kailash 0.3.2__py3-none-any.whl → 0.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (151) hide show
  1. kailash/__init__.py +33 -1
  2. kailash/access_control/__init__.py +129 -0
  3. kailash/access_control/managers.py +461 -0
  4. kailash/access_control/rule_evaluators.py +467 -0
  5. kailash/access_control_abac.py +825 -0
  6. kailash/config/__init__.py +27 -0
  7. kailash/config/database_config.py +359 -0
  8. kailash/database/__init__.py +28 -0
  9. kailash/database/execution_pipeline.py +499 -0
  10. kailash/middleware/__init__.py +306 -0
  11. kailash/middleware/auth/__init__.py +33 -0
  12. kailash/middleware/auth/access_control.py +436 -0
  13. kailash/middleware/auth/auth_manager.py +422 -0
  14. kailash/middleware/auth/jwt_auth.py +477 -0
  15. kailash/middleware/auth/kailash_jwt_auth.py +616 -0
  16. kailash/middleware/communication/__init__.py +37 -0
  17. kailash/middleware/communication/ai_chat.py +989 -0
  18. kailash/middleware/communication/api_gateway.py +802 -0
  19. kailash/middleware/communication/events.py +470 -0
  20. kailash/middleware/communication/realtime.py +710 -0
  21. kailash/middleware/core/__init__.py +21 -0
  22. kailash/middleware/core/agent_ui.py +890 -0
  23. kailash/middleware/core/schema.py +643 -0
  24. kailash/middleware/core/workflows.py +396 -0
  25. kailash/middleware/database/__init__.py +63 -0
  26. kailash/middleware/database/base.py +113 -0
  27. kailash/middleware/database/base_models.py +525 -0
  28. kailash/middleware/database/enums.py +106 -0
  29. kailash/middleware/database/migrations.py +12 -0
  30. kailash/{api/database.py → middleware/database/models.py} +183 -291
  31. kailash/middleware/database/repositories.py +685 -0
  32. kailash/middleware/database/session_manager.py +19 -0
  33. kailash/middleware/mcp/__init__.py +38 -0
  34. kailash/middleware/mcp/client_integration.py +585 -0
  35. kailash/middleware/mcp/enhanced_server.py +576 -0
  36. kailash/nodes/__init__.py +27 -3
  37. kailash/nodes/admin/__init__.py +42 -0
  38. kailash/nodes/admin/audit_log.py +794 -0
  39. kailash/nodes/admin/permission_check.py +864 -0
  40. kailash/nodes/admin/role_management.py +823 -0
  41. kailash/nodes/admin/security_event.py +1523 -0
  42. kailash/nodes/admin/user_management.py +944 -0
  43. kailash/nodes/ai/a2a.py +24 -7
  44. kailash/nodes/ai/ai_providers.py +248 -40
  45. kailash/nodes/ai/embedding_generator.py +11 -11
  46. kailash/nodes/ai/intelligent_agent_orchestrator.py +99 -11
  47. kailash/nodes/ai/llm_agent.py +436 -5
  48. kailash/nodes/ai/self_organizing.py +85 -10
  49. kailash/nodes/ai/vision_utils.py +148 -0
  50. kailash/nodes/alerts/__init__.py +26 -0
  51. kailash/nodes/alerts/base.py +234 -0
  52. kailash/nodes/alerts/discord.py +499 -0
  53. kailash/nodes/api/auth.py +287 -6
  54. kailash/nodes/api/rest.py +151 -0
  55. kailash/nodes/auth/__init__.py +17 -0
  56. kailash/nodes/auth/directory_integration.py +1228 -0
  57. kailash/nodes/auth/enterprise_auth_provider.py +1328 -0
  58. kailash/nodes/auth/mfa.py +2338 -0
  59. kailash/nodes/auth/risk_assessment.py +872 -0
  60. kailash/nodes/auth/session_management.py +1093 -0
  61. kailash/nodes/auth/sso.py +1040 -0
  62. kailash/nodes/base.py +344 -13
  63. kailash/nodes/base_cycle_aware.py +4 -2
  64. kailash/nodes/base_with_acl.py +1 -1
  65. kailash/nodes/code/python.py +283 -10
  66. kailash/nodes/compliance/__init__.py +9 -0
  67. kailash/nodes/compliance/data_retention.py +1888 -0
  68. kailash/nodes/compliance/gdpr.py +2004 -0
  69. kailash/nodes/data/__init__.py +22 -2
  70. kailash/nodes/data/async_connection.py +469 -0
  71. kailash/nodes/data/async_sql.py +757 -0
  72. kailash/nodes/data/async_vector.py +598 -0
  73. kailash/nodes/data/readers.py +767 -0
  74. kailash/nodes/data/retrieval.py +360 -1
  75. kailash/nodes/data/sharepoint_graph.py +397 -21
  76. kailash/nodes/data/sql.py +94 -5
  77. kailash/nodes/data/streaming.py +68 -8
  78. kailash/nodes/data/vector_db.py +54 -4
  79. kailash/nodes/enterprise/__init__.py +13 -0
  80. kailash/nodes/enterprise/batch_processor.py +741 -0
  81. kailash/nodes/enterprise/data_lineage.py +497 -0
  82. kailash/nodes/logic/convergence.py +31 -9
  83. kailash/nodes/logic/operations.py +14 -3
  84. kailash/nodes/mixins/__init__.py +8 -0
  85. kailash/nodes/mixins/event_emitter.py +201 -0
  86. kailash/nodes/mixins/mcp.py +9 -4
  87. kailash/nodes/mixins/security.py +165 -0
