnchorSequenceTimeoutError(Exception):
|
|
19
|
+
"""Raised when anchor sequence computation exceeds timeout."""
|
|
20
|
+
pass
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
class AnchorSequenceFinder:
|
|
24
|
+
"""Identifies and manages anchor sequences between transcribed and reference lyrics."""
|
|
25
|
+
|
|
26
|
+
def __init__(
|
|
27
|
+
self,
|
|
28
|
+
cache_dir: Union[str, Path],
|
|
29
|
+
min_sequence_length: int = 3,
|
|
30
|
+
min_sources: int = 1,
|
|
31
|
+
timeout_seconds: int = 600, # 10 minutes default timeout
|
|
32
|
+
max_iterations_per_ngram: int = 1000, # Maximum iterations for while loop
|
|
33
|
+
progress_check_interval: int = 50, # Check progress every N iterations
|
|
34
|
+
logger: Optional[logging.Logger] = None,
|
|
35
|
+
):
|
|
36
|
+
self.min_sequence_length = min_sequence_length
|
|
37
|
+
self.min_sources = min_sources
|
|
38
|
+
self.timeout_seconds = timeout_seconds
|
|
39
|
+
self.max_iterations_per_ngram = max_iterations_per_ngram
|
|
40
|
+
self.progress_check_interval = progress_check_interval
|
|
41
|
+
self.logger = logger or logging.getLogger(__name__)
|
|
42
|
+
self.phrase_analyzer = PhraseAnalyzer(logger=self.logger)
|
|
43
|
+
self.used_positions = {}
|
|
44
|
+
|
|
45
|
+
# Initialize cache directory
|
|
46
|
+
self.cache_dir = Path(cache_dir)
|
|
47
|
+
self.cache_dir.mkdir(parents=True, exist_ok=True)
|
|
48
|
+
self.logger.info(f"Initialized AnchorSequenceFinder with cache dir: {self.cache_dir}, timeout: {timeout_seconds}s")
|
|
49
|
+
|
|
50
|
+
def _check_timeout(self, start_time: float, operation_name: str = "operation"):
|
|
51
|
+
"""Check if timeout has occurred and raise exception if so."""
|
|
52
|
+
if self.timeout_seconds > 0:
|
|
53
|
+
elapsed_time = time.time() - start_time
|
|
54
|
+
if elapsed_time > self.timeout_seconds:
|
|
55
|
+
raise AnchorSequenceTimeoutError(f"{operation_name} exceeded {self.timeout_seconds} seconds (elapsed: {elapsed_time:.1f}s)")
|
|
56
|
+
|
|
57
|
+
def _clean_text(self, text: str) -> str:
|
|
58
|
+
"""Clean text by removing punctuation and normalizing whitespace."""
|
|
59
|
+
# self.logger.debug(f"_clean_text called with text length: {len(text)}")
|
|
60
|
+
return clean_text(text)
|
|
61
|
+
|
|
62
|
+
def _find_ngrams(self, words: List[str], n: int) -> List[Tuple[List[str], int]]:
|
|
63
|
+
"""Generate n-grams with their starting positions."""
|
|
64
|
+
# self.logger.debug(f"_find_ngrams called with {len(words)} words, n={n}")
|
|
65
|
+
return [(words[i : i + n], i) for i in range(len(words) - n + 1)]
|
|
66
|
+
|
|
67
|
+
def _find_matching_sources(self, ngram: List[str], references: Dict[str, List[str]], n: int) -> Dict[str, int]:
|
|
68
|
+
"""Find which sources contain the given n-gram and at what positions."""
|
|
69
|
+
# self.logger.debug(f"_find_matching_sources called for ngram: '{' '.join(ngram)}'")
|
|
70
|
+
matches = {}
|
|
71
|
+
all_positions = {source: [] for source in references}
|
|
72
|
+
|
|
73
|
+
# First, find all positions in each source
|
|
74
|
+
for source, words in references.items():
|
|
75
|
+
for i in range(len(words) - n + 1):
|
|
76
|
+
if words[i : i + n] == ngram:
|
|
77
|
+
all_positions[source].append(i)
|
|
78
|
+
|
|
79
|
+
# Then, try to find an unused position for each source
|
|
80
|
+
for source, positions in all_positions.items():
|
|
81
|
+
used = self.used_positions.get(source, set())
|
|
82
|
+
# Try each position in order
|
|
83
|
+
for pos in positions:
|
|
84
|
+
if pos not in used:
|
|
85
|
+
matches[source] = pos
|
|
86
|
+
break
|
|
87
|
+
|
|
88
|
+
return matches
|
|
89
|
+
|
|
90
|
+
def _filter_used_positions(self, matches: Dict[str, int]) -> Dict[str, int]:
|
|
91
|
+
"""Filter out positions that have already been used.
|
|
92
|
+
|
|
93
|
+
Args:
|
|
94
|
+
matches: Dict mapping source IDs to positions
|
|
95
|
+
|
|
96
|
+
Returns:
|
|
97
|
+
Dict mapping source IDs to unused positions
|
|
98
|
+
"""
|
|
99
|
+
self.logger.debug(f"_filter_used_positions called with {len(matches)} matches")
|
|
100
|
+
return {source: pos for source, pos in matches.items() if pos not in self.used_positions.get(source, set())}
|
|
101
|
+
|
|
102
|
+
def _create_anchor(
|
|
103
|
+
self, ngram: List[str], trans_pos: int, matching_sources: Dict[str, int], total_sources: int
|
|
104
|
+
) -> Optional[AnchorSequence]:
|
|
105
|
+
"""Create an anchor sequence if it meets the minimum sources requirement."""
|
|
106
|
+
self.logger.debug(f"_create_anchor called for ngram: '{' '.join(ngram)}' at position {trans_pos}")
|
|
107
|
+
if len(matching_sources) >= self.min_sources:
|
|
108
|
+
confidence = len(matching_sources) / total_sources
|
|
109
|
+
# Use new API to avoid setting _words field
|
|
110
|
+
anchor = AnchorSequence(
|
|
111
|
+
id=WordUtils.generate_id(),
|
|
112
|
+
transcribed_word_ids=[WordUtils.generate_id() for _ in ngram],
|
|
113
|
+
transcription_position=trans_pos,
|
|
114
|
+
reference_positions=matching_sources,
|
|
115
|
+
reference_word_ids={source: [WordUtils.generate_id() for _ in ngram]
|
|
116
|
+
for source in matching_sources.keys()},
|
|
117
|
+
confidence=confidence
|
|
118
|
+
)
|
|
119
|
+
self.logger.debug(f"Found anchor sequence: '{' '.join(ngram)}' (confidence: {confidence:.2f})")
|
|
120
|
+
return anchor
|
|
121
|
+
return None
|
|
122
|
+
|
|
123
|
+
def _get_cache_key(self, transcribed: str, references: Dict[str, LyricsData], transcription_result: TranscriptionResult) -> str:
|
|
124
|
+
"""Generate a unique cache key for the input combination."""
|
|
125
|
+
# Create a string that uniquely identifies the inputs, including word IDs
|
|
126
|
+
ref_texts = []
|
|
127
|
+
for source, lyrics in sorted(references.items()):
|
|
128
|
+
# Include both text and ID for each word to ensure cache uniqueness
|
|
129
|
+
words_with_ids = [f"{w.text}:{w.id}" for s in lyrics.segments for w in s.words]
|
|
130
|
+
ref_texts.append(f"{source}:{','.join(words_with_ids)}")
|
|
131
|
+
|
|
132
|
+
# Also include transcription word IDs to ensure complete matching
|
|
133
|
+
trans_words_with_ids = [f"{w.text}:{w.id}" for s in transcription_result.result.segments for w in s.words]
|
|
134
|
+
|
|
135
|
+
input_str = f"{transcribed}|" f"{','.join(trans_words_with_ids)}|" f"{','.join(ref_texts)}"
|
|
136
|
+
return hashlib.md5(input_str.encode()).hexdigest()
|
|
137
|
+
|
|
138
|
+
def _save_to_cache(self, cache_path: Path, anchors: List[ScoredAnchor]) -> None:
|
|
139
|
+
"""Save results to cache file."""
