kalibr 1.1.3a0__py3-none-any.whl → 1.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
kalibr/__init__.py CHANGED
@@ -1,4 +1,4 @@
1
- """Kalibr SDK v1.1.0 - LLM Observability & Tracing Framework
1
+ """Kalibr SDK v1.2.0 - LLM Observability & Tracing Framework
2
2
 
3
3
  Features:
4
4
  - **Auto-Instrumentation**: Zero-config tracing of OpenAI, Anthropic, Google SDK calls
@@ -36,7 +36,7 @@ CLI Usage:
36
36
  kalibr version # Show version
37
37
  """
38
38
 
39
- __version__ = "1.1.0-alpha"
39
+ __version__ = "1.2.0"
40
40
 
41
41
  # Auto-instrument LLM SDKs on import (can be disabled via env var)
42
42
  import os
@@ -71,6 +71,16 @@ from .trace_capsule import TraceCapsule, get_or_create_capsule
71
71
  from .tracer import SpanContext, Tracer
72
72
  from .utils import load_config_from_env
73
73
 
74
+ # ============================================================================
75
+ # INTELLIGENCE & OUTCOME ROUTING (v1.2.0)
76
+ # ============================================================================
77
+ from .intelligence import (
78
+ KalibrIntelligence,
79
+ get_policy,
80
+ report_outcome,
81
+ get_recommendation,
82
+ )
83
+
74
84
  if os.getenv("KALIBR_AUTO_INSTRUMENT", "true").lower() == "true":
75
85
  # Setup OpenTelemetry collector
76
86
  try:
@@ -127,4 +137,11 @@ __all__ = [
127
137
  "setup_collector",
128
138
  "get_tracer_provider",
129
139
  "is_collector_configured",
140
+ # ========================================================================
141
+ # INTELLIGENCE & OUTCOME ROUTING (v1.2.0)
142
+ # ========================================================================
143
+ "KalibrIntelligence",
144
+ "get_policy",
145
+ "report_outcome",
146
+ "get_recommendation",
130
147
  ]
kalibr/cli/capsule_cmd.py CHANGED
@@ -63,7 +63,7 @@ def capsule(
63
63
  kalibr capsule abc-123-def --export --output capsule.json
64
64
 
65
65
  # Specify custom API URL
66
- kalibr capsule abc-123-def -u https://api.kalibr.io
66
+ kalibr capsule abc-123-def -u https://api.kalibr.systems
67
67
  """
68
68
  # Determine API base URL
69
69
  base_url = api_url or "https://api.kalibr.systems"
kalibr/cli/main.py CHANGED
@@ -30,9 +30,9 @@ def version():
30
30
  from kalibr import __version__
31
31
 
32
32
  console.print(f"[bold]Kalibr SDK version:[/bold] {__version__}")
33
- console.print("Enhanced multi-model AI integration framework")
34
- console.print("Supports: GPT Actions, Claude MCP, Gemini Extensions, Copilot Plugins")
35
- console.print("GitHub: https://github.com/devonakelley/kalibr-sdk")
33
+ console.print("LLM Observability & Execution Intelligence")
34
+ console.print("Auto-instrumentation for OpenAI, Anthropic, Google AI")
35
+ console.print("GitHub: https://github.com/kalibr-ai/kalibr-sdk-python")
36
36
 
37
37
 
38
38
  @app.command()
kalibr/cli/run.py CHANGED
@@ -47,7 +47,7 @@ def run(
47
47
  kalibr run weather.py --runtime fly.io
48
48
 
