kalibr 1.2.0__py3-none-any.whl → 1.2.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
kalibr/__init__.py CHANGED
@@ -56,7 +56,17 @@ from .collector import is_configured as is_collector_configured
56
56
  from .collector import (
57
57
  setup_collector,
58
58
  )
59
- from .context import get_parent_span_id, get_trace_id, new_trace_id, trace_context
59
+ from .context import (
60
+ get_parent_span_id,
61
+ get_trace_id,
62
+ new_trace_id,
63
+ trace_context,
64
+ # Goal context (v1.3.0)
65
+ goal,
66
+ set_goal,
67
+ get_goal,
68
+ clear_goal,
69
+ )
60
70
  from .cost_adapter import (
61
71
  AnthropicCostAdapter,
62
72
  BaseCostAdapter,
@@ -79,6 +89,8 @@ from .intelligence import (
79
89
  get_policy,
80
90
  report_outcome,
81
91
  get_recommendation,
92
+ register_path,
93
+ decide,
82
94
  )
83
95
 
84
96
  if os.getenv("KALIBR_AUTO_INSTRUMENT", "true").lower() == "true":
@@ -114,6 +126,11 @@ __all__ = [
114
126
  "get_trace_id",
115
127
  "get_parent_span_id",
116
128
  "new_trace_id",
129
+ # Goal Context (v1.3.0)
130
+ "goal",
131
+ "set_goal",
132
+ "get_goal",
133
+ "clear_goal",
117
134
  # Tracer
118
135
  "Tracer",
119
136
  "SpanContext",
@@ -144,4 +161,6 @@ __all__ = [
144
161
  "get_policy",
145
162
  "report_outcome",
146
163
  "get_recommendation",
164
+ "register_path",
165
+ "decide",
147
166
  ]
kalibr/context.py CHANGED
@@ -8,6 +8,7 @@ HTTP requests to SDK calls (OpenAI, Anthropic, Google).
8
8
  import random
9
9
  import string
10
10
  import uuid
11
+ from contextlib import contextmanager
11
12
  from contextvars import ContextVar
12
13
  from typing import Dict, Optional
13
14
 
@@ -130,3 +131,44 @@ def inject_kalibr_context_into_span(span: Span):
130
131
  span.set_attribute("kalibr.http_trace_id", ctx["trace_id"])
131
132
  if ctx.get("span_id"):
132
133
  span.set_attribute("kalibr.http_span_id", ctx["span_id"])
134
+
135
+
136
+ # ============================================================================
137
+ # Goal Context for Outcome Tracking (v1.3.0)
138
+ # ============================================================================
139
+
140
+ _goal_context: ContextVar[Optional[str]] = ContextVar("goal_context", default=None)
141
+
142
+
143
+ def set_goal(goal: str):
144
+ """Set the current goal for all subsequent Kalibr traces."""
145
+ _goal_context.set(goal)
146
+
147
+
148
+ def get_goal() -> Optional[str]:
149
+ """Get the current goal."""
150
+ return _goal_context.get()
151
+
152
+
153
+ def clear_goal():
154
+ """Clear the current goal."""
155
+ _goal_context.set(None)
156
+
157
+
158
+ @contextmanager
159
+ def goal(goal_name: str):
160
+ """Context manager to set goal for a block of code.
161
+
162
+ Usage:
163
+ with kalibr.goal("research_company"):
164
+ agent.run("Research Weights & Biases")
165
+ """
166
+ previous = get_goal()
167
+ set_goal(goal_name)
168
+ try:
169
+ yield
170
+ finally:
171
+ if previous:
172
+ set_goal(previous)
173
+ else:
174
+ clear_goal()
kalibr/intelligence.py CHANGED
@@ -4,7 +4,7 @@ This module enables the outcome-conditioned routing loop:
4
4
  1. Before executing: query get_policy() to get the best path for your goal
5
5
  2. After executing: call report_outcome() to teach Kalibr what worked
6
6
 
7
- Example:
7
+ Example - Policy-based routing:
8
8
  from kalibr import get_policy, report_outcome
9
9
 
10
10
  # Before executing - get best path
@@ -17,6 +17,17 @@ Example:
17
17
  goal="book_meeting",
18
18
  success=True
19
19
  )
20
+
21
+ Example - Path registration and intelligent routing:
22
+ from kalibr import register_path, decide
23
+
24
+ # Register paths for a goal
25
+ register_path(goal="book_meeting", model_id="gpt-4", tool_id="calendar_tool")
26
+ register_path(goal="book_meeting", model_id="claude-3-opus")
27
+
28
+ # Get intelligent routing decision
29
+ decision = decide(goal="book_meeting")
30
+ model = decision["model_id"] # Selected based on outcomes
20
31
  """
21
32
 
22
33
  from __future__ import annotations
@@ -64,6 +75,7 @@ class KalibrIntelligence:
64
75
  method: str,
65
76
  path: str,
66
77
  json: dict | None = None,
78
+ params: dict | None = None,
67
79
  ) -> httpx.Response:
68
80
  """Make authenticated request to intelligence API."""
69
81
  headers = {
@@ -73,7 +85,7 @@ class KalibrIntelligence:
73
85
  }
74
86
 
75
87
  url = f"{self.base_url}{path}"
76
- response = self._client.request(method, url, json=json, headers=headers)
88
+ response = self._client.request(method, url, json=json, params=params, headers=headers)
77
89
  response.raise_for_status()
78
90
  return response
79
91
 
@@ -139,6 +151,8 @@ class KalibrIntelligence:
139
151
  score: float | None = None,
140
152
  failure_reason: str | None = None,
141
153
  metadata: dict | None = None,
154
+ tool_id: str | None = None,
155
+ execution_params: dict | None = None,
142
156
  ) -> dict[str, Any]:
143
157
  """Report execution outcome for a goal.
144
158
 
@@ -152,6 +166,8 @@ class KalibrIntelligence:
152
166
  score: Optional quality score (0-1) for more granular feedback
153
167
  failure_reason: Optional reason for failure (helps with debugging)
154
168
  metadata: Optional additional context as a dict
169
+ tool_id: Optional tool that was used (e.g., "serper", "browserless")
170
+ execution_params: Optional execution parameters (e.g., {"temperature": 0.3})
155
171
 