|
|
140
|
+
self.logger.debug(f"Saving to cache: {cache_path}")
|
|
141
|
+
# Convert to dictionary format that matches the expected loading format
|
|
142
|
+
cache_data = [{"anchor": anchor.anchor.to_dict(), "phrase_score": anchor.phrase_score.to_dict()} for anchor in anchors]
|
|
143
|
+
with open(cache_path, "w") as f:
|
|
144
|
+
json.dump(cache_data, f, indent=2)
|
|
145
|
+
|
|
146
|
+
def _load_from_cache(self, cache_path: Path) -> Optional[List[ScoredAnchor]]:
|
|
147
|
+
"""Load results from cache if available."""
|
|
148
|
+
try:
|
|
149
|
+
self.logger.debug(f"Attempting to load from cache: {cache_path}")
|
|
150
|
+
with open(cache_path, "r") as f:
|
|
151
|
+
cached_data = json.load(f)
|
|
152
|
+
|
|
153
|
+
self.logger.info("Loading anchors from cache")
|
|
154
|
+
try:
|
|
155
|
+
# Log the raw dictionary data instead of the object
|
|
156
|
+
# if cached_data:
|
|
157
|
+
# self.logger.debug(f"Cached data structure: {json.dumps(cached_data[0], indent=2)}")
|
|
158
|
+
|
|
159
|
+
# Convert cached data back to ScoredAnchor objects
|
|
160
|
+
anchors = []
|
|
161
|
+
for data in cached_data:
|
|
162
|
+
if "anchor" not in data or "phrase_score" not in data:
|
|
163
|
+
raise KeyError("Missing required keys: anchor, phrase_score")
|
|
164
|
+
|
|
165
|
+
anchor = AnchorSequence.from_dict(data["anchor"])
|
|
166
|
+
phrase_score = PhraseScore.from_dict(data["phrase_score"])
|
|
167
|
+
anchors.append(ScoredAnchor(anchor=anchor, phrase_score=phrase_score))
|
|
168
|
+
|
|
169
|
+
return anchors
|
|
170
|
+
|
|
171
|
+
except KeyError as e:
|
|
172
|
+
self.logger.error(f"Cache format mismatch. Missing key: {e}")
|
|
173
|
+
# Log the raw data for debugging
|
|
174
|
+
if cached_data:
|
|
175
|
+
self.logger.error(f"First cached anchor data: {json.dumps(cached_data[0], indent=2)}")
|
|
176
|
+
self.logger.error("Expected keys: anchor, phrase_score")
|
|
177
|
+
self.logger.warning(f"Cache format mismatch: {e}. Recomputing.")
|
|
178
|
+
return None
|
|
179
|
+
|
|
180
|
+
except (FileNotFoundError, json.JSONDecodeError) as e:
|
|
181
|
+
self.logger.debug(f"Cache miss or invalid cache file: {e}")
|
|
182
|
+
return None
|
|
183
|
+
except Exception as e:
|
|
184
|
+
self.logger.error(f"Unexpected error loading cache: {type(e).__name__}: {e}")
|
|
185
|
+
return None
|
|
186
|
+
|
|
187
|
+
def _process_ngram_length(
|
|
188
|
+
self,
|
|
189
|
+
n: int,
|
|
190
|
+
trans_words: List[str],
|
|
191
|
+
all_words: List[Word],
|
|
192
|
+
ref_texts_clean: Dict[str, List[str]],
|
|
193
|
+
ref_words: Dict[str, List[Word]],
|
|
194
|
+
min_sources: int,
|
|
195
|
+
) -> List[AnchorSequence]:
|
|
196
|
+
"""Process a single n-gram length to find matching sequences with timeout and early termination."""
|
|
197
|
+
self.logger.debug(f"🔍 N-GRAM {n}: Starting processing with {len(trans_words)} transcription words")
|
|
198
|
+
self.logger.debug(f"🔍 N-GRAM {n}: Reference sources: {list(ref_texts_clean.keys())}")
|
|
199
|
+
self.logger.debug(f"🔍 N-GRAM {n}: Max iterations limit: {self.max_iterations_per_ngram}")
|
|
200
|
+
|
|
201
|
+
candidate_anchors = []
|
|
202
|
+
used_positions = {source: set() for source in ref_texts_clean.keys()}
|
|
203
|
+
used_trans_positions = set()
|
|
204
|
+
|
|
205
|
+
iteration_count = 0
|
|
206
|
+
last_progress_check = 0
|
|
207
|
+
last_anchor_count = 0
|
|
208
|
+
stagnation_count = 0
|
|
209
|
+
|
|
210
|
+
self.logger.debug(f"🔍 N-GRAM {n}: Processing n-gram length {n} with max {self.max_iterations_per_ngram} iterations")
|
|
211
|
+
|
|
212
|
+
# Generate n-grams from transcribed text once
|
|
213
|
+
trans_ngrams = self._find_ngrams(trans_words, n)
|
|
214
|
+
self.logger.debug(f"🔍 N-GRAM {n}: Generated {len(trans_ngrams)} n-grams for processing")
|
|
215
|
+
|
|
216
|
+
# Process all n-grams efficiently in multiple passes
|
|
217
|
+
found_new_match = True
|
|
218
|
+
while found_new_match and iteration_count < self.max_iterations_per_ngram:
|
|
219
|
+
found_new_match = False
|
|
220
|
+
iteration_count += 1
|
|
221
|
+
anchors_found_this_iteration = 0
|
|
222
|
+
|
|
223
|
+
# Log every 10th iteration to track progress
|
|
224
|
+
if iteration_count % 10 == 0:
|
|
225
|
+
self.logger.debug(f"🔍 N-GRAM {n}: Iteration {iteration_count}, anchors found: {len(candidate_anchors)}")
|
|
226
|
+
|
|
227
|
+
# Check for progress stagnation every N iterations
|
|
228
|
+
if iteration_count - last_progress_check >= self.progress_check_interval:
|
|
229
|
+
current_anchor_count = len(candidate_anchors)
|
|
230
|
+
if current_anchor_count == last_anchor_count:
|
|
231
|
+
stagnation_count += 1
|
|
232
|
+
self.logger.debug(f"🔍 N-GRAM {n}: Stagnation check {stagnation_count}/3 at iteration {iteration_count}")
|
|
233
|
+
if stagnation_count >= 3: # No progress for 3 consecutive checks
|
|
234
|
+
self.logger.debug(f"🔍 N-GRAM {n}: ⏹️ Early termination due to stagnation after {iteration_count} iterations")
|
|
235
|
+
break
|
|
236
|
+
else:
|
|
237
|
+
stagnation_count = 0 # Reset stagnation counter
|
|
238
|
+
|
|
239
|
+
last_anchor_count = current_anchor_count
|
|
240
|
+
last_progress_check = iteration_count
|
|
241
|
+
|
|
242
|
+
self.logger.debug(f"🔍 N-GRAM {n}: iteration {iteration_count}, anchors: {current_anchor_count}, stagnation: {stagnation_count}")
|
|
243
|
+
|
|
244
|
+
# Process all n-grams in this iteration
|
|
245
|
+
for ngram, trans_pos in trans_ngrams:
|
|
246
|
+
# Skip if we've already used this transcription position
|
|
247
|
+
if trans_pos in used_trans_positions:
|
|
248
|
+
continue
|
|
249
|
+
|
|
250
|
+
# Get the actual words from the transcription at this position
|
|
251
|
+
actual_words = [w.text.lower().strip('.,?!"\n') for w in all_words[trans_pos : trans_pos + n]]
|
|
252
|
+
ngram_words = [w.lower() for w in ngram]
|
|
253
|
+
|
|
254
|
+
if actual_words != ngram_words:
|
|
255
|
+
self.logger.error(f"🔍 N-GRAM {n}: ❌ Mismatch between ngram and actual words at position {trans_pos}:")
|
|
256
|
+
self.logger.error(f"🔍 N-GRAM {n}: Ngram words: {ngram_words}")
|
|
257
|
+
self.logger.error(f"🔍 N-GRAM {n}: Actual words: {actual_words}")
|
|
258
|
+
self.logger.error(f"🔍 N-GRAM {n}: Full trans_words: {trans_words}")
|
|
259
|
+
self.logger.error(f"🔍 N-GRAM {n}: Full all_words: {[w.text for w in all_words]}")
|
|
260
|
+
raise AssertionError(
|
|
261
|
+
f"Ngram words don't match actual words at position {trans_pos}. "
|
|
262
|
+
f"This should never happen as trans_words should be derived from all_words."