49
49
  # Custom backend
50
- kalibr run weather.py --backend-url https://api.kalibr.io
50
+ kalibr run weather.py --backend-url https://api.kalibr.systems
51
51
  """
52
52
  # Validate file exists
53
53
  agent_path = Path(file_path).resolve()
kalibr/intelligence.py ADDED
@@ -0,0 +1,317 @@
1
+ """Kalibr Intelligence Client - Query execution intelligence and report outcomes.
2
+
3
+ This module enables the outcome-conditioned routing loop:
4
+ 1. Before executing: query get_policy() to get the best path for your goal
5
+ 2. After executing: call report_outcome() to teach Kalibr what worked
6
+
7
+ Example:
8
+ from kalibr import get_policy, report_outcome
9
+
10
+ # Before executing - get best path
11
+ policy = get_policy(goal="book_meeting")
12
+ model = policy["recommended_model"] # Use this model
13
+
14
+ # After executing - report what happened
15
+ report_outcome(
16
+ trace_id=trace_id,
17
+ goal="book_meeting",
18
+ success=True
19
+ )
20
+ """
21
+
22
+ from __future__ import annotations
23
+
24
+ import os
25
+ from typing import Any, Optional
26
+
27
+ import httpx
28
+
29
+ # Default intelligence API endpoint
30
+ DEFAULT_INTELLIGENCE_URL = "https://kalibr-intelligence.fly.dev"
31
+
32
+
33
+ class KalibrIntelligence:
34
+ """Client for Kalibr Intelligence API.
35
+
36
+ Provides methods to query execution policies and report outcomes
37
+ for the outcome-conditioned routing loop.
38
+
39
+ Args:
40
+ api_key: Kalibr API key (or set KALIBR_API_KEY env var)
41
+ tenant_id: Tenant identifier (or set KALIBR_TENANT_ID env var)
42
+ base_url: Intelligence API base URL (or set KALIBR_INTELLIGENCE_URL env var)
43
+ timeout: Request timeout in seconds
44
+ """
45
+
46
+ def __init__(
47
+ self,
48
+ api_key: str | None = None,
49
+ tenant_id: str | None = None,
50
+ base_url: str | None = None,
51
+ timeout: float = 10.0,
52
+ ):
53
+ self.api_key = api_key or os.getenv("KALIBR_API_KEY", "")
54
+ self.tenant_id = tenant_id or os.getenv("KALIBR_TENANT_ID", "")
55
+ self.base_url = (
56
+ base_url
57
+ or os.getenv("KALIBR_INTELLIGENCE_URL", DEFAULT_INTELLIGENCE_URL)
58
+ ).rstrip("/")
59
+ self.timeout = timeout
60
+ self._client = httpx.Client(timeout=timeout)
61
+
62
+ def _request(
63
+ self,
64
+ method: str,
65
+ path: str,
66
+ json: dict | None = None,
67
+ ) -> httpx.Response:
68
+ """Make authenticated request to intelligence API."""
69
+ headers = {
70
+ "X-API-Key": self.api_key,
71
+ "X-Tenant-ID": self.tenant_id,
72
+ "Content-Type": "application/json",
73
+ }
74
+
75
+ url = f"{self.base_url}{path}"
76
+ response = self._client.request(method, url, json=json, headers=headers)
77
+ response.raise_for_status()
78
+ return response
79
+
80
+ def get_policy(
81
+ self,
82
+ goal: str,
83
+ task_type: str | None = None,
84
+ constraints: dict | None = None,
85
+ window_hours: int = 168,
86
+ ) -> dict[str, Any]:
87
+ """Get execution policy for a goal.
88
+
89
+ Returns the historically best-performing path for achieving
90
+ the specified goal, based on outcome data.
91
+
92
+ Args:
93
+ goal: The goal to optimize for (e.g., "book_meeting", "resolve_ticket")
94
+ task_type: Optional task type filter (e.g., "code", "summarize")
95
+ constraints: Optional constraints dict with keys:
96
+ - max_cost_usd: Maximum cost per request
97
+ - max_latency_ms: Maximum latency
98
+ - min_quality: Minimum quality score (0-1)
99
+ - min_confidence: Minimum statistical confidence (0-1)
100
+ - max_risk: Maximum risk score (0-1)
101
+ window_hours: Time window for pattern analysis (default 1 week)
102
+
103
+ Returns:
104
+ dict with:
105
+ - goal: The goal queried
106
+ - recommended_model: Best model for this goal
107
+ - recommended_provider: Provider for the recommended model
108
+ - outcome_success_rate: Historical success rate (0-1)
109
+ - outcome_sample_count: Number of outcomes in the data
110
+ - confidence: Statistical confidence in recommendation
111
+ - risk_score: Risk score (lower is better)
112
+ - reasoning: Human-readable explanation
113
+ - alternatives: List of alternative models
114
+
115
+ Raises:
116
+ httpx.HTTPStatusError: If the API returns an error
117
+
118
+ Example:
119
+ policy = intelligence.get_policy(goal="book_meeting")
120
+ print(f"Use {policy['recommended_model']} - {policy['outcome_success_rate']:.0%} success rate")
121
+ """
122
+ response = self._request(
123
+ "POST",
124
+ "/api/v1/intelligence/policy",
125
+ json={
126
+ "goal": goal,
127
+ "task_type": task_type,
128
+ "constraints": constraints,
129
+ "window_hours": window_hours,
130
+ },
131
+ )
132
+ return response.json()
133
+
134
+ def report_outcome(
135
+ self,
136
+ trace_id: str,
137
+ goal: str,
138
+ success: bool,
139
+ score: float | None = None,
140
+ failure_reason: str | None = None,
141
+ metadata: dict | None = None,
142
+ ) -> dict[str, Any]:
143
+ """Report execution outcome for a goal.
144
+
145
+ This is the feedback loop that teaches Kalibr what works.
146
+ Call this after your agent completes (or fails) a task.
147
+
148
+ Args:
149
+ trace_id: The trace ID from the execution
150
+ goal: The goal this execution was trying to achieve
151
+ success: Whether the goal was achieved
152
+ score: Optional quality score (0-1) for more granular feedback
153
+ failure_reason: Optional reason for failure (helps with debugging)
154
+ metadata: Optional additional context as a dict
155
+
156
+ Returns:
157
+ dict with:
158
+ - status: "accepted" if successful
159
+ - trace_id: The trace ID recorded
160
+ - goal: The goal recorded
161
+
162
+ Raises:
163
+ httpx.HTTPStatusError: If the API returns an error
164
+
165
+ Example:
166
+ # Success case
167
+ report_outcome(trace_id="abc123", goal="book_meeting", success=True)
168
+
169
+ # Failure case with reason
170
+ report_outcome(
171
+ trace_id="abc123",
172
+ goal="book_meeting",
173
+ success=False,
174
+ failure_reason="calendar_conflict"
175
+ )
176
+ """
177
+ response = self._request(
178
+ "POST",
179
+ "/api/v1/intelligence/report-outcome",
180
+ json={
181
+ "trace_id": trace_id,
182
+ "goal": goal,
183
+ "success": success,
184
+ "score": score,
185
+ "failure_reason": failure_reason,
186
+ "metadata": metadata,
187
+ },
188
+ )
189
+ return response.json()
190
+
191