156
172
  Returns:
157
173
  dict with:
@@ -184,6 +200,8 @@ class KalibrIntelligence:
184
200
  "score": score,
185
201
  "failure_reason": failure_reason,
186
202
  "metadata": metadata,
203
+ "tool_id": tool_id,
204
+ "execution_params": execution_params,
187
205
  },
188
206
  )
189
207
  return response.json()
@@ -230,6 +248,252 @@ class KalibrIntelligence:
230
248
  )
231
249
  return response.json()
232
250
 
251
+ # =========================================================================
252
+ # ROUTING METHODS
253
+ # =========================================================================
254
+
255
+ def register_path(
256
+ self,
257
+ goal: str,
258
+ model_id: str,
259
+ tool_id: str | None = None,
260
+ params: dict | None = None,
261
+ risk_level: str = "low",
262
+ ) -> dict[str, Any]:
263
+ """Register a new routing path for a goal.
264
+
265
+ Creates a path that maps a goal to a specific model (and optionally tool)
266
+ configuration. This path can then be selected by the decide() method.
267
+
268
+ Args:
269
+ goal: The goal this path is for (e.g., "book_meeting", "resolve_ticket")
270
+ model_id: The model identifier to use (e.g., "gpt-4", "claude-3-opus")
271
+ tool_id: Optional tool identifier if this path uses a specific tool
272
+ params: Optional parameters dict for the path configuration
273
+ risk_level: Risk level for this path - "low", "medium", or "high"
274
+
275
+ Returns:
276
+ dict with the created path including:
277
+ - path_id: Unique identifier for the path
278
+ - goal: The goal
279
+ - model_id: The model
280
+ - tool_id: The tool (if specified)
281
+ - params: The parameters (if specified)
282
+ - risk_level: The risk level
283
+ - created_at: Creation timestamp
284
+
285
+ Raises:
286
+ httpx.HTTPStatusError: If the API returns an error
287
+
288
+ Example:
289
+ path = intelligence.register_path(
290
+ goal="book_meeting",
291
+ model_id="gpt-4",
292
+ tool_id="calendar_tool",
293
+ risk_level="low"
294
+ )
295
+ print(f"Created path: {path['path_id']}")
296
+ """
297
+ response = self._request(
298
+ "POST",
299
+ "/api/v1/routing/paths",
300
+ json={
301
+ "goal": goal,
302
+ "model_id": model_id,
303
+ "tool_id": tool_id,
304
+ "params": params,
305
+ "risk_level": risk_level,
306
+ },
307
+ )
308
+ return response.json()
309
+
310
+ def list_paths(
311
+ self,
312
+ goal: str | None = None,
313
+ include_disabled: bool = False,
314
+ ) -> dict[str, Any]:
315
+ """List registered routing paths.
316
+
317
+ Args:
318
+ goal: Optional goal to filter paths by
319
+ include_disabled: Whether to include disabled paths (default False)
320
+
321
+ Returns:
322
+ dict with:
323
+ - paths: List of path objects
324
+
325
+ Raises:
326
+ httpx.HTTPStatusError: If the API returns an error
327
+
328
+ Example:
329
+ result = intelligence.list_paths(goal="book_meeting")
330
+ for path in result["paths"]:
331
+ print(f"{path['path_id']}: {path['model_id']}")
332
+ """
333
+ params = {}
334
+ if goal is not None:
335
+ params["goal"] = goal
336
+ if include_disabled:
337
+ params["include_disabled"] = "true"
338
+
339
+ response = self._request(
340
+ "GET",
341
+ "/api/v1/routing/paths",
342
+ params=params if params else None,
343
+ )
344
+ return response.json()
345
+
346
+ def disable_path(self, path_id: str) -> dict[str, Any]:
347
+ """Disable a routing path.
348
+
349
+ Disables a path so it won't be selected by decide(). The path
350
+ data is retained for historical analysis.
351
+
352
+ Args:
353
+ path_id: The unique identifier of the path to disable
354
+
355
+ Returns:
356
+ dict with:
357
+ - status: "disabled" if successful
358
+ - path_id: The disabled path ID
359
+
360
+ Raises:
361
+ httpx.HTTPStatusError: If the API returns an error
362
+
363
+ Example:
364
+ result = intelligence.disable_path("path_abc123")
365
+ print(f"Status: {result['status']}")
366
+ """
367
+ response = self._request(
368
+ "DELETE",
369
+ f"/api/v1/routing/paths/{path_id}",
370
+ )
371
+ return response.json()
372
+
373
+ def decide(
374
+ self,
375
+ goal: str,
376
+ task_risk_level: str = "low",
377
+ ) -> dict[str, Any]:
378
+ """Get routing decision for a goal.
379
+
380
+ Uses outcome data and exploration/exploitation strategy to decide
381
+ which path to use for achieving the specified goal.
382
+
383
+ Args:
384