|
|
263
|
+
)
|
|
264
|
+
|
|
265
|
+
matches = self._find_matching_sources(ngram, ref_texts_clean, n)
|
|
266
|
+
if len(matches) >= min_sources:
|
|
267
|
+
# Log successful match
|
|
268
|
+
if len(candidate_anchors) < 5: # Only log first few matches to avoid spam
|
|
269
|
+
self.logger.debug(f"🔍 N-GRAM {n}: ✅ Found match: '{' '.join(ngram)}' at pos {trans_pos} with {len(matches)} sources")
|
|
270
|
+
|
|
271
|
+
# Get Word IDs for transcribed words
|
|
272
|
+
transcribed_word_ids = [w.id for w in all_words[trans_pos : trans_pos + n]]
|
|
273
|
+
|
|
274
|
+
# Get Word IDs for reference words
|
|
275
|
+
reference_word_ids = {source: [w.id for w in ref_words[source][pos : pos + n]] for source, pos in matches.items()}
|
|
276
|
+
|
|
277
|
+
# Mark positions as used
|
|
278
|
+
for source, pos in matches.items():
|
|
279
|
+
used_positions[source].add(pos)
|
|
280
|
+
used_trans_positions.add(trans_pos)
|
|
281
|
+
|
|
282
|
+
anchor = AnchorSequence(
|
|
283
|
+
id=WordUtils.generate_id(),
|
|
284
|
+
transcribed_word_ids=transcribed_word_ids,
|
|
285
|
+
transcription_position=trans_pos,
|
|
286
|
+
reference_positions=matches,
|
|
287
|
+
reference_word_ids=reference_word_ids,
|
|
288
|
+
confidence=len(matches) / len(ref_texts_clean),
|
|
289
|
+
)
|
|
290
|
+
candidate_anchors.append(anchor)
|
|
291
|
+
anchors_found_this_iteration += 1
|
|
292
|
+
found_new_match = True
|
|
293
|
+
|
|
294
|
+
# For efficiency, if we have very low iteration limits, find one match per iteration
|
|
295
|
+
if self.max_iterations_per_ngram <= 10:
|
|
296
|
+
break
|
|
297
|
+
|
|
298
|
+
# Log progress for this iteration
|
|
299
|
+
if anchors_found_this_iteration > 0:
|
|
300
|
+
self.logger.debug(f"🔍 N-GRAM {n}: Found {anchors_found_this_iteration} anchors in iteration {iteration_count}")
|
|
301
|
+
|
|
302
|
+
# Early termination if we've found enough anchors or processed all positions
|
|
303
|
+
if len(used_trans_positions) >= len(trans_ngrams) or len(candidate_anchors) >= len(trans_ngrams):
|
|
304
|
+
self.logger.debug(f"🔍 N-GRAM {n}: ⏹️ Early termination - processed all positions after {iteration_count} iterations")
|
|
305
|
+
break
|
|
306
|
+
|
|
307
|
+
if iteration_count >= self.max_iterations_per_ngram:
|
|
308
|
+
self.logger.debug(f"🔍 N-GRAM {n}: ⏰ Processing terminated after reaching max iterations ({self.max_iterations_per_ngram})")
|
|
309
|
+
|
|
310
|
+
self.logger.debug(f"🔍 N-GRAM {n}: ✅ Completed processing after {iteration_count} iterations, found {len(candidate_anchors)} anchors")
|
|
311
|
+
return candidate_anchors
|
|
312
|
+
|
|
313
|
+
def find_anchors(
|
|
314
|
+
self,
|
|
315
|
+
transcribed: str,
|
|
316
|
+
references: Dict[str, LyricsData],
|
|
317
|
+
transcription_result: TranscriptionResult,
|
|
318
|
+
) -> List[ScoredAnchor]:
|
|
319
|
+
"""Find anchor sequences that appear in both transcription and references with timeout protection."""
|
|
320
|
+
start_time = time.time()
|
|
321
|
+
|
|
322
|
+
try:
|
|
323
|
+
self.logger.info(f"🔍 ANCHOR SEARCH: Starting anchor search (timeout: {self.timeout_seconds}s, sources: {list(references.keys())})")
|
|
324
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: Transcribed text length: {len(transcribed)}")
|
|
325
|
+
|
|
326
|
+
cache_key = self._get_cache_key(transcribed, references, transcription_result)
|
|
327
|
+
cache_path = self.cache_dir / f"anchors_{cache_key}.json"
|
|
328
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: Cache key: {cache_key}")
|
|
329
|
+
|
|
330
|
+
# Try to load from cache
|
|
331
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: Checking cache at {cache_path}")
|
|
332
|
+
if cached_data := self._load_from_cache(cache_path):
|
|
333
|
+
self.logger.info("🔍 ANCHOR SEARCH: ✅ Cache hit - loading anchors from cache")
|
|
334
|
+
try:
|
|
335
|
+
# Convert cached_data to dictionary before logging
|
|
336
|
+
if cached_data:
|
|
337
|
+
first_anchor = {"anchor": cached_data[0].anchor.to_dict(), "phrase_score": cached_data[0].phrase_score.to_dict()}
|
|
338
|
+
return cached_data
|
|
339
|
+
except Exception as e:
|
|
340
|
+
self.logger.error(f"🔍 ANCHOR SEARCH: ❌ Error loading cache: {type(e).__name__}: {e}")
|
|
341
|
+
if cached_data:
|
|
342
|
+
try:
|
|
343
|
+
first_anchor = {"anchor": cached_data[0].anchor.to_dict(), "phrase_score": cached_data[0].phrase_score.to_dict()}
|
|
344
|
+
self.logger.error(f"First cached anchor data: {json.dumps(first_anchor, indent=2)}")
|
|
345
|
+
except:
|
|
346
|
+
self.logger.error("Could not serialize first cached anchor for logging")
|
|
347
|
+
|
|
348
|
+
# If not in cache or cache format invalid, perform the computation
|
|
349
|
+
self.logger.info(f"🔍 ANCHOR SEARCH: Cache miss - computing anchors")
|
|
350
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: Finding anchor sequences for transcription with length {len(transcribed)}")
|
|
351
|
+
|
|
352
|
+
# Check timeout before starting computation
|
|
353
|
+
self._check_timeout(start_time, "anchor computation initialization")
|
|
354
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: ✅ Timeout check passed - initialization")
|
|
355
|
+
|
|
356
|
+
# Get all words from transcription
|
|
357
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: Extracting words from transcription result...")
|
|
358
|
+
all_words = []
|
|
359
|
+
for segment in transcription_result.result.segments:
|
|
360
|
+
all_words.extend(segment.words)
|
|
361
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: ✅ Extracted {len(all_words)} words from transcription")
|
|
362
|
+
|
|
363
|
+
# Clean and split texts
|
|
364
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: Cleaning transcription words...")
|
|
365
|
+
trans_words = [w.text.lower().strip('.,?!"\n') for w in all_words]
|
|
366
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: ✅ Cleaned {len(trans_words)} transcription words")
|
|
367
|
+
|
|
368
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: Processing reference sources...")
|
|
369
|
+
ref_texts_clean = {
|
|
370
|
+
source: self._clean_text(" ".join(w.text for s in lyrics.segments for w in s.words)).split()
|
|
371
|
+
for source, lyrics in references.items()
|
|
372
|
+
}
|
|
373
|
+
ref_words = {source: [w for s in lyrics.segments for w in s.words] for source, lyrics in references.items()}
|
|
374
|
+
|
|
375
|
+
for source, words in ref_texts_clean.items():
|
|
376
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: Reference '{source}': {len(words)} words")
|
|
377
|
+
|
|
378
|
+
# Check timeout after preprocessing
|
|
379
|
+
self._check_timeout(start_time, "anchor computation preprocessing")
|
|
380
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: ✅ Timeout check passed - preprocessing")
|
|
381
|
+
|
|
382
|
+
# Filter out very short reference sources for n-gram length calculation
|
|
383
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: Calculating n-gram lengths...")