+ def get_recommendation(
192
+ self,
193
+ task_type: str,
194
+ goal: str | None = None,
195
+ optimize_for: str = "balanced",
196
+ constraints: dict | None = None,
197
+ window_hours: int = 168,
198
+ ) -> dict[str, Any]:
199
+ """Get model recommendation for a task type.
200
+
201
+ This is the original recommendation endpoint. For goal-based
202
+ optimization, prefer get_policy() instead.
203
+
204
+ Args:
205
+ task_type: Type of task (e.g., "summarize", "code", "qa")
206
+ goal: Optional goal for outcome-based optimization
207
+ optimize_for: Optimization target - one of:
208
+ - "cost": Minimize cost
209
+ - "quality": Maximize output quality
210
+ - "latency": Minimize response time
211
+ - "balanced": Balance all factors (default)
212
+ - "cost_efficiency": Maximize quality-per-dollar
213
+ - "outcome": Optimize for goal success rate
214
+ constraints: Optional constraints dict
215
+ window_hours: Time window for pattern analysis
216
+
217
+ Returns:
218
+ dict with recommendation, alternatives, stats, reasoning
219
+ """
220
+ response = self._request(
221
+ "POST",
222
+ "/api/v1/intelligence/recommend",
223
+ json={
224
+ "task_type": task_type,
225
+ "goal": goal,
226
+ "optimize_for": optimize_for,
227
+ "constraints": constraints,
228
+ "window_hours": window_hours,
229
+ },
230
+ )
231
+ return response.json()
232
+
233
+ def close(self):
234
+ """Close the HTTP client."""
235
+ self._client.close()
236
+
237
+ def __enter__(self):
238
+ return self
239
+
240
+ def __exit__(self, *args):
241
+ self.close()
242
+
243
+
244
+ # Module-level singleton for convenience functions
245
+ _intelligence_client: KalibrIntelligence | None = None
246
+
247
+
248
+ def _get_intelligence_client() -> KalibrIntelligence:
249
+ """Get or create the singleton intelligence client."""
250
+ global _intelligence_client
251
+ if _intelligence_client is None:
252
+ _intelligence_client = KalibrIntelligence()
253
+ return _intelligence_client
254
+
255
+
256
+ def get_policy(goal: str, tenant_id: str | None = None, **kwargs) -> dict[str, Any]:
257
+ """Get execution policy for a goal.
258
+
259
+ Convenience function that uses the default intelligence client.
260
+ See KalibrIntelligence.get_policy for full documentation.
261
+
262
+ Args:
263
+ goal: The goal to optimize for
264
+ tenant_id: Optional tenant ID override (default: uses KALIBR_TENANT_ID env var)
265
+ **kwargs: Additional arguments (task_type, constraints, window_hours)
266
+
267
+ Returns:
268
+ Policy dict with recommended_model, outcome_success_rate, etc.
269
+
270
+ Example:
271
+ from kalibr import get_policy
272
+
273
+ policy = get_policy(goal="book_meeting")
274
+ model = policy["recommended_model"]
275
+ """
276
+ client = _get_intelligence_client()
277
+ if tenant_id:
278
+ # Create a new client with the specified tenant_id
279
+ client = KalibrIntelligence(tenant_id=tenant_id)
280
+ return client.get_policy(goal, **kwargs)
281
+
282
+
283
+ def report_outcome(trace_id: str, goal: str, success: bool, tenant_id: str | None = None, **kwargs) -> dict[str, Any]:
284
+ """Report execution outcome for a goal.
285
+
286
+ Convenience function that uses the default intelligence client.
287
+ See KalibrIntelligence.report_outcome for full documentation.
288
+
289
+ Args:
290
+ trace_id: The trace ID from the execution
291
+ goal: The goal this execution was trying to achieve
292
+ success: Whether the goal was achieved
293
+ tenant_id: Optional tenant ID override (default: uses KALIBR_TENANT_ID env var)
294
+ **kwargs: Additional arguments (score, failure_reason, metadata)
295
+
296
+ Returns:
297
+ Response dict with status confirmation
298
+
299
+ Example:
300
+ from kalibr import report_outcome
301
+
302
+ report_outcome(trace_id="abc123", goal="book_meeting", success=True)
303
+ """
304
+ client = _get_intelligence_client()
305
+ if tenant_id:
306
+ # Create a new client with the specified tenant_id
307
+ client = KalibrIntelligence(tenant_id=tenant_id)
308
+ return client.report_outcome(trace_id, goal, success, **kwargs)
309
+
310
+
311
+ def get_recommendation(task_type: str, **kwargs) -> dict[str, Any]:
312
+ """Get model recommendation for a task type.
313
+
314
+ Convenience function that uses the default intelligence client.
315
+ See KalibrIntelligence.get_recommendation for full documentation.
316
+ """
317
+ return _get_intelligence_client().get_recommendation(task_type, **kwargs)
@@ -1,17 +1,17 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: kalibr
3
- Version: 1.1.3a0
3
+ Version: 1.2.0
4
4
  Summary: Unified LLM Observability & Multi-Model AI Integration Framework - Deploy to GPT, Claude, Gemini, Copilot with full telemetry.
5
- Author-email: Kalibr Team <team@kalibr.dev>
6
- License: MIT
5
+ Author-email: Kalibr Team <support@kalibr.systems>
6
+ License: Apache-2.0
7
7
  Project-URL: Homepage, https://github.com/kalibr-ai/kalibr-sdk-python
8
- Project-URL: Documentation, https://docs.kalibr.systems
8
+ Project-URL: Documentation, https://kalibr.systems/docs
9
9
  Project-URL: Repository, https://github.com/kalibr-ai/kalibr-sdk-python
10
10
  Project-URL: Issues, https://github.com/kalibr-ai/kalibr-sdk-python/issues
11
11
  Keywords: ai,mcp,gpt,claude,gemini,copilot,openai,anthropic,google,microsoft,observability,telemetry,tracing,llm,schema-generation,api,multi-model,langchain,crewai
12
12
  Classifier: Development Status :: 4 - Beta
13
13
  Classifier: Intended Audience :: Developers
14
- Classifier: License :: OSI Approved :: MIT License
14
+ Classifier: License :: OSI Approved :: Apache Software License
15
15
  Classifier: Programming Language :: Python :: 3
16
16
  Classifier: Programming Language :: Python :: 3.8
17
17
  Classifier: Programming Language :: Python :: 3.9
@@ -20,7 +20,7 @@ Classifier: Programming Language :: Python :: 3.11
20
20
  Classifier: Programming Language :: Python :: 3.12
21
21
  Classifier: Topic :: Software Development :: Libraries :: Python Modules
22
22
  Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
23
- Requires-Python: >=3.8
23
+ Requires-Python: >=3.9
24
24
  Description-Content-Type: text/markdown
25
25
  License-File: LICENSE
26
26
  Requires-Dist: httpx>=0.27.0
@@ -68,15 +68,20 @@ Dynamic: license-file
68
68
 