+ goal: The goal to route for (e.g., "book_meeting")
385
+ task_risk_level: Risk tolerance for this task - "low", "medium", or "high"
386
+
387
+ Returns:
388
+ dict with:
389
+ - model_id: The selected model
390
+ - tool_id: The selected tool (if any)
391
+ - params: Additional parameters (if any)
392
+ - reason: Human-readable explanation of the decision
393
+ - confidence: Confidence score (0-1)
394
+ - is_exploration: Whether this is an exploration choice
395
+ - path_id: The selected path ID
396
+
397
+ Raises:
398
+ httpx.HTTPStatusError: If the API returns an error
399
+
400
+ Example:
401
+ decision = intelligence.decide(goal="book_meeting")
402
+ model = decision["model_id"]
403
+ print(f"Using {model} ({decision['reason']})")
404
+ """
405
+ response = self._request(
406
+ "POST",
407
+ "/api/v1/routing/decide",
408
+ json={
409
+ "goal": goal,
410
+ "task_risk_level": task_risk_level,
411
+ },
412
+ )
413
+ return response.json()
414
+
415
+ def set_exploration_config(
416
+ self,
417
+ goal: str = "*",
418
+ exploration_rate: float = 0.1,
419
+ min_samples_before_exploit: int = 20,
420
+ rollback_threshold: float = 0.3,
421
+ staleness_days: int = 7,
422
+ exploration_on_high_risk: bool = False,
423
+ ) -> dict[str, Any]:
424
+ """Set exploration/exploitation configuration for routing.
425
+
426
+ Configures how the decide() method balances exploring new paths
427
+ vs exploiting known good paths.
428
+
429
+ Args:
430
+ goal: Goal to configure, or "*" for default config
431
+ exploration_rate: Probability of exploring (0-1, default 0.1)
432
+ min_samples_before_exploit: Minimum outcomes before exploiting (default 20)
433
+ rollback_threshold: Performance drop threshold to rollback (default 0.3)
434
+ staleness_days: Days before reexploring stale paths (default 7)
435
+ exploration_on_high_risk: Whether to explore on high-risk tasks (default False)
436
+
437
+ Returns:
438
+ dict with the saved configuration
439
+
440
+ Raises:
441
+ httpx.HTTPStatusError: If the API returns an error
442
+
443
+ Example:
444
+ config = intelligence.set_exploration_config(
445
+ goal="book_meeting",
446
+ exploration_rate=0.2,
447
+ min_samples_before_exploit=10
448
+ )
449
+ """
450
+ response = self._request(
451
+ "POST",
452
+ "/api/v1/routing/config",
453
+ json={
454
+ "goal": goal,
455
+ "exploration_rate": exploration_rate,
456
+ "min_samples_before_exploit": min_samples_before_exploit,
457
+ "rollback_threshold": rollback_threshold,
458
+ "staleness_days": staleness_days,
459
+ "exploration_on_high_risk": exploration_on_high_risk,
460
+ },
461
+ )
462
+ return response.json()
463
+
464
+ def get_exploration_config(self, goal: str | None = None) -> dict[str, Any]:
465
+ """Get exploration/exploitation configuration.
466
+
467
+ Args:
468
+ goal: Optional goal to get config for (returns default if not found)
469
+
470
+ Returns:
471
+ dict with configuration values:
472
+ - goal: The goal this config applies to
473
+ - exploration_rate: Exploration probability
474
+ - min_samples_before_exploit: Minimum samples before exploiting
475
+ - rollback_threshold: Rollback threshold
476
+ - staleness_days: Staleness threshold in days
477
+ - exploration_on_high_risk: Whether exploration is allowed on high-risk
478
+
479
+ Raises:
480
+ httpx.HTTPStatusError: If the API returns an error
481
+
482
+ Example:
483
+ config = intelligence.get_exploration_config(goal="book_meeting")
484
+ print(f"Exploration rate: {config['exploration_rate']}")
485
+ """
486
+ params = {}
487
+ if goal is not None:
488
+ params["goal"] = goal
489
+
490
+ response = self._request(
491
+ "GET",
492
+ "/api/v1/routing/config",
493
+ params=params if params else None,
494
+ )
495
+ return response.json()
496
+
233
497
  def close(self):
234
498
  """Close the HTTP client."""
235
499
  self._client.close()
@@ -291,7 +555,7 @@ def report_outcome(trace_id: str, goal: str, success: bool, tenant_id: str | Non
291
555
  goal: The goal this execution was trying to achieve
292
556
  success: Whether the goal was achieved
293
557
  tenant_id: Optional tenant ID override (default: uses KALIBR_TENANT_ID env var)
294
- **kwargs: Additional arguments (score, failure_reason, metadata)
558
+ **kwargs: Additional arguments (score, failure_reason, metadata, tool_id, execution_params)
295
559
 