|
|
384
|
+
valid_ref_lengths = [
|
|
385
|
+
len(words) for words in ref_texts_clean.values()
|
|
386
|
+
if len(words) >= self.min_sequence_length
|
|
387
|
+
]
|
|
388
|
+
|
|
389
|
+
if not valid_ref_lengths:
|
|
390
|
+
self.logger.warning("🔍 ANCHOR SEARCH: ❌ No reference sources long enough for anchor detection")
|
|
391
|
+
return []
|
|
392
|
+
|
|
393
|
+
# Calculate max length using only valid reference sources
|
|
394
|
+
max_length = min(len(trans_words), min(valid_ref_lengths))
|
|
395
|
+
n_gram_lengths = range(max_length, self.min_sequence_length - 1, -1)
|
|
396
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: N-gram lengths to process: {list(n_gram_lengths)} (max_length: {max_length})")
|
|
397
|
+
|
|
398
|
+
# Process n-gram lengths in parallel with timeout
|
|
399
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: Setting up parallel processing...")
|
|
400
|
+
process_length_partial = partial(
|
|
401
|
+
self._process_ngram_length,
|
|
402
|
+
trans_words=trans_words,
|
|
403
|
+
all_words=all_words, # Pass the Word objects
|
|
404
|
+
ref_texts_clean=ref_texts_clean,
|
|
405
|
+
ref_words=ref_words,
|
|
406
|
+
min_sources=self.min_sources,
|
|
407
|
+
)
|
|
408
|
+
|
|
409
|
+
# Process n-gram lengths in parallel with timeout
|
|
410
|
+
candidate_anchors = []
|
|
411
|
+
pool_timeout = max(60, self.timeout_seconds // 2) if self.timeout_seconds > 0 else 300 # Use half the total timeout for pool operations
|
|
412
|
+
|
|
413
|
+
# Check timeout before parallel processing
|
|
414
|
+
self._check_timeout(start_time, "parallel processing start")
|
|
415
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: ✅ Timeout check passed - about to start parallel processing")
|
|
416
|
+
|
|
417
|
+
pool = None
|
|
418
|
+
try:
|
|
419
|
+
num_processes = max(cpu_count() - 1, 1)
|
|
420
|
+
self.logger.info(f"🔍 ANCHOR SEARCH: 🚀 Starting parallel processing ({num_processes} processes, {len(n_gram_lengths)} n-gram lengths)")
|
|
421
|
+
pool = Pool(processes=num_processes)
|
|
422
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: Pool created successfully")
|
|
423
|
+
results = []
|
|
424
|
+
|
|
425
|
+
# Submit all jobs first
|
|
426
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: Submitting {len(n_gram_lengths)} n-gram processing jobs...")
|
|
427
|
+
async_results = []
|
|
428
|
+
for i, n in enumerate(n_gram_lengths):
|
|
429
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: Submitting job {i+1}/{len(n_gram_lengths)} for n-gram length {n}")
|
|
430
|
+
async_result = pool.apply_async(process_length_partial, (n,))
|
|
431
|
+
async_results.append(async_result)
|
|
432
|
+
|
|
433
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: ✅ All {len(async_results)} jobs submitted")
|
|
434
|
+
|
|
435
|
+
# Collect results with individual timeouts
|
|
436
|
+
batch_results = []
|
|
437
|
+
batch_size = 10
|
|
438
|
+
|
|
439
|
+
for i, async_result in enumerate(async_results):
|
|
440
|
+
n_gram_length = n_gram_lengths[i]
|
|
441
|
+
try:
|
|
442
|
+
# Check remaining time for pool timeout (more lenient than overall timeout)
|
|
443
|
+
elapsed_time = time.time() - start_time
|
|
444
|
+
remaining_time = max(10, self.timeout_seconds - elapsed_time) if self.timeout_seconds > 0 else pool_timeout
|
|
445
|
+
|
|
446
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: Remaining time for n-gram {n_gram_length}: {remaining_time}s")
|
|
447
|
+
|
|
448
|
+
# Use a more lenient timeout for individual results to allow fallback
|
|
449
|
+
individual_timeout = min(pool_timeout, remaining_time) if self.timeout_seconds > 0 else pool_timeout
|
|
450
|
+
|
|
451
|
+
result = async_result.get(timeout=individual_timeout)
|
|
452
|
+
results.append(result)
|
|
453
|
+
|
|
454
|
+
# Batch logging - collect info for batched logging
|
|
455
|
+
batch_results.append((n_gram_length, len(result)))
|
|
456
|
+
|
|
457
|
+
# Log progress every batch_size results or on the last result (at DEBUG level)
|
|
458
|
+
if (i + 1) % batch_size == 0 or (i + 1) == len(async_results):
|
|
459
|
+
total_anchors_in_batch = sum(anchor_count for _, anchor_count in batch_results)
|
|
460
|
+
n_gram_ranges = [str(ng) for ng, _ in batch_results]
|
|
461
|
+
range_str = f"{n_gram_ranges[0]}-{n_gram_ranges[-1]}" if len(n_gram_ranges) > 1 else n_gram_ranges[0]
|
|
462
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: Completed n-gram lengths {range_str} ({i+1-len(batch_results)+1}-{i+1}/{len(async_results)}) - found {total_anchors_in_batch} anchors")
|
|
463
|
+
batch_results = [] # Reset batch
|
|
464
|
+
|
|
465
|
+
except Exception as e:
|
|
466
|
+
self.logger.warning(f"🔍 ANCHOR SEARCH: ⚠️ n-gram length {n_gram_length} failed or timed out: {str(e)}")
|
|
467
|
+
results.append([]) # Add empty result to maintain order
|
|
468
|
+
|
|
469
|
+
# Add failed result to batch for logging
|
|
470
|
+
batch_results.append((n_gram_length, 0))
|
|
471
|
+
|
|
472
|
+
# If we're running short on time, trigger fallback early
|
|
473
|
+
if self.timeout_seconds > 0 and (time.time() - start_time) > (self.timeout_seconds * 0.8):
|
|
474
|
+
self.logger.warning(f"🔍 ANCHOR SEARCH: ⚠️ Approaching timeout limit, triggering early fallback")
|
|
475
|
+
# Raise exception to trigger fallback to sequential processing
|
|
476
|
+
raise Exception("Parallel processing timeout, triggering fallback")
|
|
477
|
+
|
|
478
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: Parallel processing completed, combining results...")
|
|
479
|
+
for anchors in results:
|
|
480
|
+
candidate_anchors.extend(anchors)
|
|
481
|
+
|
|
482
|
+
# Explicitly cleanup pool to avoid hangs in containerized environments
|
|
483
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: 🧹 Cleaning up pool...")
|
|
484
|
+
pool.close()
|
|
485
|
+
pool.terminate()
|
|
486
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: ✅ Pool cleanup completed")
|
|
487
|
+
|
|
488
|
+
except AnchorSequenceTimeoutError:
|
|
489
|
+
self.logger.error(f"🔍 ANCHOR SEARCH: ❌ Parallel processing timed out")
|
|
490
|
+
# Re-raise timeout errors
|
|
491
|
+
raise
|
|
492
|
+
except Exception as e:
|
|
493
|
+
self.logger.error(f"🔍 ANCHOR SEARCH: ❌ Parallel processing failed: {str(e)}")
|
|
494
|
+
# Fall back to sequential processing with timeout checks
|
|
495
|
+
self.logger.info("🔍 ANCHOR SEARCH: Falling back to sequential processing")
|
|
496
|
+
for n in n_gram_lengths:
|
|
497
|
+
try:
|
|
498
|
+
# Check timeout more leniently during sequential processing
|
|
499
|
+
if self.timeout_seconds > 0:
|
|
500
|
+
elapsed_time = time.time() - start_time
|
|
501
|
+
# Allow more time for sequential processing (up to 2x the original timeout)
|
|
502
|
+
if elapsed_time > (self.timeout_seconds * 2.0):
|
|
503
|
+
self.logger.warning(f"🔍 ANCHOR SEARCH: ⏰ Sequential processing timeout for n-gram {n}")
|
|
504
|
+
break
|
|
505
|
+
|
|
506
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: Sequential processing n-gram length {n}")
|
|
507
|
+
|
|
508
|
+
anchors = self._process_ngram_length(
|
|
509
|
+
n, trans_words, all_words, ref_texts_clean, ref_words, self.min_sources
|
|
510
|
+
)
|
|
511
|
+
candidate_anchors.extend(anchors)
|
|
512
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: Sequential n-gram {n} completed - found {len(anchors)} anchors")
|
|
513
|
+
except Exception as e:
|
|
514
|
+
self.logger.warning(f"🔍 ANCHOR SEARCH: ⚠️ Sequential processing failed for n-gram length {n}: {str(e)}")
|
|
515
|
+
continue
|
|
516
|
+
finally:
|
|
517
|
+
# Always ensure pool is cleaned up to avoid hangs in containerized environments
|
|
518
|
+
if pool is not None:
|
|
519
|
+
try:
|
|
520
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: 🧹 Final pool cleanup...")