  88. kailash/nodes/monitoring/__init__.py +7 -0
  89. kailash/nodes/monitoring/performance_benchmark.py +2497 -0
  90. kailash/nodes/rag/__init__.py +284 -0
  91. kailash/nodes/rag/advanced.py +1615 -0
  92. kailash/nodes/rag/agentic.py +773 -0
  93. kailash/nodes/rag/conversational.py +999 -0
  94. kailash/nodes/rag/evaluation.py +875 -0
  95. kailash/nodes/rag/federated.py +1188 -0
  96. kailash/nodes/rag/graph.py +721 -0
  97. kailash/nodes/rag/multimodal.py +671 -0
  98. kailash/nodes/rag/optimized.py +933 -0
  99. kailash/nodes/rag/privacy.py +1059 -0
  100. kailash/nodes/rag/query_processing.py +1335 -0
  101. kailash/nodes/rag/realtime.py +764 -0
  102. kailash/nodes/rag/registry.py +547 -0
  103. kailash/nodes/rag/router.py +837 -0
  104. kailash/nodes/rag/similarity.py +1854 -0
  105. kailash/nodes/rag/strategies.py +566 -0
  106. kailash/nodes/rag/workflows.py +575 -0
  107. kailash/nodes/security/__init__.py +19 -0
  108. kailash/nodes/security/abac_evaluator.py +1411 -0
  109. kailash/nodes/security/audit_log.py +103 -0
  110. kailash/nodes/security/behavior_analysis.py +1893 -0
  111. kailash/nodes/security/credential_manager.py +401 -0
  112. kailash/nodes/security/rotating_credentials.py +760 -0
  113. kailash/nodes/security/security_event.py +133 -0
  114. kailash/nodes/security/threat_detection.py +1103 -0
  115. kailash/nodes/testing/__init__.py +9 -0
  116. kailash/nodes/testing/credential_testing.py +499 -0
  117. kailash/nodes/transform/__init__.py +10 -2
  118. kailash/nodes/transform/chunkers.py +592 -1
  119. kailash/nodes/transform/processors.py +484 -14
  120. kailash/nodes/validation.py +321 -0
  121. kailash/runtime/access_controlled.py +1 -1
  122. kailash/runtime/async_local.py +41 -7
  123. kailash/runtime/docker.py +1 -1
  124. kailash/runtime/local.py +474 -55
  125. kailash/runtime/parallel.py +1 -1
  126. kailash/runtime/parallel_cyclic.py +1 -1
  127. kailash/runtime/testing.py +210 -2
  128. kailash/security.py +1 -1
  129. kailash/utils/migrations/__init__.py +25 -0
  130. kailash/utils/migrations/generator.py +433 -0
  131. kailash/utils/migrations/models.py +231 -0
  132. kailash/utils/migrations/runner.py +489 -0
  133. kailash/utils/secure_logging.py +342 -0
  134. kailash/workflow/__init__.py +16 -0
  135. kailash/workflow/cyclic_runner.py +3 -4
  136. kailash/workflow/graph.py +70 -2
  137. kailash/workflow/resilience.py +249 -0
  138. kailash/workflow/templates.py +726 -0
  139. {kailash-0.3.2.dist-info → kailash-0.4.1.dist-info}/METADATA +256 -20
  140. kailash-0.4.1.dist-info/RECORD +227 -0
  141. kailash/api/__init__.py +0 -17
  142. kailash/api/__main__.py +0 -6
  143. kailash/api/studio_secure.py +0 -893
  144. kailash/mcp/__main__.py +0 -13
  145. kailash/mcp/server_new.py +0 -336
  146. kailash/mcp/servers/__init__.py +0 -12
  147. kailash-0.3.2.dist-info/RECORD +0 -136
  148. {kailash-0.3.2.dist-info → kailash-0.4.1.dist-info}/WHEEL +0 -0
  149. {kailash-0.3.2.dist-info → kailash-0.4.1.dist-info}/entry_points.txt +0 -0
  150. {kailash-0.3.2.dist-info → kailash-0.4.1.dist-info}/licenses/LICENSE +0 -0
  151. {kailash-0.3.2.dist-info → kailash-0.4.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1188 @@
1
+ """
2
+ Federated RAG Implementation
3
+
4
+ Implements RAG across distributed data sources without centralization:
5
+ - Federated learning for distributed embeddings
6
+ - Cross-silo and cross-device federation
7
+ - Secure aggregation protocols
8
+ - Heterogeneous data handling
9
+ - Communication-efficient protocols
10
+
11
+ Based on federated learning and distributed systems research.
12
+ """
13
+
14
+ import asyncio
15
+ import hashlib
16
+ import json
17
+ import logging
18
+ import random
19
+ import re
20
+ from collections import defaultdict
21
+ from datetime import datetime
22
+ from typing import Any, Dict, List, Optional, Tuple, Union
23
+
24
+ from ...workflow.builder import WorkflowBuilder
25
+ from ..api.rest import RESTClientNode
26
+ from ..base import Node, NodeParameter, register_node
27
+ from ..code.python import PythonCodeNode
28
+ from ..logic.workflow import WorkflowNode
29
+
30
+ logger = logging.getLogger(__name__)
31
+
32
+
33
+ @register_node()
34
+ class FederatedRAGNode(WorkflowNode):
35
+ """
36
+ Federated RAG for Distributed Data Sources
37
+
38
+ Implements RAG that operates across multiple distributed data sources
39
+ without requiring data centralization, preserving data locality and privacy.