296
560
  Returns:
297
561
  Response dict with status confirmation
@@ -315,3 +579,72 @@ def get_recommendation(task_type: str, **kwargs) -> dict[str, Any]:
315
579
  See KalibrIntelligence.get_recommendation for full documentation.
316
580
  """
317
581
  return _get_intelligence_client().get_recommendation(task_type, **kwargs)
582
+
583
+
584
+ def register_path(
585
+ goal: str,
586
+ model_id: str,
587
+ tool_id: str | None = None,
588
+ params: dict | None = None,
589
+ risk_level: str = "low",
590
+ tenant_id: str | None = None,
591
+ ) -> dict[str, Any]:
592
+ """Register a new routing path for a goal.
593
+
594
+ Convenience function that uses the default intelligence client.
595
+ See KalibrIntelligence.register_path for full documentation.
596
+
597
+ Args:
598
+ goal: The goal this path is for
599
+ model_id: The model identifier to use
600
+ tool_id: Optional tool identifier
601
+ params: Optional parameters dict
602
+ risk_level: Risk level - "low", "medium", or "high"
603
+ tenant_id: Optional tenant ID override
604
+
605
+ Returns:
606
+ dict with the created path
607
+
608
+ Example:
609
+ from kalibr import register_path
610
+
611
+ path = register_path(
612
+ goal="book_meeting",
613
+ model_id="gpt-4",
614
+ tool_id="calendar_tool"
615
+ )
616
+ """
617
+ client = _get_intelligence_client()
618
+ if tenant_id:
619
+ client = KalibrIntelligence(tenant_id=tenant_id)
620
+ return client.register_path(goal, model_id, tool_id, params, risk_level)
621
+
622
+
623
+ def decide(
624
+ goal: str,
625
+ task_risk_level: str = "low",
626
+ tenant_id: str | None = None,
627
+ ) -> dict[str, Any]:
628
+ """Get routing decision for a goal.
629
+
630
+ Convenience function that uses the default intelligence client.
631
+ See KalibrIntelligence.decide for full documentation.
632
+
633
+ Args:
634
+ goal: The goal to route for
635
+ task_risk_level: Risk tolerance - "low", "medium", or "high"
636
+ tenant_id: Optional tenant ID override
637
+
638
+ Returns:
639
+ dict with model_id, tool_id, params, reason, confidence, etc.
640
+
641
+ Example:
642
+ from kalibr import decide
643
+
644
+ decision = decide(goal="book_meeting")
645
+ model = decision["model_id"]
646
+ """
647
+ client = _get_intelligence_client()
648
+ if tenant_id:
649
+ client = KalibrIntelligence(tenant_id=tenant_id)
650
+ return client.decide(goal, task_risk_level)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: kalibr
3
- Version: 1.2.0
3
+ Version: 1.2.1
4
4
  Summary: Unified LLM Observability & Multi-Model AI Integration Framework - Deploy to GPT, Claude, Gemini, Copilot with full telemetry.
5
5
  Author-email: Kalibr Team <support@kalibr.systems>
6
6
  License: Apache-2.0
@@ -188,6 +188,41 @@ policy = get_policy(
188
188
  )
189
189
  ```
190
190
 
191
+ ### Intelligent Routing with decide()
192
+
193
+ Register execution paths and let Kalibr decide the best strategy:
194
+
195
+ ```python
196
+ from kalibr import register_path, decide
197
+
198
+ # Register available paths
199
+ register_path(goal="book_meeting", model_id="gpt-4o", tool_id="calendar_api")
200
+ register_path(goal="book_meeting", model_id="claude-3-sonnet")
201
+
202
+ # Get intelligent routing decision
203
+ decision = decide(goal="book_meeting")
204
+ model = decision["model_id"] # Selected based on outcomes
205
+ tool = decision.get("tool_id") # If tool routing enabled
206
+ print(decision["exploration"]) # True if exploring new paths
207
+ ```
208
+
209
+ ### Goal Context
210
+
211
+ Tag traces with goals for outcome tracking:
212
+
213
+ ```python
214
+ from kalibr import goal, set_goal, get_goal, clear_goal
215
+
216
+ # Context manager (recommended)
217
+ with goal("book_meeting"):
218
+ response = openai.chat.completions.create(...)
219
+
220
+ # Or manual control
221
+ set_goal("book_meeting")
222
+ response = openai.chat.completions.create(...)
223
+ clear_goal()
224
+ ```
225
+
191
226
  ## TraceCapsule - Cross-Agent Tracing
192
227
 
193
228
  Propagate trace context across agent boundaries:
@@ -285,7 +320,7 @@ Configure via environment variables:
285
320
  | `KALIBR_API_KEY` | API key for authentication | *Required* |
286
321
  | `KALIBR_TENANT_ID` | Tenant identifier | `default` |
287
322
  | `KALIBR_COLLECTOR_URL` | Collector endpoint URL | `https://api.kalibr.systems/api/ingest` |
288
- | `KALIBR_INTELLIGENCE_URL` | Intelligence API URL | `https://kalibr-intelligence.fly.dev` |
323
+ | `KALIBR_INTELLIGENCE_URL` | Intelligence API URL | `https://dashboard.kalibr.systems/intelligence` |
289
324
  | `KALIBR_SERVICE_NAME` | Service name for spans | `kalibr-app` |
290
325
  | `KALIBR_ENVIRONMENT` | Environment (prod/staging/dev) | `prod` |
291
326
  | `KALIBR_WORKFLOW_ID` | Workflow identifier | `default` |
@@ -294,20 +329,20 @@ Configure via environment variables:
294
329
  ## CLI Commands
295
330
 
296
331
  ```bash
297
- # Serve your app with tracing
298
- kalibr serve myapp.py
332
+ # Show version
333
+ kalibr version
299
334
 