|
|
521
|
+
pool.terminate()
|
|
522
|
+
pool.join(timeout=5) # Wait max 5 seconds for workers to terminate
|
|
523
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: ✅ Final pool cleanup completed")
|
|
524
|
+
except Exception as cleanup_error:
|
|
525
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: ⚠️ Pool cleanup error (ignored): {cleanup_error}")
|
|
526
|
+
|
|
527
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: Found {len(candidate_anchors)} candidate anchors in {time.time() - start_time:.1f}s")
|
|
528
|
+
|
|
529
|
+
# Check timeout before expensive filtering operation
|
|
530
|
+
self._check_timeout(start_time, "overlap filtering start")
|
|
531
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: Starting overlap filtering...")
|
|
532
|
+
|
|
533
|
+
filtered_anchors = self._remove_overlapping_sequences(candidate_anchors, transcribed, transcription_result)
|
|
534
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: Filtering completed - {len(filtered_anchors)} final anchors")
|
|
535
|
+
|
|
536
|
+
# Save to cache
|
|
537
|
+
self.logger.debug(f"🔍 ANCHOR SEARCH: Saving results to cache...")
|
|
538
|
+
self._save_to_cache(cache_path, filtered_anchors)
|
|
539
|
+
|
|
540
|
+
total_time = time.time() - start_time
|
|
541
|
+
self.logger.info(f"🔍 ANCHOR SEARCH: ✅ Completed in {total_time:.1f}s - found {len(filtered_anchors)} anchors")
|
|
542
|
+
|
|
543
|
+
return filtered_anchors
|
|
544
|
+
|
|
545
|
+
except AnchorSequenceTimeoutError:
|
|
546
|
+
elapsed_time = time.time() - start_time
|
|
547
|
+
self.logger.error(f"🔍 ANCHOR SEARCH: ⏰ TIMEOUT after {elapsed_time:.1f}s (limit: {self.timeout_seconds}s)")
|
|
548
|
+
raise
|
|
549
|
+
except Exception as e:
|
|
550
|
+
elapsed_time = time.time() - start_time
|
|
551
|
+
self.logger.error(f"🔍 ANCHOR SEARCH: ❌ FAILED after {elapsed_time:.1f}s: {str(e)}")
|
|
552
|
+
self.logger.error(f"🔍 ANCHOR SEARCH: Exception type: {type(e).__name__}")
|
|
553
|
+
import traceback
|
|
554
|
+
self.logger.error(f"🔍 ANCHOR SEARCH: Traceback: {traceback.format_exc()}")
|
|
555
|
+
raise
|
|
556
|
+
finally:
|
|
557
|
+
# No cleanup needed for time-based timeout checks
|
|
558
|
+
pass
|
|
559
|
+
|
|
560
|
+
def _score_sequence(self, words: List[str], context: str) -> PhraseScore:
|
|
561
|
+
"""Score a sequence based on its phrase quality"""
|
|
562
|
+
self.logger.debug(f"_score_sequence called for: '{' '.join(words)}'")
|
|
563
|
+
return self.phrase_analyzer.score_phrase(words, context)
|
|
564
|
+
|
|
565
|
+
def _get_sequence_priority(self, scored_anchor: ScoredAnchor) -> Tuple[float, float, float, float, int]:
|
|
566
|
+
"""Get priority tuple for sorting sequences.
|
|
567
|
+
|
|
568
|
+
Returns tuple of:
|
|
569
|
+
- Number of sources matched (higher is better)
|
|
570
|
+
- Length bonus (length * 0.2) to favor longer sequences
|
|
571
|
+
- Break score (higher is better)
|
|
572
|
+
- Total score (higher is better)
|
|
573
|
+
- Negative position (earlier is better)
|
|
574
|
+
|
|
575
|
+
Position bonus: Add 1.0 to total score for sequences at position 0
|
|
576
|
+
"""
|
|
577
|
+
# self.logger.debug(f"_get_sequence_priority called for anchor: '{scored_anchor.anchor.text}'")
|
|
578
|
+
position_bonus = 1.0 if scored_anchor.anchor.transcription_position == 0 else 0.0
|
|
579
|
+
length_bonus = len(scored_anchor.anchor.transcribed_word_ids) * 0.2 # Changed from words to transcribed_word_ids
|
|
580
|
+
|
|
581
|
+
return (
|
|
582
|
+
len(scored_anchor.anchor.reference_positions), # More sources is better
|
|
583
|
+
length_bonus, # Longer sequences preferred
|
|
584
|
+
scored_anchor.phrase_score.natural_break_score, # Better breaks preferred
|
|
585
|
+
scored_anchor.phrase_score.total_score + position_bonus, # Add bonus for position 0
|
|
586
|
+
-scored_anchor.anchor.transcription_position, # Earlier positions preferred
|
|
587
|
+
)
|
|
588
|
+
|
|
589
|
+
def _sequences_overlap(self, seq1: AnchorSequence, seq2: AnchorSequence) -> bool:
|
|
590
|
+
"""Check if two sequences overlap in either transcription or references.
|
|
591
|
+
|
|
592
|
+
Args:
|
|
593
|
+
seq1: First sequence
|
|
594
|
+
seq2: Second sequence
|
|
595
|
+
|
|
596
|
+
Returns:
|
|
597
|
+
True if sequences overlap in transcription or share any reference positions
|
|
598
|
+
"""
|
|
599
|
+
# Check transcription overlap
|
|
600
|
+
seq1_trans_range = range(
|
|
601
|
+
seq1.transcription_position, seq1.transcription_position + len(seq1.transcribed_word_ids)
|
|
602
|
+
) # Changed from words
|
|
603
|
+
seq2_trans_range = range(
|
|
604
|
+
seq2.transcription_position, seq2.transcription_position + len(seq2.transcribed_word_ids)
|
|
605
|
+
) # Changed from words
|
|
606
|
+
trans_overlap = bool(set(seq1_trans_range) & set(seq2_trans_range))
|
|
607
|
+
|
|
608
|
+
# Check reference overlap - only consider positions in shared sources
|
|
609
|
+
shared_sources = set(seq1.reference_positions.keys()) & set(seq2.reference_positions.keys())
|
|
610
|
+
ref_overlap = any(seq1.reference_positions[source] == seq2.reference_positions[source] for source in shared_sources)
|
|
611
|
+
|
|
612
|
+
return trans_overlap or ref_overlap
|
|
613
|
+
|
|
614
|
+
def _remove_overlapping_sequences(
|
|
615
|
+
self,
|
|
616
|
+
anchors: List[AnchorSequence],
|
|
617
|
+
context: str,
|
|
618
|
+
transcription_result: TranscriptionResult,
|
|
619
|
+
) -> List[ScoredAnchor]:
|
|
620
|
+
"""Remove overlapping sequences using phrase analysis with timeout protection."""