69
69
  # Kalibr Python SDK
70
70
 
71
- Production-grade observability for LLM applications. Automatically instrument OpenAI, Anthropic, and Google AI SDKs with zero code changes.
71
+ Production-grade observability and execution intelligence for LLM applications. Automatically instrument OpenAI, Anthropic, and Google AI SDKs with zero code changes.
72
+
73
+ [![PyPI version](https://img.shields.io/pypi/v/kalibr)](https://pypi.org/project/kalibr/)
74
+ [![Python](https://img.shields.io/pypi/pyversions/kalibr)](https://pypi.org/project/kalibr/)
75
+ [![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](LICENSE)
72
76
 
73
77
  ## Features
74
78
 
75
- - **Zero-code instrumentation** - Automatic tracing for OpenAI, Anthropic, and Google AI
79
+ - **Zero-code instrumentation** - Automatic tracing for OpenAI, Anthropic, and Google AI SDKs
80
+ - **Outcome-conditioned routing** - Query for optimal models based on historical success rates
81
+ - **TraceCapsule** - Cross-agent context propagation for multi-agent systems
76
82
  - **Cost tracking** - Real-time cost calculation for all LLM calls
77
83
  - **Token monitoring** - Track input/output tokens across providers
78
- - **Parent-child traces** - Automatic trace relationship management
79
- - **Multi-provider support** - Works with GPT-4, Claude, Gemini, and more
84
+ - **Framework integrations** - LangChain, CrewAI, OpenAI Agents SDK
80
85
 
81
86
  ## Installation
82
87
 
@@ -91,32 +96,28 @@ pip install kalibr
91
96
  Simply import `kalibr` at the start of your application - all LLM calls are automatically traced:
92
97
 
93
98
  ```python
94
- import kalibr # Enable auto-instrumentation
95
- import openai
96
-
97
- # Set your Kalibr API key
98
- import os
99
- os.environ["KALIBR_API_KEY"] = "your-kalibr-api-key"
99
+ import kalibr # Must be FIRST import
100
+ from openai import OpenAI
100
101
 
101
- # All OpenAI calls are now automatically traced
102
- client = openai.OpenAI()
102
+ client = OpenAI()
103
103
  response = client.chat.completions.create(
104
104
  model="gpt-4o",
105
105
  messages=[{"role": "user", "content": "Hello!"}]
106
106
  )
107
+ # That's it. The call is automatically traced.
107
108
  ```
108
109
 
109
- ### Manual Tracing with Decorator
110
+ ### Manual Tracing with @trace Decorator
110
111
 
111
112
  For more control, use the `@trace` decorator:
112
113
 
113
114
  ```python
114
115
  from kalibr import trace
115
- import openai
116
+ from openai import OpenAI
116
117
 
117
118
  @trace(operation="summarize", provider="openai", model="gpt-4o")
118
119
  def summarize_text(text: str) -> str:
119
- client = openai.OpenAI()
120
+ client = OpenAI()
120
121
  response = client.chat.completions.create(
121
122
  model="gpt-4o",
122
123
  messages=[
@@ -125,64 +126,188 @@ def summarize_text(text: str) -> str:
125
126
  ]
126
127
  )
127
128
  return response.choices[0].message.content
128
-
129
- result = summarize_text("Your long text here...")
130
129
  ```
131
130
 
132
131
  ### Multi-Provider Example
133
132
 
134
133
  ```python
135
134
  import kalibr
136
- import openai
137
- import anthropic
135
+ from openai import OpenAI
136
+ from anthropic import Anthropic
137
+
138
+ # Both are automatically traced
139
+ openai_client = OpenAI()
140
+ anthropic_client = Anthropic()
138
141
 
139
- # OpenAI call - automatically traced
140
- openai_client = openai.OpenAI()
141
142
  gpt_response = openai_client.chat.completions.create(
142
143
  model="gpt-4o",
143
144
  messages=[{"role": "user", "content": "Explain quantum computing"}]
144
145
  )
145
146
 
146
- # Anthropic call - automatically traced
147
- anthropic_client = anthropic.Anthropic()
148
147
  claude_response = anthropic_client.messages.create(
149
- model="claude-sonnet-4-20250514",
148
+ model="claude-3-5-sonnet-20241022",
150
149
  max_tokens=1024,
151
150
  messages=[{"role": "user", "content": "Explain machine learning"}]
152
151
  )
153
152
  ```
154
153
 