300
- # Run with managed runtime
301
- kalibr run myapp.py --port 8000
335
+ # Validate configuration
336
+ kalibr validate
302
337
 
303
- # Deploy to cloud platforms
304
- kalibr deploy myapp.py --runtime fly.io
338
+ # Check connection status
339
+ kalibr status
305
340
 
306
- # Fetch trace capsule by ID
307
- kalibr capsule <trace-id>
341
+ # Package for deployment
342
+ kalibr package
308
343
 
309
- # Show version
310
- kalibr version
344
+ # Update schemas
345
+ kalibr update_schemas
311
346
  ```
312
347
 
313
348
  ## Supported Providers
@@ -1,12 +1,12 @@
1
- kalibr/__init__.py,sha256=16g-LPXiB_10TUcUeNzTy_EL5npqCFGYWJF-IhWpWDY,4889
1
+ kalibr/__init__.py,sha256=N0FRcMM5Rq845MPDjogsY1iRZu7K7NoUHAGqW8-JQDQ,5148
2
2
  kalibr/__main__.py,sha256=jO96I4pqinwHg7ONRvNVKbySBh5pSIhOAiNrgSQrNlY,110
3
3
  kalibr/capsule_middleware.py,sha256=pXG_wORgCqo3wHjtkn_zY4doLyiDmTwJtB7XiZNnbPk,3163
4
4
  kalibr/client.py,sha256=6D1paakE6zgWJStaow3ak9t0R8afodQhSSpUO3WTs_8,9732
5
5
  kalibr/collector.py,sha256=rtTKQLe6NkDSblBIfFooQ-ESFcP0Q1HUp4Bcqqg8JFo,5818
6
- kalibr/context.py,sha256=hBxWXZx0gcmeGqDMS1rstke_DmrujoRBIsfrG26WKUY,3755
6
+ kalibr/context.py,sha256=FgN9-WyMQMDgg2Vqwje4r2_jKRvnMeI8t4fIE1VRn_8,4777
7
7
  kalibr/cost_adapter.py,sha256=NerJ7ywaJjBn97gVFr7qKX7318e3Kmy2qqeNlGl9nPE,6439
8
8
  kalibr/decorators.py,sha256=m-XBXxWMDVrzaNsljACiGmeGhgiHj_MqSfj6OGK3L5I,4380
9
- kalibr/intelligence.py,sha256=oW_GFDHj5NEa-9L2y4jZcDsEQt81P77PpCuY--aIzLY,10889
9
+ kalibr/intelligence.py,sha256=JOckaykWrMloZV_MH1e9kvVxPRQKavIgLSdgqiJjxC4,22158
10
10
  kalibr/kalibr.py,sha256=cNXC3W_TX5SvGsy1lRopkwFqsHOpyd1kkVjEMOz1Yr4,6084
11
11
  kalibr/kalibr_app.py,sha256=ItZwEh0FZPx9_BE-zPQajC2yxI2y9IHYwJD0k9tbHvY,2773
12
12
  kalibr/models.py,sha256=HwD_-iysZMSnCzMQYO1Qcf0aeXySupY7yJeBwl_dLS0,1024
@@ -33,17 +33,17 @@ kalibr/instrumentation/openai_instr.py,sha256=UU0Pi1Gq1FqgetYWDacQhNFdjemuPrc0hR
33
33
  kalibr/instrumentation/registry.py,sha256=sfQnXhbPOI5LVon2kFhe8KcXQwWmuKW1XUe50B2AaBc,4749
34
34
  kalibr/middleware/__init__.py,sha256=qyDUn_irAX67MS-IkuDVxg4RmFnJHDf_BfIT3qfGoBI,115
35
35
  kalibr/middleware/auto_tracer.py,sha256=ZBSBM0O3a6rwVzfik1n5NUmQDah8_iaf86rU64aPYT4,13037
36
- kalibr-1.2.0.dist-info/licenses/LICENSE,sha256=5mwAnB38l3_PjmOQn6_L6cZnJvus143DUjMBPIH1yso,10768
36
+ kalibr-1.2.1.dist-info/licenses/LICENSE,sha256=5mwAnB38l3_PjmOQn6_L6cZnJvus143DUjMBPIH1yso,10768
37
37
  kalibr_crewai/__init__.py,sha256=b0HFTiE80eArtSMBOIEKu1JM6KU0tCjEylKCVVVF29Q,1796
38
- kalibr_crewai/callbacks.py,sha256=UBgGw0vdT0Jf9x8fNrHfsUR4unqX4nxNFta07OoSgaI,17162
39
- kalibr_crewai/instrumentor.py,sha256=AfnK5t7Ynb-7ytZF7XdOSPpr0o8hDf3sFkyzhc1ogY0,19465
38
+ kalibr_crewai/callbacks.py,sha256=_d1M4J-6XfKqrVIxnOgOQu57jpFKVv-VIsmPV0HNgZ4,20419
39
+ kalibr_crewai/instrumentor.py,sha256=MbGELxjAQxy4o7BiNL8ik79avl0hXYxECvDzWi-fdsE,21993
40
40
  kalibr_langchain/__init__.py,sha256=O4XYVyhLp1v-Y1kGZw3zD-tUK9wp0UX8Jt6oN0QTHN4,1373
41
41
  kalibr_langchain/async_callback.py,sha256=_Mj_YrKbULNtfxixZ7iwiHyWEV9l178ZA5Oy5A5Pakk,27748
42
- kalibr_langchain/callback.py,sha256=VVPAvksS8TFMC21QlGj-1NRFsWnkLKPyzqhfA3kmT4c,34265
42
+ kalibr_langchain/callback.py,sha256=SNM1aHOXdG55grHmGyTwbXOeM6hjZTub2REiZD2H-d8,35216
43
43
  kalibr_openai_agents/__init__.py,sha256=wL59LzGstptKigfQDrKKt_7hcMO1JGVQtVAsE0lz-Zw,1367
44
44
  kalibr_openai_agents/processor.py,sha256=F550sdRf3rpguP1yOlgAUQWDLPBy4hSACV3-zOyCpOU,18257
45
- kalibr-1.2.0.dist-info/METADATA,sha256=45tJcZAcqg575gr2HSIMRArUhbz9juYec_Mi8LdiW9E,10339
46
- kalibr-1.2.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
47
- kalibr-1.2.0.dist-info/entry_points.txt,sha256=Kojlc6WRX8V1qS9lOMdDPZpTUVHCtzGtHqXusErgmLY,47
48
- kalibr-1.2.0.dist-info/top_level.txt,sha256=dIfBOWUnnHGFDwgz5zfIx5_0bU3wOUgAbYr4JcFHZmo,59
49
- kalibr-1.2.0.dist-info/RECORD,,
45
+ kalibr-1.2.1.dist-info/METADATA,sha256=sv6H2efZMRiHxGJZLnHtBaI6NurzfV7UFv62kQNRyV4,11223
46
+ kalibr-1.2.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
47
+ kalibr-1.2.1.dist-info/entry_points.txt,sha256=Kojlc6WRX8V1qS9lOMdDPZpTUVHCtzGtHqXusErgmLY,47
48
+ kalibr-1.2.1.dist-info/top_level.txt,sha256=dIfBOWUnnHGFDwgz5zfIx5_0bU3wOUgAbYr4JcFHZmo,59
49
+ kalibr-1.2.1.dist-info/RECORD,,
@@ -60,6 +60,72 @@ def _get_provider_from_model(model: str) -> str:
60
60
  return "openai"
61
61
 
62
62
 
63
+ def _extract_model_from_agent(agent) -> tuple[str, str]:
64
+ """Extract model name and provider from agent's LLM config.
65
+
66
+ Args:
67
+ agent: CrewAI agent instance
68
+
69
+ Returns:
70
+ Tuple of (model_name, provider)
71
+ """
72
+ model_name = "unknown"
73
+ provider = "openai"
74
+
75
+ if not hasattr(agent, "llm"):
76
+ return model_name, provider
77
+
78
+ llm = agent.llm
79
+
80
+ # Case 1: LLM is a string like "openai/gpt-4o-mini" or "gpt-4"
81
+ if isinstance(llm, str):
82
+ if "/" in llm:
83
+ parts = llm.split("/", 1)
84
+ provider = parts[0]
85
+ model_name = parts[1]
86
+ else:
87
+ model_name = llm
88
+ provider = _get_provider_from_model(llm)
89
+ return model_name, provider
90
+
91
+ # Case 2: LLM has model or model_name attribute
92
+ if hasattr(llm, "model"):
93
+ model_name = str(llm.model)
94
+ elif hasattr(llm, "model_name"):
95
+ model_name = str(llm.model_name)
96
+
97