40
+
41
+ When to use:
42
+ - Best for: Multi-organization data, edge computing, privacy-critical scenarios
43
+ - Not ideal for: Small datasets, single-source data
44
+ - Performance: 2-10 seconds depending on federation size
45
+ - Privacy: Data never leaves source organizations
46
+
47
+ Key features:
48
+ - Distributed query execution across federated nodes
49
+ - Local computation with global aggregation
50
+ - Heterogeneous data source support
51
+ - Communication-efficient protocols
52
+ - Fault tolerance for node failures
53
+ - Secure aggregation of results
54
+
55
+ Example:
56
+ federated_rag = FederatedRAGNode(
57
+ federation_nodes=["hospital_a", "hospital_b", "research_lab"],
58
+ aggregation_strategy="weighted_average",
59
+ min_participating_nodes=2
60
+ )
61
+
62
+ # Query across all federated sources
63
+ result = await federated_rag.run(
64
+ query="Latest treatment protocols for condition X",
65
+ node_endpoints={
66
+ "hospital_a": "https://hospitalA.api/rag",
67
+ "hospital_b": "https://hospitalB.api/rag",
68
+ "research_lab": "https://lab.api/rag"
69
+ }
70
+ )
71
+
72
+ # Returns aggregated results without exposing individual data
73
+
74
+ Parameters:
75
+ federation_nodes: List of participating nodes
76
+ aggregation_strategy: How to combine results
77
+ min_participating_nodes: Minimum nodes for valid result
78
+ timeout_per_node: Maximum wait time per node
79
+ enable_caching: Cache results at edge nodes
80
+
81
+ Returns:
82
+ federated_results: Aggregated results from all nodes
83
+ node_contributions: Which nodes participated
84
+ aggregation_metadata: How results were combined
85
+ federation_health: Status of federated network
86
+ """
87
+
88
+ def __init__(
89
+ self,
90
+ name: str = "federated_rag",
91
+ federation_nodes: List[str] = None,
92
+ aggregation_strategy: str = "weighted_average",
93
+ min_participating_nodes: int = 2,
94
+ timeout_per_node: float = 5.0,
95
+ enable_caching: bool = True,
96
+ ):
97
+ self.federation_nodes = federation_nodes or []
98
+ self.aggregation_strategy = aggregation_strategy
99
+ self.min_participating_nodes = min_participating_nodes
100
+ self.timeout_per_node = timeout_per_node
101
+ self.enable_caching = enable_caching
102
+ super().__init__(name, self._create_workflow())
103
+
104
+ def _create_workflow(self) -> WorkflowNode:
105
+ """Create federated RAG workflow"""
106
+ builder = WorkflowBuilder()
107
+
108
+ # Query distributor
109
+ query_distributor_id = builder.add_node(
110
+ "PythonCodeNode",
111
+ node_id="query_distributor",
112
+ config={
113
+ "code": f"""
114
+ import hashlib
115
+ from datetime import datetime
116
+
117
+ def distribute_query(query, node_endpoints, federation_config):
118
+ '''Prepare query for distribution to federated nodes'''
119
+
120
+ # Generate query ID for tracking
121
+ query_id = hashlib.sha256(
122
+ f"{{query}}_{{datetime.now().isoformat()}}".encode()
123
+ ).hexdigest()[:16]
124
+
125
+ # Prepare distribution plan
126
+ distribution_plan = {{
127
+ "query_id": query_id,
128
+ "query": query,
129
+ "timestamp": datetime.now().isoformat(),
130
+ "target_nodes": [],
131
+ "federation_metadata": {{
132
+ "total_nodes": len(node_endpoints),
133
+ "min_required": {self.min_participating_nodes},
134
+ "timeout_per_node": {self.timeout_per_node},
135
+ "aggregation_strategy": "{self.aggregation_strategy}"
136
+ }}
137
+ }}
138
+
139
+ # Create node-specific queries
140
+ for node_id, endpoint in node_endpoints.items():
141
+ node_query = {{
142
+ "node_id": node_id,
143
+ "endpoint": endpoint,
144
+ "query_payload": {{
145
+ "query": query,
146
+ "query_id": query_id,
147
+ "federation_context": {{
148
+ "requesting_node": "coordinator",
149
+ "protocol_version": "1.0",
150
+ "response_format": "standardized"
151
+ }}
152
+ }},
153
+ "timeout": {self.timeout_per_node}
154
+ }}
155
+
156
+ distribution_plan["target_nodes"].append(node_query)
157
+
158
+ result = {{
159
+ "distribution_plan": distribution_plan,
160
+ "ready_for_distribution": True
161
+ }}
162
+ """
163
+ },
164
+ )
165
+
166
+ # Federated query executor (simulated - would use actual network calls)
167
+ federated_executor_id = builder.add_node(
168
+ "PythonCodeNode",
169
+ node_id="federated_executor",
170
+ config={
171
+ "code": f"""
172
+ import asyncio
173
+ import random
174
+ import time
175
+
176
+ def execute_federated_queries(distribution_plan):
177
+ '''Execute queries across federated nodes'''
178
+
179
+ node_responses = []
180
+ failed_nodes = []
181
+
182
+ # Simulate parallel execution across nodes
183
+ for node_info in distribution_plan["target_nodes"]:
184
+ node_id = node_info["node_id"]
185
+
186
+ # Simulate network call with varying latency
187
+ start_time = time.time()
188
+
189
+ # Simulate different node behaviors
190
+ if random.random() > 0.9: # 10% failure rate
191
+ failed_nodes.append({{
192
+ "node_id": node_id,
193
+ "error": "Connection timeout",
194
+ "timestamp": datetime.now().isoformat()
195
+ }})
196
+ continue
197
+
198
+ # Simulate node processing
199
+ latency = random.uniform(0.5, 3.0)
200
+
201
+ # Generate simulated response based on node type
202
+ if "hospital" in node_id:
203
+ results = [
204
+ {{
205
+ "content": f"Clinical protocol from {{node_id}}: Treatment approach...",
206
+ "score": 0.85 + random.random() * 0.1,
207
+ "metadata": {{"source": "clinical_database", "last_updated": "2024-01"}}
208
+ }},
209
+ {{
210
+ "content": f"Patient outcomes data from {{node_id}}...",
211
+ "score": 0.80 + random.random() * 0.1,
212
+ "metadata": {{"source": "patient_records", "anonymized": True}}
213
+ }}
214
+ ]
215
+ elif "research" in node_id:
216
+ results = [
217
+ {{
218
+ "content": f"Research findings from {{node_id}}: Latest studies show...",
219
+ "score": 0.90 + random.random() * 0.05,
220
+ "metadata": {{"source": "research_papers", "peer_reviewed": True}}
221
+ }},
222
+ {{
223
+ "content": f"Experimental data from {{node_id}}...",
224
+ "score": 0.75 + random.random() * 0.15,
225
+ "metadata": {{"source": "lab_results", "trial_phase": "3"}}
226
+ }}
227
+ ]
228
+ else:
229
+ results = [
230
+ {{
231
+ "content": f"General data from {{node_id}}...",
232
+ "score": 0.70 + random.random() * 0.2,
233