154
+ ## Outcome-Conditioned Routing
155
+
156
+ Query Kalibr for optimal model recommendations based on real execution outcomes:
157
+
158
+ ```python
159
+ from kalibr import get_policy, report_outcome
160
+
161
+ # Before executing - get the best model for your goal
162
+ policy = get_policy(goal="book_meeting")
163
+ print(f"Use {policy['recommended_model']} - {policy['outcome_success_rate']:.0%} success rate")
164
+
165
+ # Execute with the recommended model
166
+ # ...
167
+
168
+ # After executing - report what happened
169
+ report_outcome(
170
+ trace_id="abc123",
171
+ goal="book_meeting",
172
+ success=True
173
+ )
174
+ ```
175
+
176
+ ### With Constraints
177
+
178
+ ```python
179
+ from kalibr import get_policy
180
+
181
+ policy = get_policy(
182
+ goal="resolve_ticket",
183
+ constraints={
184
+ "max_cost_usd": 0.05,
185
+ "max_latency_ms": 3000,
186
+ "min_quality": 0.8
187
+ }
188
+ )
189
+ ```
190
+
191
+ ## TraceCapsule - Cross-Agent Tracing
192
+
193
+ Propagate trace context across agent boundaries:
194
+
195
+ ```python
196
+ from kalibr import TraceCapsule, get_or_create_capsule
197
+
198
+ # Agent 1: Create capsule and add hop
199
+ capsule = get_or_create_capsule()
200
+ capsule.append_hop({
201
+ "provider": "openai",
202
+ "operation": "chat_completion",
203
+ "model": "gpt-4o",
204
+ "duration_ms": 150,
205
+ "cost_usd": 0.002,
206
+ "status": "success"
207
+ })
208
+
209
+ # Pass to Agent 2 via HTTP header
210
+ headers = {"X-Kalibr-Capsule": capsule.to_json()}
211
+
212
+ # Agent 2: Receive and continue
213
+ capsule = TraceCapsule.from_json(headers["X-Kalibr-Capsule"])
214
+ capsule.append_hop({
215
+ "provider": "anthropic",
216
+ "operation": "chat_completion",
217
+ "model": "claude-3-5-sonnet-20241022",
218
+ "duration_ms": 200,
219
+ "cost_usd": 0.003,
220
+ "status": "success"
221
+ })
222
+ ```
223
+
224
+ ## Framework Integrations
225
+
226
+ ### LangChain
227
+
228
+ ```bash
229
+ pip install kalibr[langchain]
230
+ ```
231
+
232
+ ```python
233
+ from kalibr_langchain import KalibrCallbackHandler
234
+ from langchain_openai import ChatOpenAI
235
+
236
+ handler = KalibrCallbackHandler()
237
+ llm = ChatOpenAI(model="gpt-4o", callbacks=[handler])
238
+ response = llm.invoke("What is the capital of France?")
239
+ ```
240
+
241
+ See [LangChain Integration Guide](kalibr_langchain/README.md) for full documentation.
242
+
243
+ ### CrewAI
244
+
245
+ ```bash
246
+ pip install kalibr[crewai]
247
+ ```
248
+
249
+ ```python
250
+ from kalibr_crewai import KalibrCrewAIInstrumentor
251
+ from crewai import Agent, Task, Crew
252
+
253
+ instrumentor = KalibrCrewAIInstrumentor()
254
+ instrumentor.instrument()
255
+
256
+ # Use CrewAI normally - all operations are traced
257
+ ```
258
+
259
+ See [CrewAI Integration Guide](kalibr_crewai/README.md) for full documentation.
260
+
261
+ ### OpenAI Agents SDK
262
+
263
+ ```bash
264
+ pip install kalibr[openai-agents]
265
+ ```
266
+
267
+ ```python
268
+ from kalibr_openai_agents import setup_kalibr_tracing
269
+ from agents import Agent, Runner
270
+
271
+ setup_kalibr_tracing()
272
+
273
+ agent = Agent(name="Assistant", instructions="You are helpful.")
274
+ result = Runner.run_sync(agent, "Hello!")
275
+ ```
276
+
277
+ See [OpenAI Agents Integration Guide](kalibr_openai_agents/README.md) for full documentation.
278
+
155
279
  ## Configuration
156
280
 
157
- Configure the SDK using environment variables:
281
+ Configure via environment variables:
158
282
 