+ # Parse provider from model string if it contains "/"
98
+ if "/" in model_name:
99
+ parts = model_name.split("/", 1)
100
+ provider = parts[0]
101
+ model_name = parts[1]
102
+ else:
103
+ provider = _get_provider_from_model(model_name)
104
+
105
+ return model_name, provider
106
+
107
+
108
+ def _calculate_cost(provider: str, model: str, input_tokens: int, output_tokens: int) -> float:
109
+ """Calculate cost using CostAdapterFactory.
110
+
111
+ Args:
112
+ provider: Provider name (openai, anthropic, etc.)
113
+ model: Model name
114
+ input_tokens: Number of input tokens
115
+ output_tokens: Number of output tokens
116
+
117
+ Returns:
118
+ Cost in USD
119
+ """
120
+ if CostAdapterFactory is None:
121
+ return 0.0
122
+
123
+ try:
124
+ return CostAdapterFactory.compute_cost(provider, model, input_tokens, output_tokens)
125
+ except Exception:
126
+ return 0.0
127
+
128
+
63
129
  class EventBatcher:
64
130
  """Shared event batching for callbacks."""
65
131
 
@@ -198,6 +264,7 @@ class KalibrAgentCallback:
198
264
  service: Service name
199
265
  workflow_id: Workflow identifier
200
266
  metadata: Additional metadata for all events
267
+ agent: Optional agent reference for model extraction
201
268
 
202
269
  Usage:
203
270
  from kalibr_crewai import KalibrAgentCallback
@@ -210,6 +277,7 @@ class KalibrAgentCallback:
210
277
  goal="Find information",
211
278
  step_callback=callback,
212
279
  )
280
+ callback.set_agent(agent) # Set agent reference for model extraction
213
281
  """
214
282
 
215
283
  def __init__(
@@ -221,6 +289,7 @@ class KalibrAgentCallback:
221
289
  service: Optional[str] = None,
222
290
  workflow_id: Optional[str] = None,
223
291
  metadata: Optional[Dict[str, Any]] = None,
292
+ agent: Optional[Any] = None,
224
293
  ):
225
294
  self.api_key = api_key or os.getenv("KALIBR_API_KEY", "")
226
295
  self.endpoint = endpoint or os.getenv(
@@ -232,6 +301,7 @@ class KalibrAgentCallback:
232
301
  self.service = service or os.getenv("KALIBR_SERVICE", "crewai-app")
233
302
  self.workflow_id = workflow_id or os.getenv("KALIBR_WORKFLOW_ID", "default-workflow")
234
303
  self.default_metadata = metadata or {}
304
+ self._agent = agent
235
305
 
236
306
  # Get shared batcher
237
307
  self._batcher = EventBatcher.get_instance(
@@ -244,6 +314,14 @@ class KalibrAgentCallback:
244
314
  self._agent_span_id: Optional[str] = None
245
315
  self._step_count: int = 0
246
316
 
317
+ def set_agent(self, agent: Any) -> None:
318
+ """Set the agent reference for model extraction.
319
+
320
+ Args:
321
+ agent: CrewAI agent instance
322
+ """
323
+ self._agent = agent
324
+
247
325
  def __call__(self, step_output: Any) -> None:
248
326
  """Called after each agent step.
249
327
 
@@ -271,6 +349,12 @@ class KalibrAgentCallback:
271
349
 
272
350
  span_id = str(uuid.uuid4())
273
351
 
352
+ # Extract model from agent if available
353
+ model_name = "unknown"
354
+ provider = "openai"
355
+ if self._agent:
356
+ model_name, provider = _extract_model_from_agent(self._agent)
357
+
274
358
  # Extract step information
275
359
  step_type = "agent_step"
276
360
  operation = "agent_step"
@@ -307,8 +391,11 @@ class KalibrAgentCallback:
307
391
  output_text = str(step_output)
308
392
 
309
393
  # Count tokens
310
- input_tokens = _count_tokens(tool_input or "", "gpt-4")
311
- output_tokens = _count_tokens(output_text, "gpt-4")
394
+ input_tokens = _count_tokens(tool_input or "", model_name)
395
+ output_tokens = _count_tokens(output_text, model_name)
396
+
397
+ # Calculate cost using CostAdapterFactory
398
+ cost_usd = _calculate_cost(provider, model_name, input_tokens, output_tokens)
312
399
 
313
400
  # Build event
314
401
  event = {
@@ -318,9 +405,9 @@ class KalibrAgentCallback:
318
405
  "parent_span_id": self._agent_span_id,
319
406
  "tenant_id": self.tenant_id,
320
407
  "workflow_id": self.workflow_id,
321
- "provider": "crewai",
322
- "model_id": "agent",
323
- "model_name": "crewai-agent",
408
+ "provider": provider,
409
+ "model_id": model_name,
410
+ "model_name": model_name,
324
411
  "operation": operation,
325
412
  "endpoint": operation,
326
413
  "duration_ms": 0, # Step timing not available
@@ -328,8 +415,8 @@ class KalibrAgentCallback:
328
415
  "input_tokens": input_tokens,
329
416
  "output_tokens": output_tokens,
330
417
  "total_tokens": input_tokens + output_tokens,
331
- "cost_usd": 0.0, # Cost tracked at LLM level
332
- "total_cost_usd": 0.0,
418
+ "cost_usd": cost_usd,
419
+ "total_cost_usd": cost_usd,
333
420
  "status": status,
334
421
  "timestamp": now.isoformat(),
335
422
  "ts_start": now.isoformat(),
@@ -376,6 +463,7 @@ class KalibrTaskCallback:
376
463
  service: Service name
377
464
  workflow_id: Workflow identifier
378
465
  metadata: Additional metadata for all events
466
+ agent: Optional agent reference for model extraction
379
467
 
380
468
  Usage:
381
469
  from kalibr_crewai import KalibrTaskCallback
@@ -388,6 +476,7 @@ class KalibrTaskCallback:
388
476
  agent=my_agent,
389
477
  callback=callback,
390
478
  )
479
+ callback.set_agent(my_agent) # Set agent reference for model extraction
391
480
  """
392
481
 
393
482
  def __init__(
@@ -399,6 +488,7 @@ class KalibrTaskCallback:
399
488