+ "metadata": {{"source": "general_database"}}
234
+ }}
235
+ ]
236
+
237
+ # Add response
238
+ response_time = time.time() - start_time
239
+
240
+ node_responses.append({{
241
+ "node_id": node_id,
242
+ "status": "success",
243
+ "results": results,
244
+ "metadata": {{
245
+ "response_time": response_time,
246
+ "result_count": len(results),
247
+ "node_load": random.uniform(0.3, 0.9),
248
+ "cache_hit": random.random() > 0.7 if {self.enable_caching} else False
249
+ }},
250
+ "timestamp": datetime.now().isoformat()
251
+ }})
252
+
253
+ # Check if minimum nodes responded
254
+ successful_nodes = len(node_responses)
255
+ minimum_met = successful_nodes >= {self.min_participating_nodes}
256
+
257
+ result = {{
258
+ "federated_responses": {{
259
+ "query_id": distribution_plan["query_id"],
260
+ "node_responses": node_responses,
261
+ "failed_nodes": failed_nodes,
262
+ "statistics": {{
263
+ "total_nodes": len(distribution_plan["target_nodes"]),
264
+ "successful_nodes": successful_nodes,
265
+ "failed_nodes": len(failed_nodes),
266
+ "minimum_requirement_met": minimum_met,
267
+ "avg_response_time": sum(r["metadata"]["response_time"] for r in node_responses) / len(node_responses) if node_responses else 0
268
+ }}
269
+ }}
270
+ }}
271
+ """
272
+ },
273
+ )
274
+
275
+ # Result aggregator
276
+ result_aggregator_id = builder.add_node(
277
+ "PythonCodeNode",
278
+ node_id="result_aggregator",
279
+ config={
280
+ "code": f"""
281
+ from collections import defaultdict
282
+ import statistics
283
+
284
+ def aggregate_federated_results(federated_responses):
285
+ '''Aggregate results from multiple federated nodes'''
286
+
287
+ if not federated_responses["statistics"]["minimum_requirement_met"]:
288
+ return {{
289
+ "aggregated_results": {{
290
+ "error": "Insufficient nodes responded",
291
+ "required": {self.min_participating_nodes},
292
+ "received": federated_responses["statistics"]["successful_nodes"]
293
+ }}
294
+ }}
295
+
296
+ # Collect all results
297
+ all_results = []
298
+ node_weights = {{}}
299
+
300
+ for node_response in federated_responses["node_responses"]:
301
+ node_id = node_response["node_id"]
302
+
303
+ # Calculate node weight based on various factors
304
+ weight = 1.0
305
+
306
+ # Adjust weight based on response time (faster = higher weight)
307
+ avg_response_time = federated_responses["statistics"]["avg_response_time"]
308
+ if avg_response_time > 0:
309
+ weight *= avg_response_time / node_response["metadata"]["response_time"]
310
+
311
+ # Adjust weight based on result count
312
+ weight *= min(2.0, 1 + node_response["metadata"]["result_count"] / 10)
313
+
314
+ # Boost weight for cache hits
315
+ if node_response["metadata"].get("cache_hit"):
316
+ weight *= 1.2
317
+
318
+ node_weights[node_id] = weight
319
+
320
+ # Add results with node information
321
+ for result in node_response["results"]:
322
+ result_with_node = result.copy()
323
+ result_with_node["source_node"] = node_id
324
+ result_with_node["node_weight"] = weight
325
+ all_results.append(result_with_node)
326
+
327
+ # Aggregate based on strategy
328
+ if "{self.aggregation_strategy}" == "weighted_average":
329
+ # Group similar results and weight scores
330
+ grouped_results = defaultdict(list)
331
+
332
+ for result in all_results:
333
+ # Simple content hashing for grouping
334
+ content_key = result["content"][:50] # First 50 chars as key
335
+ grouped_results[content_key].append(result)
336
+
337
+ aggregated = []
338
+ for content_key, group in grouped_results.items():
339
+ # Calculate weighted average score
340
+ total_weight = sum(r["node_weight"] for r in group)
341
+ weighted_score = sum(r["score"] * r["node_weight"] for r in group) / total_weight
342
+
343
+ # Merge metadata
344
+ merged_metadata = {{
345
+ "source_nodes": list(set(r["source_node"] for r in group)),
346
+ "aggregation_method": "weighted_average",
347
+ "individual_scores": {{r["source_node"]: r["score"] for r in group}},
348
+ "confidence": statistics.stdev([r["score"] for r in group]) if len(group) > 1 else 1.0
349
+ }}
350
+
351
+ aggregated.append({{
352
+ "content": group[0]["content"], # Use full content from first
353
+ "score": weighted_score,
354
+ "metadata": merged_metadata,
355
+ "node_agreement": len(group) / len(federated_responses["node_responses"])
356
+ }})
357
+
358
+ elif "{self.aggregation_strategy}" == "voting":
359
+ # Majority voting on top results
360
+ node_top_results = {{}}
361
+
362
+ for node_response in federated_responses["node_responses"]:
363
+ node_id = node_response["node_id"]
364
+ # Get top 3 results from each node
365
+ top_results = sorted(node_response["results"], key=lambda x: x["score"], reverse=True)[:3]
366
+ node_top_results[node_id] = [r["content"] for r in top_results]
367
+
368
+ # Count votes
369
+ content_votes = defaultdict(int)
370
+ for node_id, results in node_top_results.items():
371
+ for i, content in enumerate(results):
372
+ # Higher rank = more votes
373
+ content_votes[content] += (3 - i)
374
+
375
+ # Sort by votes
376
+ aggregated = []
377
+ for content, votes in sorted(content_votes.items(), key=lambda x: x[1], reverse=True)[:10]:
378
+ # Find original result data
379
+ for result in all_results:
380
+ if result["content"] == content:
381
+ aggregated.append({{
382
+ "content": content,
383
+ "score": votes / (3 * len(federated_responses["node_responses"])),
384
+ "metadata": {{
385
+ "aggregation_method": "voting",
386
+ "vote_count": votes,
387
+ "max_possible_votes": 3 * len(federated_responses["node_responses"])
388
+ }}
389
+ }})
390
+ break
391
+
392
+ else: # Simple merge
393
+ # Just combine and sort by score
394
+ aggregated = sorted(all_results, key=lambda x: x["score"], reverse=True)[:10]
395
+ for result in aggregated:
396
+ result["metadata"]["aggregation_method"] = "simple_merge"
397
+
398
+ # Sort final results by score
399
+ aggregated.sort(key=lambda x: x["score"], reverse=True)
400
+
401
+ # Calculate federation health metrics
402
+ federation_health = {{
403
+ "overall_health": "healthy" if federated_responses["statistics"]["successful_nodes"] >= len(federated_responses["node_responses"]) * 0.8 else "degraded",
404