|
|
621
|
+
self.logger.debug(f"🔍 FILTERING: Starting overlap removal for {len(anchors)} anchors")
|
|
622
|
+
|
|
623
|
+
if not anchors:
|
|
624
|
+
self.logger.debug(f"🔍 FILTERING: No anchors to process")
|
|
625
|
+
return []
|
|
626
|
+
|
|
627
|
+
self.logger.debug(f"🔍 FILTERING: Scoring {len(anchors)} anchors")
|
|
628
|
+
|
|
629
|
+
# Create word map for scoring
|
|
630
|
+
word_map = {w.id: w for s in transcription_result.result.segments for w in s.words}
|
|
631
|
+
self.logger.debug(f"🔍 FILTERING: Created word map with {len(word_map)} words")
|
|
632
|
+
|
|
633
|
+
# Add word map to each anchor for scoring
|
|
634
|
+
for i, anchor in enumerate(anchors):
|
|
635
|
+
# For backwards compatibility, only add transcribed_words if all IDs exist in word_map
|
|
636
|
+
try:
|
|
637
|
+
anchor.transcribed_words = [word_map[word_id] for word_id in anchor.transcribed_word_ids]
|
|
638
|
+
# Also set _words for backwards compatibility with text display
|
|
639
|
+
anchor._words = [word_map[word_id].text for word_id in anchor.transcribed_word_ids]
|
|
640
|
+
except KeyError:
|
|
641
|
+
# This can happen in tests using backwards compatible constructors
|
|
642
|
+
# Create dummy Word objects with the text from _words if available
|
|
643
|
+
if hasattr(anchor, '_words') and anchor._words is not None:
|
|
644
|
+
from lyrics_transcriber.types import Word
|
|
645
|
+
from lyrics_transcriber.utils.word_utils import WordUtils
|
|
646
|
+
anchor.transcribed_words = [
|
|
647
|
+
Word(
|
|
648
|
+
id=word_id,
|
|
649
|
+
text=text,
|
|
650
|
+
start_time=i * 1.0,
|
|
651
|
+
end_time=(i + 1) * 1.0,
|
|
652
|
+
confidence=1.0
|
|
653
|
+
)
|
|
654
|
+
for i, (word_id, text) in enumerate(zip(anchor.transcribed_word_ids, anchor._words))
|
|
655
|
+
]
|
|
656
|
+
else:
|
|
657
|
+
# Create generic word objects for scoring
|
|
658
|
+
from lyrics_transcriber.types import Word
|
|
659
|
+
anchor.transcribed_words = [
|
|
660
|
+
Word(
|
|
661
|
+
id=word_id,
|
|
662
|
+
text=f"word_{i}",
|
|
663
|
+
start_time=i * 1.0,
|
|
664
|
+
end_time=(i + 1) * 1.0,
|
|
665
|
+
confidence=1.0
|
|
666
|
+
)
|
|
667
|
+
for i, word_id in enumerate(anchor.transcribed_word_ids)
|
|
668
|
+
]
|
|
669
|
+
|
|
670
|
+
start_time = time.time()
|
|
671
|
+
|
|
672
|
+
# Try different pool sizes with timeout
|
|
673
|
+
num_processes = max(cpu_count() - 1, 1) # Leave one CPU free
|
|
674
|
+
self.logger.info(f"🔍 FILTERING: Using {num_processes} processes for scoring")
|
|
675
|
+
|
|
676
|
+
# Create a partial function with the context parameter fixed
|
|
677
|
+
score_anchor_partial = partial(self._score_anchor_static, context=context)
|
|
678
|
+
|
|
679
|
+
# Use multiprocessing to score anchors in parallel with timeout
|
|
680
|
+
scored_anchors = []
|
|
681
|
+
pool_timeout = 300 # 5 minutes for scoring phase
|
|
682
|
+
|
|
683
|
+
scoring_pool = None
|
|
684
|
+
try:
|
|
685
|
+
self.logger.debug(f"🔍 FILTERING: Starting parallel scoring with timeout {pool_timeout}s")
|
|
686
|
+
scoring_pool = Pool(processes=num_processes)
|
|
687
|
+
# Submit scoring jobs with timeout
|
|
688
|
+
async_results = []
|
|
689
|
+
batch_size = 50
|
|
690
|
+
|
|
691
|
+
self.logger.debug(f"🔍 FILTERING: Splitting {len(anchors)} anchors into batches of {batch_size}")
|
|
692
|
+
for i in range(0, len(anchors), batch_size):
|
|
693
|
+
batch = anchors[i:i + batch_size]
|
|
694
|
+
async_result = scoring_pool.apply_async(self._score_batch_static, (batch, context))
|
|
695
|
+
async_results.append(async_result)
|
|
696
|
+
|
|
697
|
+
self.logger.debug(f"🔍 FILTERING: Submitted {len(async_results)} scoring batches")
|
|
698
|
+
|
|
699
|
+
# Collect results with timeout
|
|
700
|
+
for i, async_result in enumerate(async_results):
|
|
701
|
+
try:
|
|
702
|
+
self.logger.debug(f"🔍 FILTERING: Collecting batch {i+1}/{len(async_results)}")
|
|
703
|
+
batch_results = async_result.get(timeout=pool_timeout)
|
|
704
|
+
scored_anchors.extend(batch_results)
|
|
705
|
+
self.logger.debug(f"🔍 FILTERING: Completed scoring batch {i+1}/{len(async_results)}")
|
|
706
|
+
except Exception as e:
|
|
707
|
+
self.logger.warning(f"🔍 FILTERING: ⚠️ Scoring batch {i+1} failed or timed out: {str(e)}")
|
|
708
|
+
# Add basic scores for failed batch
|
|
709
|
+
start_idx = i * batch_size
|
|
710
|
+
end_idx = min((i + 1) * batch_size, len(anchors))
|
|
711
|
+
for j in range(start_idx, end_idx):
|
|
712
|
+
if j < len(anchors):
|
|
713
|
+
try:
|
|
714
|
+
phrase_score = PhraseScore(
|
|
715
|
+
total_score=1.0,
|
|
716
|
+
natural_break_score=1.0,
|
|
717
|
+
phrase_type=PhraseType.COMPLETE
|
|
718
|
+
)
|
|
719
|
+
scored_anchors.append(ScoredAnchor(anchor=anchors[j], phrase_score=phrase_score))
|
|
720
|
+
except:
|
|
721
|
+
continue
|
|
722
|
+
|
|
723
|
+
# Explicitly cleanup pool to avoid hangs in containerized environments
|
|
724
|
+
self.logger.debug(f"🔍 FILTERING: Cleaning up scoring pool...")
|
|
725
|
+
scoring_pool.close()
|
|
726
|
+
scoring_pool.terminate()
|
|
727
|
+
self.logger.debug(f"🔍 FILTERING: Scoring pool cleanup completed")
|
|
728
|
+
|
|
729
|
+
except Exception as e:
|
|
730
|
+
self.logger.warning(f"🔍 FILTERING: ❌ Parallel scoring failed: {str(e)}, falling back to basic scoring")
|
|
731
|
+
# Fall back to basic scoring
|
|
732
|
+
for anchor in anchors:
|
|
733
|
+
try:
|
|
734
|
+
phrase_score = PhraseScore(
|
|
735
|
+
total_score=1.0,
|
|
736
|
+
natural_break_score=1.0,
|
|
737
|
+
phrase_type=PhraseType.COMPLETE
|
|
738
|
+
)
|
|
739
|
+
scored_anchors.append(ScoredAnchor(anchor=anchor, phrase_score=phrase_score))
|
|
740
|
+
except:
|
|
741
|
+
continue
|
|
742
|
+
finally:
|
|
743
|
+
# Always ensure scoring pool is cleaned up to avoid hangs
|
|
744
|
+
if scoring_pool is not None:
|
|
745
|
+
try:
|
|
746
|
+
self.logger.debug(f"🔍 FILTERING: Final scoring pool cleanup...")
|
|
747
|
+
scoring_pool.terminate()
|
|
748
|
+
scoring_pool.join(timeout=5) # Wait max 5 seconds for workers to terminate
|
|
749
|
+
self.logger.debug(f"🔍 FILTERING: Final scoring pool cleanup completed")
|
|
750
|
+
except Exception as cleanup_error:
|
|
751
|
+
self.logger.debug(f"🔍 FILTERING: Scoring pool cleanup error (ignored): {cleanup_error}")
|
|
752
|
+
|
|
753
|
+
parallel_time = time.time() - start_time
|
|
754
|
+
self.logger.debug(f"🔍 FILTERING: Parallel scoring completed in {parallel_time:.2f}s, scored {len(scored_anchors)} anchors")
|
|
755
|
+
|
|
756
|
+
# Sort and filter as before
|
|
757
|
+
self.logger.debug(f"🔍 FILTERING: Sorting anchors by priority...")