  service: Optional[str] = None,
400
489
  workflow_id: Optional[str] = None,
401
490
  metadata: Optional[Dict[str, Any]] = None,
491
+ agent: Optional[Any] = None,
402
492
  ):
403
493
  self.api_key = api_key or os.getenv("KALIBR_API_KEY", "")
404
494
  self.endpoint = endpoint or os.getenv(
@@ -410,6 +500,7 @@ class KalibrTaskCallback:
410
500
  self.service = service or os.getenv("KALIBR_SERVICE", "crewai-app")
411
501
  self.workflow_id = workflow_id or os.getenv("KALIBR_WORKFLOW_ID", "default-workflow")
412
502
  self.default_metadata = metadata or {}
503
+ self._agent = agent
413
504
 
414
505
  # Get shared batcher
415
506
  self._batcher = EventBatcher.get_instance(
@@ -421,6 +512,14 @@ class KalibrTaskCallback:
421
512
  self._trace_id: Optional[str] = None
422
513
  self._crew_span_id: Optional[str] = None
423
514
 
515
+ def set_agent(self, agent: Any) -> None:
516
+ """Set the agent reference for model extraction.
517
+
518
+ Args:
519
+ agent: CrewAI agent instance
520
+ """
521
+ self._agent = agent
522
+
424
523
  def __call__(self, task_output: Any) -> None:
425
524
  """Called when task completes.
426
525
 
@@ -467,9 +566,18 @@ class KalibrTaskCallback:
467
566
  if hasattr(task_output, "agent"):
468
567
  agent_role = str(task_output.agent)
469
568
 
569
+ # Extract model from agent if available
570
+ model_name = "unknown"
571
+ provider = "openai"
572
+ if self._agent:
573
+ model_name, provider = _extract_model_from_agent(self._agent)
574
+
470
575
  # Token counting
471
- input_tokens = _count_tokens(description, "gpt-4")
472
- output_tokens = _count_tokens(raw_output, "gpt-4")
576
+ input_tokens = _count_tokens(description, model_name)
577
+ output_tokens = _count_tokens(raw_output, model_name)
578
+
579
+ # Calculate cost using CostAdapterFactory
580
+ cost_usd = _calculate_cost(provider, model_name, input_tokens, output_tokens)
473
581
 
474
582
  # Build operation name from description
475
583
  operation = "task_complete"
@@ -486,9 +594,9 @@ class KalibrTaskCallback:
486
594
  "parent_span_id": self._crew_span_id,
487
595
  "tenant_id": self.tenant_id,
488
596
  "workflow_id": self.workflow_id,
489
- "provider": "crewai",
490
- "model_id": "task",
491
- "model_name": agent_role,
597
+ "provider": provider,
598
+ "model_id": model_name,
599
+ "model_name": model_name,
492
600
  "operation": operation,
493
601
  "endpoint": "task_complete",
494
602
  "duration_ms": 0, # Task timing not available in callback
@@ -496,8 +604,8 @@ class KalibrTaskCallback:
496
604
  "input_tokens": input_tokens,
497
605
  "output_tokens": output_tokens,
498
606
  "total_tokens": input_tokens + output_tokens,
499
- "cost_usd": 0.0, # Cost tracked at LLM level
500
- "total_cost_usd": 0.0,
607
+ "cost_usd": cost_usd,
608
+ "total_cost_usd": cost_usd,
501
609
  "status": "success",
502
610
  "timestamp": now.isoformat(),
503
611
  "ts_start": now.isoformat(),
@@ -21,6 +21,72 @@ except ImportError:
21
21
  CostAdapterFactory = None
22
22
 
23
23
 
24
+ def _extract_model_from_agent(agent) -> tuple[str, str]:
25
+ """Extract model name and provider from agent's LLM config.
26
+
27
+ Args:
28
+ agent: CrewAI agent instance
29
+
30
+ Returns:
31
+ Tuple of (model_name, provider)
32
+ """
33
+ model_name = "unknown"
34
+ provider = "openai"
35
+
36
+ if not hasattr(agent, "llm"):
37
+ return model_name, provider
38
+
39
+ llm = agent.llm
40
+
41
+ # Case 1: LLM is a string like "openai/gpt-4o-mini" or "gpt-4"
42
+ if isinstance(llm, str):
43
+ if "/" in llm:
44
+ parts = llm.split("/", 1)
45
+ provider = parts[0]
46
+ model_name = parts[1]
47
+ else:
48
+ model_name = llm
49
+ provider = _get_provider_from_model(llm)
50
+ return model_name, provider
51
+
52
+ # Case 2: LLM has model or model_name attribute
53
+ if hasattr(llm, "model"):
54
+ model_name = str(llm.model)
55
+ elif hasattr(llm, "model_name"):
56
+ model_name = str(llm.model_name)
57
+
58
+ # Parse provider from model string if it contains "/"
59
+ if "/" in model_name:
60
+ parts = model_name.split("/", 1)
61
+ provider = parts[0]
62
+ model_name = parts[1]
63
+ else:
64
+ provider = _get_provider_from_model(model_name)
65
+
66
+ return model_name, provider
67
+
68
+
69
+ def _calculate_cost(provider: str, model: str, input_tokens: int, output_tokens: int) -> float:
70
+ """Calculate cost using CostAdapterFactory.
71
+
72
+ Args:
73
+ provider: Provider name (openai, anthropic, etc.)
74
+ model: Model name
75
+ input_tokens: Number of input tokens
76
+ output_tokens: Number of output tokens
77
+
78
+ Returns:
79
+ Cost in USD
80
+ """
81
+ if CostAdapterFactory is None:
82
+ return 0.0
83
+
84
+ try:
85
+ return CostAdapterFactory.compute_cost(provider, model, input_tokens, output_tokens)
86
+ except Exception:
87
+ return 0.0
88
+
89
+
24
90
  class KalibrCrewAIInstrumentor:
25
91
  """Auto-instrumentation for CrewAI.
26
92
 
@@ -341,6 +407,9 @@ class KalibrCrewAIInstrumentor:
341
407
  role = getattr(agent_self, "role", "unknown")
342
408
  goal = getattr(agent_self, "goal", "")
343
409
 
410
+ # Extract model from agent's LLM config
411
+ model_name, provider = _extract_model_from_agent(agent_self)
412
+
344
413
  # Get task info
345
414
  task_description = ""
346
415
  if hasattr(task, "description"):