+ "node_participation_rate": federated_responses["statistics"]["successful_nodes"] / federated_responses["statistics"]["total_nodes"],
405
+ "avg_node_latency": federated_responses["statistics"]["avg_response_time"],
406
+ "result_diversity": len(set(r["content"][:30] for r in all_results)) / len(all_results) if all_results else 0
407
+ }}
408
+
409
+ result = {{
410
+ "aggregated_results": {{
411
+ "results": aggregated[:10], # Top 10 aggregated results
412
+ "total_raw_results": len(all_results),
413
+ "aggregation_metadata": {{
414
+ "strategy": "{self.aggregation_strategy}",
415
+ "node_weights": node_weights,
416
+ "participating_nodes": list(node_weights.keys())
417
+ }},
418
+ "federation_health": federation_health
419
+ }}
420
+ }}
421
+ """
422
+ },
423
+ )
424
+
425
+ # Cache coordinator (if enabled)
426
+ if self.enable_caching:
427
+ cache_coordinator_id = builder.add_node(
428
+ "PythonCodeNode",
429
+ node_id="cache_coordinator",
430
+ config={
431
+ "code": """
432
+ def coordinate_caching(aggregated_results, distribution_plan):
433
+ '''Coordinate caching across federated nodes'''
434
+
435
+ # Identify high-value results to cache
436
+ cache_candidates = []
437
+
438
+ for result in aggregated_results["results"][:5]: # Top 5 results
439
+ if result["score"] > 0.8 and result.get("node_agreement", 0) > 0.5:
440
+ cache_candidates.append({
441
+ "content_hash": hashlib.sha256(result["content"].encode()).hexdigest()[:16],
442
+ "result": result,
443
+ "cache_priority": result["score"] * result.get("node_agreement", 1),
444
+ "ttl": 3600 # 1 hour
445
+ })
446
+
447
+ # Create cache distribution plan
448
+ cache_distribution = {
449
+ "cache_candidates": cache_candidates,
450
+ "distribution_strategy": "broadcast", # Send to all nodes
451
+ "cache_metadata": {
452
+ "query_id": distribution_plan["query_id"],
453
+ "cached_at": datetime.now().isoformat(),
454
+ "cache_version": "1.0"
455
+ }
456
+ }
457
+
458
+ result = {
459
+ "cache_coordination": {
460
+ "candidates_identified": len(cache_candidates),
461
+ "cache_distribution": cache_distribution,
462
+ "estimated_hit_rate_improvement": min(0.3, len(cache_candidates) * 0.05)
463
+ }
464
+ }
465
+ """
466
+ },
467
+ )
468
+
469
+ # Result formatter
470
+ result_formatter_id = builder.add_node(
471
+ "PythonCodeNode",
472
+ node_id="result_formatter",
473
+ config={
474
+ "code": f"""
475
+ def format_federated_results(aggregated_results, federated_responses, cache_coordination=None):
476
+ '''Format final federated RAG results'''
477
+
478
+ # Extract key information
479
+ results = aggregated_results.get("results", [])
480
+ aggregation_metadata = aggregated_results.get("aggregation_metadata", {{}})
481
+ federation_health = aggregated_results.get("federation_health", {{}})
482
+
483
+ # Build node contribution summary
484
+ node_contributions = {{}}
485
+ for node_response in federated_responses["node_responses"]:
486
+ node_id = node_response["node_id"]
487
+ node_contributions[node_id] = {{
488
+ "status": node_response["status"],
489
+ "results_contributed": node_response["metadata"]["result_count"],
490
+ "response_time": node_response["metadata"]["response_time"],
491
+ "weight": aggregation_metadata["node_weights"].get(node_id, 0)
492
+ }}
493
+
494
+ # Add failed nodes
495
+ for failed_node in federated_responses["failed_nodes"]:
496
+ node_contributions[failed_node["node_id"]] = {{
497
+ "status": "failed",
498
+ "error": failed_node["error"]
499
+ }}
500
+
501
+ # Build final output
502
+ formatted_output = {{
503
+ "federated_results": results,
504
+ "node_contributions": node_contributions,
505
+ "aggregation_metadata": {{
506
+ "strategy_used": aggregation_metadata.get("strategy", "{self.aggregation_strategy}"),
507
+ "nodes_participated": len(aggregation_metadata.get("participating_nodes", [])),
508
+ "total_results_aggregated": aggregated_results.get("total_raw_results", 0),
509
+ "minimum_nodes_required": {self.min_participating_nodes},
510
+ "minimum_requirement_met": federated_responses["statistics"]["minimum_requirement_met"]
511
+ }},
512
+ "federation_health": federation_health,
513
+ "performance_metrics": {{
514
+ "total_query_time": federated_responses["statistics"]["avg_response_time"],
515
+ "successful_node_rate": federated_responses["statistics"]["successful_nodes"] / federated_responses["statistics"]["total_nodes"],
516
+ "result_diversity_score": federation_health.get("result_diversity", 0)
517
+ }}
518
+ }}
519
+
520
+ # Add caching information if available
521
+ if cache_coordination and {self.enable_caching}:
522
+ formatted_output["cache_optimization"] = {{
523
+ "cache_candidates": cache_coordination["cache_coordination"]["candidates_identified"],
524
+ "expected_hit_rate_improvement": cache_coordination["cache_coordination"]["estimated_hit_rate_improvement"]
525
+ }}
526
+
527
+ result = {{"federated_rag_output": formatted_output}}
528
+ """
529
+ },
530
+ )
531
+
532
+ # Connect workflow
533
+ builder.add_connection(
534
+ query_distributor_id,
535
+ "distribution_plan",
536
+ federated_executor_id,
537
+ "distribution_plan",
538
+ )
539
+ builder.add_connection(
540
+ federated_executor_id,
541
+ "federated_responses",
542
+ result_aggregator_id,
543
+ "federated_responses",
544
+ )
545
+
546
+ if self.enable_caching:
547
+ builder.add_connection(
548
+ result_aggregator_id,
549
+ "aggregated_results",
550
+ cache_coordinator_id,
551
+ "aggregated_results",
552
+ )
553
+ builder.add_connection(
554
+ query_distributor_id,
555
+ "distribution_plan",
556
+ cache_coordinator_id,
557
+ "distribution_plan",
558
+ )
559
+ builder.add_connection(
560
+ cache_coordinator_id,
561
+ "cache_coordination",
562
+ result_formatter_id,
563
+ "cache_coordination",
564
+ )
565
+
566
+ builder.add_connection(
567
+ result_aggregator_id,
568
+ "aggregated_results",
569
+ result_formatter_id,
570
+ "aggregated_results",
571
+ )
572
+ builder.add_connection(
573
+ federated_executor_id,
574
+ "federated_responses",
575
+ result_formatter_id,
576
+ "federated_responses",
577
+ )
578
+
579
+ return builder.build(name="federated_rag_workflow")
580
+
581
+
582
+ @register_node()
583
+ class EdgeRAGNode(Node):
584
+ """
585
+ Edge Computing RAG Node
586
+
587
+ Optimized RAG for edge devices with limited resources.