|
|
758
|
+
scored_anchors.sort(key=self._get_sequence_priority, reverse=True)
|
|
759
|
+
self.logger.debug(f"🔍 FILTERING: Sorting completed")
|
|
760
|
+
|
|
761
|
+
self.logger.debug(f"🔍 FILTERING: Filtering {len(scored_anchors)} overlapping sequences")
|
|
762
|
+
filtered_scored = []
|
|
763
|
+
|
|
764
|
+
for i, scored_anchor in enumerate(scored_anchors):
|
|
765
|
+
# Check timeout every 100 anchors using our timeout mechanism (more lenient)
|
|
766
|
+
if i % 100 == 0 and i > 0:
|
|
767
|
+
# Only check timeout if we're significantly over the limit
|
|
768
|
+
if self.timeout_seconds > 0:
|
|
769
|
+
elapsed_time = time.time() - start_time
|
|
770
|
+
# Use a more lenient timeout for filtering (allow 50% more time)
|
|
771
|
+
if elapsed_time > (self.timeout_seconds * 1.5):
|
|
772
|
+
self.logger.warning(f"🔍 FILTERING: ⏰ Filtering timed out, returning {len(filtered_scored)} anchors out of {len(scored_anchors)}")
|
|
773
|
+
break
|
|
774
|
+
|
|
775
|
+
self.logger.debug(f"🔍 FILTERING: Progress: {i}/{len(scored_anchors)} processed, {len(filtered_scored)} kept")
|
|
776
|
+
|
|
777
|
+
overlaps = False
|
|
778
|
+
for existing in filtered_scored:
|
|
779
|
+
if self._sequences_overlap(scored_anchor.anchor, existing.anchor):
|
|
780
|
+
overlaps = True
|
|
781
|
+
break
|
|
782
|
+
|
|
783
|
+
if not overlaps:
|
|
784
|
+
filtered_scored.append(scored_anchor)
|
|
785
|
+
|
|
786
|
+
self.logger.debug(f"🔍 FILTERING: Filtering completed - kept {len(filtered_scored)} non-overlapping anchors out of {len(scored_anchors)}")
|
|
787
|
+
return filtered_scored
|
|
788
|
+
|
|
789
|
+
@staticmethod
|
|
790
|
+
def _score_anchor_static(anchor: AnchorSequence, context: str) -> ScoredAnchor:
|
|
791
|
+
"""Static version of _score_anchor for multiprocessing compatibility."""
|
|
792
|
+
# Create analyzer only once per process
|
|
793
|
+
if not hasattr(AnchorSequenceFinder._score_anchor_static, "_phrase_analyzer"):
|
|
794
|
+
AnchorSequenceFinder._score_anchor_static._phrase_analyzer = PhraseAnalyzer(logger=logging.getLogger(__name__))
|
|
795
|
+
|
|
796
|
+
# Get the words from the transcribed word IDs
|
|
797
|
+
# We need to pass in the actual words for scoring
|
|
798
|
+
words = [w.text for w in anchor.transcribed_words] # This needs to be passed in
|
|
799
|
+
|
|
800
|
+
phrase_score = AnchorSequenceFinder._score_anchor_static._phrase_analyzer.score_phrase(words, context)
|
|
801
|
+
return ScoredAnchor(anchor=anchor, phrase_score=phrase_score)
|
|
802
|
+
|
|
803
|
+
@staticmethod
|
|
804
|
+
def _score_batch_static(anchors: List[AnchorSequence], context: str) -> List[ScoredAnchor]:
|
|
805
|
+
"""Score a batch of anchors for better timeout handling."""
|
|
806
|
+
# Create analyzer only once per process
|
|
807
|
+
if not hasattr(AnchorSequenceFinder._score_batch_static, "_phrase_analyzer"):
|
|
808
|
+
AnchorSequenceFinder._score_batch_static._phrase_analyzer = PhraseAnalyzer(logger=logging.getLogger(__name__))
|
|
809
|
+
|
|
810
|
+
scored_anchors = []
|
|
811
|
+
for anchor in anchors:
|
|
812
|
+
try:
|
|
813
|
+
words = [w.text for w in anchor.transcribed_words]
|
|
814
|
+
phrase_score = AnchorSequenceFinder._score_batch_static._phrase_analyzer.score_phrase(words, context)
|
|
815
|
+
scored_anchors.append(ScoredAnchor(anchor=anchor, phrase_score=phrase_score))
|
|
816
|
+
except Exception:
|
|
817
|
+
# Add basic score for failed anchor
|
|
818
|
+
phrase_score = PhraseScore(
|
|
819
|
+
total_score=1.0,
|
|
820
|
+
natural_break_score=1.0,
|
|
821
|
+
phrase_type=PhraseType.COMPLETE
|
|
822
|
+
)
|
|
823
|
+
scored_anchors.append(ScoredAnchor(anchor=anchor, phrase_score=phrase_score))
|
|
824
|
+
|
|
825
|
+
return scored_anchors
|
|
826
|
+
|
|
827
|
+
def _get_reference_words(self, source: str, ref_words: List[str], start_pos: Optional[int], end_pos: Optional[int]) -> List[str]:
|
|
828
|
+
"""Get words from reference text between two positions.
|
|
829
|
+
|
|
830
|
+
Args:
|
|
831
|
+
source: Reference source identifier
|
|
832
|
+
ref_words: List of words from the reference text
|
|
833
|
+
start_pos: Starting position (None for beginning)
|
|
834
|
+
end_pos: Ending position (None for end)
|
|
835
|
+
|
|
836
|
+
Returns:
|
|
837
|
+
List of words between the positions
|
|
838
|
+
"""
|
|
839
|
+
if start_pos is None:
|
|
840
|
+
start_pos = 0
|
|
841
|
+
if end_pos is None:
|
|
842
|
+
end_pos = len(ref_words)
|
|
843
|
+
return ref_words[start_pos:end_pos]
|
|
844
|
+
|
|
845
|
+
def find_gaps(
|
|
846
|
+
self,
|
|
847
|
+
transcribed: str,
|
|
848
|
+
anchors: List[ScoredAnchor],
|
|
849
|
+
references: Dict[str, LyricsData],
|
|
850
|
+
transcription_result: TranscriptionResult,
|
|
851
|
+
) -> List[GapSequence]:
|
|
852
|
+
"""Find gaps between anchor sequences in the transcribed text."""
|
|
853
|
+
# Get all words from transcription
|
|
854
|
+
all_words = []
|
|
855
|
+
for segment in transcription_result.result.segments:
|
|
856
|
+
all_words.extend(segment.words)
|
|
857
|
+
|
|
858
|
+
# Clean and split reference texts
|
|
859
|
+
ref_texts_clean = {
|
|
860
|
+
source: self._clean_text(" ".join(w.text for s in lyrics.segments for w in s.words)).split()
|
|
861
|
+
for source, lyrics in references.items()
|
|
862
|
+
}
|
|
863
|
+
ref_words = {source: [w for s in lyrics.segments for w in s.words] for source, lyrics in references.items()}
|
|
864
|
+
|
|
865
|
+
# Create gaps with Word IDs
|
|
866
|
+
gaps = []
|
|
867
|
+
sorted_anchors = sorted(anchors, key=lambda x: x.anchor.transcription_position)
|
|
868
|
+
|
|
869
|
+
# Handle initial gap
|
|
870
|
+
if sorted_anchors:
|
|
871
|
+
first_anchor = sorted_anchors[0].anchor
|
|
872
|
+
first_anchor_pos = first_anchor.transcription_position
|
|
873
|
+
if first_anchor_pos > 0:
|
|
874
|
+
gap_word_ids = [w.id for w in all_words[:first_anchor_pos]]
|
|
875
|
+
if gap := self._create_initial_gap(
|
|
876
|
+
id=WordUtils.generate_id(),
|
|
877
|
+
transcribed_word_ids=gap_word_ids,
|
|
878
|
+
transcription_position=0,
|
|
879
|
+
following_anchor_id=first_anchor.id,
|
|
880
|
+
ref_texts_clean=ref_texts_clean,
|
|
881
|
+
ref_words=ref_words,
|
|
882
|
+
following_anchor=first_anchor,
|
|
883
|
+
):
|
|
884
|
+
gaps.append(gap)
|
|
885
|
+
|
|
886
|
+
# Handle gaps between anchors
|
|
887
|
+
for i in range(len(sorted_anchors) - 1):
|
|
888
|
+
current_anchor = sorted_anchors[i].anchor
|
|
889
|
+
next_anchor = sorted_anchors[i + 1].anchor
|
|
890
|
+
gap_start = current_anchor.transcription_position + len(current_anchor.transcribed_word_ids)
|
|
891
|
+
gap_end = next_anchor.transcription_position
|
|
892
|
+
|
|
893
|
+
if gap_end > gap_start:
|
|
894
|
+
gap_word_ids = [w.id for w in all_words[gap_start:gap_end]]
|
|
895
|
+
if between_gap := self._create_between_gap(
|
|
896
|
+
id=WordUtils.generate_id(),
|
|
897
|
+
transcribed_word_ids=gap_word_ids,
|
|
898
|
+
transcription_position=gap_start,
|
|
899
|
+
preceding_anchor_id=current_anchor.id,
|
|
900
|
+
following_anchor_id=next_anchor.id,
|
|
901
|
+
ref_texts_clean=ref_texts_clean,
|
|
902
|
+
ref_words=ref_words,
|
|
903
|
+
preceding_anchor=current_anchor,
|
|
904
|
+
following_anchor=next_anchor,
|
|
905
|
+
):
|
|
906
|
+
gaps.append(between_gap)
|
|
907
|
+
|
|
908
|
+
# Handle final gap
|
|
909
|
+
if sorted_anchors:
|
|
910
|
+
last_anchor = sorted_anchors[-1].anchor
|
|
911
|
+
last_pos = last_anchor.transcription_position + len(last_anchor.transcribed_word_ids)
|
|
912
|
+
if last_pos < len(all_words):
|
|
913
|
+
gap_word_ids = [w.id for w in all_words[last_pos:]]
|
|
914
|
+
if final_gap := self._create_final_gap(
|
|
915
|
+
id=WordUtils.generate_id(),
|
|
916
|
+
transcribed_word_ids=gap_word_ids,
|
|
917
|
+
transcription_position=last_pos,
|
|
918
|
+
preceding_anchor_id=last_anchor.id,
|
|
919
|
+
ref_texts_clean=ref_texts_clean,
|
|
920
|
+
ref_words=ref_words,
|
|
921
|
+
preceding_anchor=last_anchor,
|
|
922
|
+
):
|
|
923
|
+
gaps.append(final_gap)
|
|
924
|
+
|
|
925
|
+
return gaps
|
|
926
|
+
|
|
927
|
+
def _create_initial_gap(
|
|
928
|
+
self,
|
|
929
|
+
id: str,
|
|
930
|
+
transcribed_word_ids: List[str],
|
|
931
|
+
transcription_position: int,
|
|
932
|
+
following_anchor_id: str,
|
|
933
|
+
ref_texts_clean: Dict[str, List[str]],
|
|
934
|
+
ref_words: Dict[str, List[Word]],
|
|
935
|
+
following_anchor: AnchorSequence,
|
|
936
|
+
) -> Optional[GapSequence]:
|
|
937
|
+
"""Create gap sequence before the first anchor.