159
283
  | Variable | Description | Default |
160
284
  |----------|-------------|---------|
161
285
  | `KALIBR_API_KEY` | API key for authentication | *Required* |
162
- | `KALIBR_COLLECTOR_URL` | Collector endpoint URL | `http://localhost:8001/api/ingest` |
163
- | `KALIBR_TENANT_ID` | Tenant identifier for multi-tenant setups | `default` |
164
- | `KALIBR_WORKFLOW_ID` | Workflow identifier for grouping traces | `default` |
165
- | `KALIBR_SERVICE_NAME` | Service name for OpenTelemetry spans | `kalibr-app` |
166
- | `KALIBR_ENVIRONMENT` | Environment (prod, staging, dev) | `prod` |
167
- | `KALIBR_AUTO_INSTRUMENT` | Enable/disable auto-instrumentation | `true` |
168
- | `KALIBR_CONSOLE_EXPORT` | Enable console span export for debugging | `false` |
286
+ | `KALIBR_TENANT_ID` | Tenant identifier | `default` |
287
+ | `KALIBR_COLLECTOR_URL` | Collector endpoint URL | `https://api.kalibr.systems/api/ingest` |
288
+ | `KALIBR_INTELLIGENCE_URL` | Intelligence API URL | `https://kalibr-intelligence.fly.dev` |
289
+ | `KALIBR_SERVICE_NAME` | Service name for spans | `kalibr-app` |
290
+ | `KALIBR_ENVIRONMENT` | Environment (prod/staging/dev) | `prod` |
291
+ | `KALIBR_WORKFLOW_ID` | Workflow identifier | `default` |
292
+ | `KALIBR_AUTO_INSTRUMENT` | Enable auto-instrumentation | `true` |
169
293
 
170
- ## CLI Tools
171
-
172
- The SDK includes command-line tools for running and deploying applications:
294
+ ## CLI Commands
173
295
 
174
296
  ```bash
175
- # Run your app locally with tracing
297
+ # Serve your app with tracing
176
298
  kalibr serve myapp.py
177
299
 
178
- # Run with managed runtime lifecycle
300
+ # Run with managed runtime
179
301
  kalibr run myapp.py --port 8000
180
302
 
181
303
  # Deploy to cloud platforms
182
304
  kalibr deploy myapp.py --runtime fly.io
183
305
 
184
- # Fetch trace data by ID
306
+ # Fetch trace capsule by ID
185
307
  kalibr capsule <trace-id>
308
+
309
+ # Show version
310
+ kalibr version
186
311
  ```
187
312
 
188
313
  ## Supported Providers
@@ -190,27 +315,15 @@ kalibr capsule <trace-id>
190
315
  | Provider | Models | Auto-Instrumentation |
191
316
  |----------|--------|---------------------|
192
317
  | OpenAI | GPT-4, GPT-4o, GPT-3.5 | Yes |
193
- | Anthropic | Claude 3 Opus, Sonnet, Haiku | Yes |
318
+ | Anthropic | Claude 3.5 Sonnet, Claude 3 Opus/Sonnet/Haiku | Yes |
194
319
  | Google | Gemini Pro, Gemini Flash | Yes |
195
320
 
196
- ## Examples
197
-
198
- See the [`examples/`](./examples) directory for complete examples:
199
-
200
- - `basic_example.py` - Simple tracing example
201
- - `basic_agent.py` - Agent with auto-instrumentation
202
- - `advanced_example.py` - Advanced tracing patterns
203
- - `cross_vendor.py` - Multi-provider workflows
204
- - `test_mas.py` - Multi-agent system demonstration
205
-
206
321
  ## Development
207
322
 