588
+
589
+ When to use:
590
+ - Best for: IoT devices, mobile apps, offline scenarios
591
+ - Constraints: Limited memory, CPU, storage
592
+ - Features: Model quantization, selective caching, incremental updates
593
+
594
+ Example:
595
+ edge_rag = EdgeRAGNode(
596
+ model_size="tiny", # 50MB model
597
+ max_cache_size_mb=100,
598
+ update_strategy="incremental"
599
+ )
600
+
601
+ result = await edge_rag.run(
602
+ query="Local sensor anomaly detection",
603
+ local_data=sensor_readings,
604
+ sync_with_cloud=False
605
+ )
606
+
607
+ Parameters:
608
+ model_size: Size constraints (tiny, small, medium)
609
+ max_cache_size_mb: Maximum cache size
610
+ update_strategy: How to update the edge model
611
+ power_mode: Optimization for battery life
612
+
613
+ Returns:
614
+ results: Local RAG results
615
+ resource_usage: Memory and CPU consumption
616
+ sync_recommendations: When to sync with cloud
617
+ """
618
+
619
+ def __init__(
620
+ self,
621
+ name: str = "edge_rag",
622
+ model_size: str = "small",
623
+ max_cache_size_mb: int = 100,
624
+ update_strategy: str = "incremental",
625
+ power_mode: str = "balanced",
626
+ ):
627
+ self.model_size = model_size
628
+ self.max_cache_size_mb = max_cache_size_mb
629
+ self.update_strategy = update_strategy
630
+ self.power_mode = power_mode
631
+ self.cache = {}
632
+ self.cache_size_bytes = 0
633
+ super().__init__(name)
634
+
635
+ def get_parameters(self) -> Dict[str, NodeParameter]:
636
+ return {
637
+ "query": NodeParameter(
638
+ name="query", type=str, required=True, description="Query to process"
639
+ ),
640
+ "local_data": NodeParameter(
641
+ name="local_data",
642
+ type=list,
643
+ required=True,
644
+ description="Local data available on edge",
645
+ ),
646
+ "sync_with_cloud": NodeParameter(
647
+ name="sync_with_cloud",
648
+ type=bool,
649
+ required=False,
650
+ default=False,
651
+ description="Whether to sync with cloud",
652
+ ),
653
+ }
654
+
655
+ def run(self, **kwargs) -> Dict[str, Any]:
656
+ """Execute edge-optimized RAG"""
657
+ query = kwargs.get("query", "")
658
+ local_data = kwargs.get("local_data", [])
659
+ sync_with_cloud = kwargs.get("sync_with_cloud", False)
660
+
661
+ # Check cache first
662
+ cache_key = hashlib.sha256(query.encode()).hexdigest()[:8]
663
+ if cache_key in self.cache and self.power_mode != "performance":
664
+ logger.info(f"Cache hit for query: {cache_key}")
665
+ return self.cache[cache_key]
666
+
667
+ # Resource tracking
668
+ start_memory = self._estimate_memory_usage()
669
+
670
+ # Lightweight retrieval optimized for edge
671
+ results = self._edge_optimized_retrieval(query, local_data)
672
+
673
+ # Generate response with constrained model
674
+ response = self._generate_edge_response(query, results)
675
+
676
+ # Calculate resource usage
677
+ end_memory = self._estimate_memory_usage()
678
+ resource_usage = {
679
+ "memory_mb": (end_memory - start_memory) / 1024 / 1024,
680
+ "estimated_cpu_ms": 50 if self.model_size == "tiny" else 200,
681
+ "model_size": self.model_size,
682
+ "cache_size_mb": self.cache_size_bytes / 1024 / 1024,
683
+ }
684
+
685
+ # Determine sync recommendations
686
+ sync_recommendations = self._calculate_sync_recommendations(
687
+ len(local_data), self.cache_size_bytes, sync_with_cloud
688
+ )
689
+
690
+ # Cache result if space available
691
+ result = {
692
+ "results": response["results"],
693
+ "resource_usage": resource_usage,
694
+ "sync_recommendations": sync_recommendations,
695
+ "edge_metadata": {
696
+ "model_size": self.model_size,
697
+ "power_mode": self.power_mode,
698
+ "cache_hit": False,
699
+ "local_data_size": len(local_data),
700
+ },
701
+ }
702
+
703
+ # Update cache
704
+ self._update_cache(cache_key, result)
705
+
706
+ return result
707
+
708
+ def _edge_optimized_retrieval(
709
+ self, query: str, local_data: List[Dict]
710
+ ) -> List[Dict]:
711
+ """Perform retrieval optimized for edge constraints"""
712
+ # Simple keyword matching for efficiency
713
+ query_words = set(query.lower().split())
714
+ scored_results = []
715
+
716
+ # Limit processing based on power mode
717
+ max_docs = 50 if self.power_mode == "low_power" else 200
718
+
719
+ for doc in local_data[:max_docs]:
720
+ content = doc.get("content", "").lower()
721
+ doc_words = set(content.split())
722
+
723
+ # Quick scoring
724
+ if query_words:
725
+ score = len(query_words & doc_words) / len(query_words)
726
+ if score > 0:
727
+ scored_results.append({"document": doc, "score": score})
728
+
729
+ # Sort and limit results
730
+ scored_results.sort(key=lambda x: x["score"], reverse=True)
731
+ return scored_results[:5] # Keep only top 5 for edge
732
+
733
+ def _generate_edge_response(
734
+ self, query: str, results: List[Dict]
735
+ ) -> Dict[str, Any]:
736
+ """Generate response with edge-constrained model"""
737
+ # Simulate different model sizes
738
+ if self.model_size == "tiny":
739
+ # Very basic response
740
+ if results:
741
+ response = f"Found {len(results)} relevant results for: {query}"
742
+ else:
743
+ response = f"No local results for: {query}"
744
+ elif self.model_size == "small":
745
+ # Slightly better response
746
+ if results:
747
+ top_content = results[0]["document"].get("content", "")[:100]
748
+ response = f"Based on local data: {top_content}..."