@@ -370,8 +439,11 @@ class KalibrCrewAIInstrumentor:
370
439
  output_preview = str(result)[:500]
371
440
 
372
441
  # Token estimation
373
- input_tokens = _count_tokens(task_description + goal, "gpt-4")
374
- output_tokens = _count_tokens(output_preview or "", "gpt-4")
442
+ input_tokens = _count_tokens(task_description + goal, model_name)
443
+ output_tokens = _count_tokens(output_preview or "", model_name)
444
+
445
+ # Calculate cost using CostAdapterFactory
446
+ cost_usd = _calculate_cost(provider, model_name, input_tokens, output_tokens)
375
447
 
376
448
  event = {
377
449
  "schema_version": "1.0",
@@ -380,9 +452,9 @@ class KalibrCrewAIInstrumentor:
380
452
  "parent_span_id": None,
381
453
  "tenant_id": instrumentor.tenant_id,
382
454
  "workflow_id": instrumentor.workflow_id,
383
- "provider": "crewai",
384
- "model_id": "agent",
385
- "model_name": role,
455
+ "provider": provider,
456
+ "model_id": model_name,
457
+ "model_name": model_name,
386
458
  "operation": f"agent:{role}",
387
459
  "endpoint": "agent.execute_task",
388
460
  "duration_ms": duration_ms,
@@ -390,8 +462,8 @@ class KalibrCrewAIInstrumentor:
390
462
  "input_tokens": input_tokens,
391
463
  "output_tokens": output_tokens,
392
464
  "total_tokens": input_tokens + output_tokens,
393
- "cost_usd": 0.0,
394
- "total_cost_usd": 0.0,
465
+ "cost_usd": cost_usd,
466
+ "total_cost_usd": cost_usd,
395
467
  "status": status,
396
468
  "error_type": error_type,
397
469
  "error_message": error_message,
@@ -430,6 +502,13 @@ class KalibrCrewAIInstrumentor:
430
502
  description = getattr(task_self, "description", "")
431
503
  expected_output = getattr(task_self, "expected_output", "")
432
504
 
505
+ # Try to extract model from task's agent
506
+ model_name = "unknown"
507
+ provider = "openai"
508
+ agent = getattr(task_self, "agent", None)
509
+ if agent:
510
+ model_name, provider = _extract_model_from_agent(agent)
511
+
433
512
  status = "success"
434
513
  error_type = None
435
514
  error_message = None
@@ -456,8 +535,11 @@ class KalibrCrewAIInstrumentor:
456
535
  else:
457
536
  output_preview = str(result)[:500]
458
537
 
459
- input_tokens = _count_tokens(description, "gpt-4")
460
- output_tokens = _count_tokens(output_preview or "", "gpt-4")
538
+ input_tokens = _count_tokens(description, model_name)
539
+ output_tokens = _count_tokens(output_preview or "", model_name)
540
+
541
+ # Calculate cost using CostAdapterFactory
542
+ cost_usd = _calculate_cost(provider, model_name, input_tokens, output_tokens)
461
543
 
462
544
  event = {
463
545
  "schema_version": "1.0",
@@ -466,9 +548,9 @@ class KalibrCrewAIInstrumentor:
466
548
  "parent_span_id": None,
467
549
  "tenant_id": instrumentor.tenant_id,
468
550
  "workflow_id": instrumentor.workflow_id,
469
- "provider": "crewai",
470
- "model_id": "task",
471
- "model_name": "crewai-task",
551
+ "provider": provider,
552
+ "model_id": model_name,
553
+ "model_name": model_name,
472
554
  "operation": f"task:{description[:30]}..." if len(description) > 30 else f"task:{description}",
473
555
  "endpoint": "task.execute_sync",
474
556
  "duration_ms": duration_ms,
@@ -476,8 +558,8 @@ class KalibrCrewAIInstrumentor:
476
558
  "input_tokens": input_tokens,
477
559
  "output_tokens": output_tokens,
478
560
  "total_tokens": input_tokens + output_tokens,
479
- "cost_usd": 0.0,
480
- "total_cost_usd": 0.0,
561
+ "cost_usd": cost_usd,
562
+ "total_cost_usd": cost_usd,
481
563
  "status": status,
482
564
  "error_type": error_type,
483
565
  "error_message": error_message,
@@ -29,6 +29,8 @@ try:
29
29
  except ImportError:
30
30
  CostAdapterFactory = None
31
31
 
32
+ from kalibr.context import get_goal
33
+
32
34
  # Import tiktoken for token counting
33
35
  try:
34
36
  import tiktoken
@@ -288,6 +290,25 @@ class KalibrCallbackHandler(BaseCallbackHandler):
288
290
  # Compute cost
289
291
  cost_usd = self._compute_cost(provider, model, input_tokens, output_tokens)
290
292
 
293
+ # Extract tool_id from operation if this is a tool span
294
+ tool_id = ""
295
+ tool_input = ""
296
+ tool_output = ""
297
+
298
+ if span.get("span_type") == "tool":
299
+ operation = span.get("operation", "")
300
+ if operation.startswith("tool:"):
301
+ tool_id = operation[5:] # Extract "browserless" from "tool:browserless"
302
+
303
+ # Get tool input/output from span (truncate to 10KB)
304
+ if span.get("input"):
305
+ tool_input = str(span["input"])[:10000]
306
+ if metadata and metadata.get("output"):
307
+ tool_output = str(metadata["output"])[:10000]
308
+
309
+ # Get goal from context (thread-safe)
310
+ current_goal = get_goal() or ""
311
+
291
312
  # Build event
292
313
  event = {
293
314
  "schema_version": "1.0",
@@ -318,6 +339,11 @@ class KalibrCallbackHandler(BaseCallbackHandler):
318
339
  "service": self.service,
319
340
  "runtime_env": os.getenv("RUNTIME_ENV", "local"),
320
341
  "sandbox_id": os.getenv("SANDBOX_ID", "local"),
342
+ # New fields for tool/goal tracking
343
+ "tool_id": tool_id,
344
+ "tool_input": tool_input,
345
+ "tool_output": tool_output,
346
+ "goal": current_goal,
321
347
  "metadata": {
322
348
  **self.default_metadata,
323
349
  "span_type": span.get("span_type", "llm"),
File without changes