|
|
938
|
+
|
|
939
|
+
The gap includes all reference words from the start of each reference
|
|
940
|
+
up to the position where the following anchor starts in that reference.
|
|
941
|
+
"""
|
|
942
|
+
if transcription_position > 0:
|
|
943
|
+
# Get reference word IDs for the gap
|
|
944
|
+
reference_word_ids = {}
|
|
945
|
+
for source, words in ref_words.items():
|
|
946
|
+
if source in ref_texts_clean:
|
|
947
|
+
# Get the position where the following anchor starts in this source
|
|
948
|
+
if source in following_anchor.reference_positions:
|
|
949
|
+
end_pos = following_anchor.reference_positions[source]
|
|
950
|
+
# Include all words from start up to the anchor
|
|
951
|
+
reference_word_ids[source] = [w.id for w in words[:end_pos]]
|
|
952
|
+
else:
|
|
953
|
+
# If this source doesn't contain the following anchor,
|
|
954
|
+
# we can't determine the gap content for it
|
|
955
|
+
reference_word_ids[source] = []
|
|
956
|
+
|
|
957
|
+
return GapSequence(
|
|
958
|
+
id=id,
|
|
959
|
+
transcribed_word_ids=transcribed_word_ids,
|
|
960
|
+
transcription_position=transcription_position,
|
|
961
|
+
preceding_anchor_id=None,
|
|
962
|
+
following_anchor_id=following_anchor_id,
|
|
963
|
+
reference_word_ids=reference_word_ids,
|
|
964
|
+
)
|
|
965
|
+
return None
|
|
966
|
+
|
|
967
|
+
def _create_between_gap(
|
|
968
|
+
self,
|
|
969
|
+
id: str,
|
|
970
|
+
transcribed_word_ids: List[str],
|
|
971
|
+
transcription_position: int,
|
|
972
|
+
preceding_anchor_id: str,
|
|
973
|
+
following_anchor_id: str,
|
|
974
|
+
ref_texts_clean: Dict[str, List[str]],
|
|
975
|
+
ref_words: Dict[str, List[Word]],
|
|
976
|
+
preceding_anchor: AnchorSequence,
|
|
977
|
+
following_anchor: AnchorSequence,
|
|
978
|
+
) -> Optional[GapSequence]:
|
|
979
|
+
"""Create gap sequence between two anchors.
|
|
980
|
+
|
|
981
|
+
For each reference source, the gap includes all words between the end of the
|
|
982
|
+
preceding anchor and the start of the following anchor in that source.
|
|
983
|
+
"""
|
|
984
|
+
# Get reference word IDs for the gap
|
|
985
|
+
reference_word_ids = {}
|
|
986
|
+
for source, words in ref_words.items():
|
|
987
|
+
if source in ref_texts_clean:
|
|
988
|
+
# Only process sources that contain both anchors
|
|
989
|
+
if source in preceding_anchor.reference_positions and source in following_anchor.reference_positions:
|
|
990
|
+
start_pos = preceding_anchor.reference_positions[source] + len(preceding_anchor.reference_word_ids[source])
|
|
991
|
+
end_pos = following_anchor.reference_positions[source]
|
|
992
|
+
# Include all words between the anchors
|
|
993
|
+
reference_word_ids[source] = [w.id for w in words[start_pos:end_pos]]
|
|
994
|
+
else:
|
|
995
|
+
# If this source doesn't contain both anchors,
|
|
996
|
+
# we can't determine the gap content for it
|
|
997
|
+
reference_word_ids[source] = []
|
|
998
|
+
|
|
999
|
+
return GapSequence(
|
|
1000
|
+
id=id,
|
|
1001
|
+
transcribed_word_ids=transcribed_word_ids,
|
|
1002
|
+
transcription_position=transcription_position,
|
|
1003
|
+
preceding_anchor_id=preceding_anchor_id,
|
|
1004
|
+
following_anchor_id=following_anchor_id,
|
|
1005
|
+
reference_word_ids=reference_word_ids,
|
|
1006
|
+
)
|
|
1007
|
+
|
|
1008
|
+
def _create_final_gap(
|
|
1009
|
+
self,
|
|
1010
|
+
id: str,
|
|
1011
|
+
transcribed_word_ids: List[str],
|
|
1012
|
+
transcription_position: int,
|
|
1013
|
+
preceding_anchor_id: str,
|
|
1014
|
+
ref_texts_clean: Dict[str, List[str]],
|
|
1015
|
+
ref_words: Dict[str, List[Word]],
|
|
1016
|
+
preceding_anchor: AnchorSequence,
|
|
1017
|
+
) -> Optional[GapSequence]:
|
|
1018
|
+
"""Create gap sequence after the last anchor.
|
|
1019
|
+
|
|
1020
|
+
For each reference source, includes all words from the end of the
|
|
1021
|
+
preceding anchor to the end of that reference.
|
|
1022
|
+
"""
|
|
1023
|
+
# Get reference word IDs for the gap
|
|
1024
|
+
reference_word_ids = {}
|
|
1025
|
+
for source, words in ref_words.items():
|
|
1026
|
+
if source in ref_texts_clean:
|
|
1027
|
+
if source in preceding_anchor.reference_positions:
|
|
1028
|
+
start_pos = preceding_anchor.reference_positions[source] + len(preceding_anchor.reference_word_ids[source])
|
|
1029
|
+
# Include all words from end of last anchor to end of reference
|
|
1030
|
+
reference_word_ids[source] = [w.id for w in words[start_pos:]]
|
|
1031
|
+
else:
|
|
1032
|
+
# If this source doesn't contain the preceding anchor,
|
|
1033
|
+
# we can't determine the gap content for it
|
|
1034
|
+
reference_word_ids[source] = []
|
|
1035
|
+
|
|
1036
|
+
return GapSequence(
|
|
1037
|
+
id=id,
|
|
1038
|
+
transcribed_word_ids=transcribed_word_ids,
|
|
1039
|
+
transcription_position=transcription_position,
|
|
1040
|
+
preceding_anchor_id=preceding_anchor_id,
|
|
1041
|
+
following_anchor_id=None,
|
|
1042
|
+
reference_word_ids=reference_word_ids,
|
|
1043
|
+
)
|