208
323
  ```bash
209
- # Clone the repository
210
324
  git clone https://github.com/kalibr-ai/kalibr-sdk-python.git
211
325
  cd kalibr-sdk-python
212
326
 
213
- # Install in development mode
214
327
  pip install -e ".[dev]"
215
328
 
216
329
  # Run tests
@@ -223,14 +336,15 @@ ruff check kalibr/
223
336
 
224
337
  ## Contributing
225
338
 
226
- We welcome contributions! Please see [CONTRIBUTING.md](./CONTRIBUTING.md) for guidelines.
339
+ We welcome contributions! See [CONTRIBUTING.md](CONTRIBUTING.md).
227
340
 
228
341
  ## License
229
342
 
230
- MIT License - see [LICENSE](./LICENSE) for details.
343
+ Apache 2.0 - see [LICENSE](LICENSE).
231
344
 
232
345
  ## Links
233
346
 
234
- - [Documentation](https://docs.kalibr.systems)
235
- - [GitHub Issues](https://github.com/kalibr-ai/kalibr-sdk-python/issues)
236
- - [PyPI Package](https://pypi.org/project/kalibr/)
347
+ - [Documentation](https://kalibr.systems/docs)
348
+ - [Dashboard](https://dashboard.kalibr.systems)
349
+ - [GitHub](https://github.com/kalibr-ai/kalibr-sdk-python)
350
+ - [PyPI](https://pypi.org/project/kalibr/)
@@ -1,4 +1,4 @@
1
- kalibr/__init__.py,sha256=gyljj_U2w1JlQCTZEvdzNA9vKhcr5FIsTiu02voirLY,4284
1
+ kalibr/__init__.py,sha256=16g-LPXiB_10TUcUeNzTy_EL5npqCFGYWJF-IhWpWDY,4889
2
2
  kalibr/__main__.py,sha256=jO96I4pqinwHg7ONRvNVKbySBh5pSIhOAiNrgSQrNlY,110
3
3
  kalibr/capsule_middleware.py,sha256=pXG_wORgCqo3wHjtkn_zY4doLyiDmTwJtB7XiZNnbPk,3163
4
4
  kalibr/client.py,sha256=6D1paakE6zgWJStaow3ak9t0R8afodQhSSpUO3WTs_8,9732
@@ -6,6 +6,7 @@ kalibr/collector.py,sha256=rtTKQLe6NkDSblBIfFooQ-ESFcP0Q1HUp4Bcqqg8JFo,5818
6
6
  kalibr/context.py,sha256=hBxWXZx0gcmeGqDMS1rstke_DmrujoRBIsfrG26WKUY,3755
7
7
  kalibr/cost_adapter.py,sha256=NerJ7ywaJjBn97gVFr7qKX7318e3Kmy2qqeNlGl9nPE,6439
8
8
  kalibr/decorators.py,sha256=m-XBXxWMDVrzaNsljACiGmeGhgiHj_MqSfj6OGK3L5I,4380
9
+ kalibr/intelligence.py,sha256=oW_GFDHj5NEa-9L2y4jZcDsEQt81P77PpCuY--aIzLY,10889
9
10
  kalibr/kalibr.py,sha256=cNXC3W_TX5SvGsy1lRopkwFqsHOpyd1kkVjEMOz1Yr4,6084
10
11
  kalibr/kalibr_app.py,sha256=ItZwEh0FZPx9_BE-zPQajC2yxI2y9IHYwJD0k9tbHvY,2773
11
12
  kalibr/models.py,sha256=HwD_-iysZMSnCzMQYO1Qcf0aeXySupY7yJeBwl_dLS0,1024
@@ -19,10 +20,10 @@ kalibr/tracer.py,sha256=jwWBpZbGXn6fEv4pw25BLFCH-22QUbyzofPWp1Iwdkk,11911
19
20
  kalibr/types.py,sha256=cna4-akpdwfHXfOJCtVIq5lO_jaoG2Am3BRrXi0Vo34,895
20
21
  kalibr/utils.py,sha256=DJ9Mp6IPzyQTKboVV0utnfFBMT7LbJ9vAs0gOOPCpvw,5052
21
22
  kalibr/cli/__init__.py,sha256=FmRGaDMhM9DhrKg1ONkF0emIrJcjFWjlFBl_oenvpsk,77
22
- kalibr/cli/capsule_cmd.py,sha256=j4XR10mq9Ni6DDHNt3cNYEYuMr7jabExEkEB2vrcgGI,6092
23
+ kalibr/cli/capsule_cmd.py,sha256=fHhC7-VpPskVxJiIbpSe7eVPNq0xIWeXCBVUOWGcqrw,6097
23
24
  kalibr/cli/deploy_cmd.py,sha256=kV4uqCN2IdQev1vPBY5qqIHsEhjGBZ7y_rLx8RGAL_4,5178
24
- kalibr/cli/main.py,sha256=Ob0Vpg8KPnHluP_23pgbEZpDb_iKnjoN7mW52-2Qr44,1939
25
- kalibr/cli/run.py,sha256=S8l5DCcoMVHl_frb-8DOkpDHS3Q6RuYvns9izNk-lx0,6428
25
+ kalibr/cli/main.py,sha256=FrOSIACNARkrvq-J2SZhyPNWNCdNEMZlD69PEV3uCMA,1924
26
+ kalibr/cli/run.py,sha256=bkdyNGrzUdcHg8XVvvWD7w8zV8Q4eQwUSFR-Bd_Asd0,6433
26
27
  kalibr/cli/serve.py,sha256=71Xha35qrBNkcQxuUkwC-ixbOriHGUIEgxl7C_qERQo,2085
27
28
  kalibr/instrumentation/__init__.py,sha256=YnUJ4gUH8WNxdVv5t1amn0l2WUULJG2MuQIL2ZZhn04,354
28
29
  kalibr/instrumentation/anthropic_instr.py,sha256=ozXHr8BPMafIbvgaxunskQi9YX5_Gpoiekye77oRc2E,10058
@@ -32,17 +33,17 @@ kalibr/instrumentation/openai_instr.py,sha256=UU0Pi1Gq1FqgetYWDacQhNFdjemuPrc0hR
32
33
  kalibr/instrumentation/registry.py,sha256=sfQnXhbPOI5LVon2kFhe8KcXQwWmuKW1XUe50B2AaBc,4749
33
34
  kalibr/middleware/__init__.py,sha256=qyDUn_irAX67MS-IkuDVxg4RmFnJHDf_BfIT3qfGoBI,115
34
35
  kalibr/middleware/auto_tracer.py,sha256=ZBSBM0O3a6rwVzfik1n5NUmQDah8_iaf86rU64aPYT4,13037
35
- kalibr-1.1.3a0.dist-info/licenses/LICENSE,sha256=BYlEPoDdYD3iHuAjt2JYGoxDYQaI1gxab2pR4acoz04,1063
36
- kalibr_crewai/__init__.py,sha256=ClbyRwZ9K3VabYg3RnjnCNQtv1z7UNyCAlMSo0tCGYQ,1791
36
+ kalibr-1.2.0.dist-info/licenses/LICENSE,sha256=5mwAnB38l3_PjmOQn6_L6cZnJvus143DUjMBPIH1yso,10768
37
+ kalibr_crewai/__init__.py,sha256=b0HFTiE80eArtSMBOIEKu1JM6KU0tCjEylKCVVVF29Q,1796
37
38