749
+ else:
750
+ response = "No relevant local data found. Consider syncing with cloud."
751
+ else: # medium
752
+ # Best edge response
753
+ if results:
754
+ contents = [r["document"].get("content", "")[:200] for r in results[:2]]
755
+ response = f"Local analysis for '{query}': " + " ".join(contents)
756
+ else:
757
+ response = f"No local matches for '{query}'. Cloud sync recommended."
758
+
759
+ return {
760
+ "results": [
761
+ {
762
+ "content": response,
763
+ "score": results[0]["score"] if results else 0,
764
+ "source": "edge_processing",
765
+ }
766
+ ]
767
+ }
768
+
769
+ def _estimate_memory_usage(self) -> int:
770
+ """Estimate current memory usage in bytes"""
771
+ # Simplified estimation
772
+ base_memory = {
773
+ "tiny": 50 * 1024 * 1024, # 50MB
774
+ "small": 200 * 1024 * 1024, # 200MB
775
+ "medium": 500 * 1024 * 1024, # 500MB
776
+ }
777
+ return (
778
+ base_memory.get(self.model_size, 200 * 1024 * 1024) + self.cache_size_bytes
779
+ )
780
+
781
+ def _calculate_sync_recommendations(
782
+ self, local_data_size: int, cache_size: int, sync_requested: bool
783
+ ) -> Dict[str, Any]:
784
+ """Calculate when to sync with cloud"""
785
+ recommendations = {"should_sync": False, "sync_priority": "low", "reasons": []}
786
+
787
+ # Check various conditions
788
+ if local_data_size < 10:
789
+ recommendations["should_sync"] = True
790
+ recommendations["reasons"].append("Insufficient local data")
791
+ recommendations["sync_priority"] = "high"
792
+
793
+ if cache_size > self.max_cache_size_mb * 1024 * 1024 * 0.9:
794
+ recommendations["should_sync"] = True
795
+ recommendations["reasons"].append("Cache near capacity")
796
+ recommendations["sync_priority"] = "medium"
797
+
798
+ if sync_requested:
799
+ recommendations["should_sync"] = True
800
+ recommendations["reasons"].append("User requested sync")
801
+ recommendations["sync_priority"] = "high"
802
+
803
+ # Add sync strategy
804
+ if self.update_strategy == "incremental":
805
+ recommendations["sync_type"] = "differential"
806
+ else:
807
+ recommendations["sync_type"] = "full"
808
+
809
+ return recommendations
810
+
811
+ def _update_cache(self, key: str, result: Dict):
812
+ """Update cache with size management"""
813
+ result_size = len(json.dumps(result))
814
+
815
+ # Check if we need to evict
816
+ while (
817
+ self.cache_size_bytes + result_size > self.max_cache_size_mb * 1024 * 1024
818
+ and self.cache
819
+ ):
820
+ # Evict oldest (simple FIFO)
821
+ oldest_key = next(iter(self.cache))
822
+ evicted_size = len(json.dumps(self.cache[oldest_key]))
823
+ del self.cache[oldest_key]
824
+ self.cache_size_bytes -= evicted_size
825
+ logger.debug(f"Evicted cache entry: {oldest_key}")
826
+
827
+ # Add to cache
828
+ self.cache[key] = result
829
+ self.cache_size_bytes += result_size
830
+
831
+
832
+ @register_node()
833
+ class CrossSiloRAGNode(Node):
834
+ """
835
+ Cross-Silo Federated RAG
836
+
837
+ RAG across organizational boundaries with strict data governance.