  kalibr_crewai/callbacks.py,sha256=UBgGw0vdT0Jf9x8fNrHfsUR4unqX4nxNFta07OoSgaI,17162
38
39
  kalibr_crewai/instrumentor.py,sha256=AfnK5t7Ynb-7ytZF7XdOSPpr0o8hDf3sFkyzhc1ogY0,19465
39
- kalibr_langchain/__init__.py,sha256=BPj6JZgWDh3wNQCnIfdC24gupzBjVPxbq3zBsfn7yCY,1368
40
+ kalibr_langchain/__init__.py,sha256=O4XYVyhLp1v-Y1kGZw3zD-tUK9wp0UX8Jt6oN0QTHN4,1373
40
41
  kalibr_langchain/async_callback.py,sha256=_Mj_YrKbULNtfxixZ7iwiHyWEV9l178ZA5Oy5A5Pakk,27748
41
42
  kalibr_langchain/callback.py,sha256=VVPAvksS8TFMC21QlGj-1NRFsWnkLKPyzqhfA3kmT4c,34265
42
- kalibr_openai_agents/__init__.py,sha256=ToKJ1Krwc38ADZO0HCWo1_ZMGi4VRIEgym2Avkg0CyQ,1362
43
+ kalibr_openai_agents/__init__.py,sha256=wL59LzGstptKigfQDrKKt_7hcMO1JGVQtVAsE0lz-Zw,1367
43
44
  kalibr_openai_agents/processor.py,sha256=F550sdRf3rpguP1yOlgAUQWDLPBy4hSACV3-zOyCpOU,18257
44
- kalibr-1.1.3a0.dist-info/METADATA,sha256=tkZQEBASAyAucKITC1_yzuASDFq2uSOAfMoQqCKP3TI,7840
45
- kalibr-1.1.3a0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
46
- kalibr-1.1.3a0.dist-info/entry_points.txt,sha256=Kojlc6WRX8V1qS9lOMdDPZpTUVHCtzGtHqXusErgmLY,47
47
- kalibr-1.1.3a0.dist-info/top_level.txt,sha256=dIfBOWUnnHGFDwgz5zfIx5_0bU3wOUgAbYr4JcFHZmo,59
48
- kalibr-1.1.3a0.dist-info/RECORD,,
45
+ kalibr-1.2.0.dist-info/METADATA,sha256=45tJcZAcqg575gr2HSIMRArUhbz9juYec_Mi8LdiW9E,10339
46
+ kalibr-1.2.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
47
+ kalibr-1.2.0.dist-info/entry_points.txt,sha256=Kojlc6WRX8V1qS9lOMdDPZpTUVHCtzGtHqXusErgmLY,47
48
+ kalibr-1.2.0.dist-info/top_level.txt,sha256=dIfBOWUnnHGFDwgz5zfIx5_0bU3wOUgAbYr4JcFHZmo,59
49
+ kalibr-1.2.0.dist-info/RECORD,,
@@ -0,0 +1,190 @@
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to the Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ Copyright 2025 Kalibr Systems Inc.
179
+
180
+ Licensed under the Apache License, Version 2.0 (the "License");
181
+ you may not use this file except in compliance with the License.
182
+ You may obtain a copy of the License at
183
+
184
+ http://www.apache.org/licenses/LICENSE-2.0
185
+
186
+ Unless required by applicable law or agreed to in writing, software
187
+ distributed under the License is distributed on an "AS IS" BASIS,
188
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
189
+ See the License for the specific language governing permissions and
190
+ limitations under the License.
kalibr_crewai/__init__.py CHANGED
@@ -46,7 +46,7 @@ Usage with Auto-Instrumentation:
46
46
 
47
47
  Environment Variables:
48
48
  KALIBR_API_KEY: API key for authentication
49
- KALIBR_ENDPOINT: Backend endpoint URL
49
+ KALIBR_COLLECTOR_URL: Backend endpoint URL
50
50
  KALIBR_TENANT_ID: Tenant identifier
51
51
  KALIBR_ENVIRONMENT: Environment (prod/staging/dev)
52
52
  KALIBR_SERVICE: Service name
@@ -29,7 +29,7 @@ Usage:
29
29
 
30
30
  Environment Variables:
31
31
  KALIBR_API_KEY: API key for authentication
32
- KALIBR_ENDPOINT: Backend endpoint URL
32
+ KALIBR_COLLECTOR_URL: Backend endpoint URL
33
33
  KALIBR_TENANT_ID: Tenant identifier
34
34
  KALIBR_ENVIRONMENT: Environment (prod/staging/dev)
35
35
  KALIBR_SERVICE: Service name
@@ -26,7 +26,7 @@ Usage:
26
26
 
27
27
  Environment Variables:
28
28
  KALIBR_API_KEY: API key for authentication
29
- KALIBR_ENDPOINT: Backend endpoint URL
29
+ KALIBR_COLLECTOR_URL: Backend endpoint URL
30
30
  KALIBR_TENANT_ID: Tenant identifier
31
31
  KALIBR_ENVIRONMENT: Environment (prod/staging/dev)
32
32
  KALIBR_SERVICE: Service name
@@ -1,21 +0,0 @@
1
- MIT License
2
-
3
- Copyright (c) 2025 Kalibr
4
-
5
- Permission is hereby granted, free of charge, to any person obtaining a copy
6
- of this software and associated documentation files (the "Software"), to deal
7
- in the Software without restriction, including without limitation the rights
8
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
- copies of the Software, and to permit persons to whom the Software is
10
- furnished to do so, subject to the following conditions:
11
-
12
- The above copyright notice and this permission notice shall be included in all
13
- copies or substantial portions of the Software.
14
-
15
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
- SOFTWARE.