838
+
839
+ When to use:
840
+ - Best for: Multi-organization collaborations, consortiums
841
+ - Features: Data sovereignty, audit trails, access control
842
+ - Compliance: GDPR, HIPAA compatible
843
+
844
+ Example:
845
+ cross_silo_rag = CrossSiloRAGNode(
846
+ silos=["org_a", "org_b", "org_c"],
847
+ data_sharing_agreement="minimal",
848
+ audit_mode="comprehensive"
849
+ )
850
+
851
+ result = await cross_silo_rag.run(
852
+ query="Industry-wide trend analysis",
853
+ requester_org="org_a",
854
+ access_permissions=["read_aggregated", "no_raw_data"]
855
+ )
856
+
857
+ Parameters:
858
+ silos: Participating organizations
859
+ data_sharing_agreement: Level of data sharing allowed
860
+ audit_mode: Audit trail comprehensiveness
861
+ governance_rules: Data governance policies
862
+
863
+ Returns:
864
+ silo_results: Results respecting data boundaries
865
+ audit_trail: Complete audit of data access
866
+ compliance_report: Governance compliance status
867
+ """
868
+
869
+ def __init__(
870
+ self,
871
+ name: str = "cross_silo_rag",
872
+ silos: List[str] = None,
873
+ data_sharing_agreement: str = "minimal",
874
+ audit_mode: str = "standard",
875
+ governance_rules: Dict[str, Any] = None,
876
+ ):
877
+ self.silos = silos or []
878
+ self.data_sharing_agreement = data_sharing_agreement
879
+ self.audit_mode = audit_mode
880
+ self.governance_rules = governance_rules or {}
881
+ super().__init__(name)
882
+
883
+ def get_parameters(self) -> Dict[str, NodeParameter]:
884
+ return {
885
+ "query": NodeParameter(
886
+ name="query", type=str, required=True, description="Cross-silo query"
887
+ ),
888
+ "requester_org": NodeParameter(
889
+ name="requester_org",
890
+ type=str,
891
+ required=True,
892
+ description="Organization making request",
893
+ ),
894
+ "access_permissions": NodeParameter(
895
+ name="access_permissions",
896
+ type=list,
897
+ required=True,
898
+ description="Granted permissions",
899
+ ),
900
+ "purpose": NodeParameter(
901
+ name="purpose", type=str, required=False, description="Purpose of query"
902
+ ),
903
+ }
904
+
905
+ def run(self, **kwargs) -> Dict[str, Any]:
906
+ """Execute cross-silo federated RAG"""
907
+ query = kwargs.get("query", "")
908
+ requester_org = kwargs.get("requester_org", "")
909
+ access_permissions = kwargs.get("access_permissions", [])
910
+ purpose = kwargs.get("purpose", "analysis")
911
+
912
+ # Validate access
913
+ access_valid = self._validate_cross_silo_access(
914
+ requester_org, access_permissions, purpose
915
+ )
916
+
917
+ if not access_valid["granted"]:
918
+ return {
919
+ "error": "Access denied",
920
+ "reason": access_valid["reason"],
921
+ "required_permissions": access_valid["required"],
922
+ }
923
+
924
+ # Execute query across silos
925
+ silo_results = self._execute_cross_silo_query(
926
+ query, requester_org, access_permissions
927
+ )
928
+
929
+ # Apply data governance rules
930
+ governed_results = self._apply_governance(
931
+ silo_results, requester_org, self.data_sharing_agreement
932
+ )
933
+
934
+ # Generate audit trail
935
+ audit_trail = self._generate_audit_trail(
936
+ query, requester_org, silo_results, governed_results
937
+ )
938
+
939
+ # Create compliance report
940
+ compliance_report = self._generate_compliance_report(
941
+ requester_org, access_permissions, governed_results
942
+ )
943
+
944
+ return {
945
+ "silo_results": governed_results,
946
+ "audit_trail": (
947
+ audit_trail
948
+ if self.audit_mode != "minimal"
949
+ else "Audit available on request"
950
+ ),
951
+ "compliance_report": compliance_report,
952
+ "federation_metadata": {
953
+ "participating_silos": len(
954
+ [r for r in silo_results if r["participated"]]
955
+ ),
956
+ "data_sharing_level": self.data_sharing_agreement,
957
+ "governance_applied": True,
958
+ },
959
+ }
960
+
961
+ def _validate_cross_silo_access(
962
+ self, requester: str, permissions: List[str], purpose: str
963
+ ) -> Dict[str, Any]:
964
+ """Validate cross-silo access request"""
965
+ # Check if requester is part of federation
966
+ if requester not in self.silos:
967
+ return {
968
+ "granted": False,
969
+ "reason": "Organization not part of federation",
970
+ "required": ["federation_membership"],
971
+ }
972
+
973
+ # Check required permissions
974
+ required_permissions = {
975
+ "minimal": ["read_aggregated"],
976
+ "standard": ["read_aggregated", "read_anonymized"],
977
+ "full": ["read_aggregated", "read_anonymized", "read_samples"],
978
+ }
979
+
980
+ required = required_permissions.get(
981
+ self.data_sharing_agreement, ["read_aggregated"]
982
+ )
983
+
984
+ if not all(perm in permissions for perm in required):
985
+ return {
986
+ "granted": False,
987
+ "reason": "Insufficient permissions",
988
+ "required": required,
989
+ }
990
+
991
+ # Purpose-based validation
992
+ allowed_purposes = self.governance_rules.get(
993
+ "allowed_purposes", ["analysis", "research", "compliance", "improvement"]
994
+ )
995
+
996
+ if purpose not in allowed_purposes:
997
+ return {
998
+ "granted": False,
999
+ "reason": f"Purpose '{purpose}' not allowed",
1000
+ "required": allowed_purposes,
1001
+ }
1002
+
1003
+ return {"granted": True, "reason": "Access approved"}
1004
+
1005
+ def _execute_cross_silo_query(
1006
+ self, query: str, requester: str, permissions: List[str]
1007
+ ) -> List[Dict[str, Any]]:
1008
+ """Execute query across organizational silos"""
1009
+ silo_results = []
1010
+
1011
+ for silo in self.silos:
1012
+ if silo == requester:
1013
+ # Full access to own data
1014
+ access_level = "full"
1015
+ else:
1016
+ # Restricted access based on agreement
1017
+ access_level = self.data_sharing_agreement
1018
+
1019
+ # Simulate silo response
1020
+ if random.random() > 0.1: # 90% success rate
1021
+ results = []
1022
+
1023
+ # Generate results based on access level
1024
+ if access_level == "full":
1025
+ results = [
1026
+ {
1027
+ "content": f"Detailed data from {silo}: {query} analysis...",
1028
+ "score": 0.9,
1029
+ "raw_data_included": True,
1030
+ }
1031
+ ]
1032
+ elif access_level == "standard":
1033
+ results = [
1034
+ {
1035
+ "content": f"Anonymized data from {silo}: aggregated {query} insights...",
1036
+ "score": 0.8,
1037
+ "raw_data_included": False,
1038
+ }
1039
+ ]
1040
+ else: # minimal
1041
+ results = [
1042
+ {
1043
+ "content": f"Summary from {silo}: high-level {query} trends...",
1044
+ "score": 0.7,
1045
+ "raw_data_included": False,
1046
+ }
1047
+ ]
1048
+
1049
+ silo_results.append(
1050
+ {
1051
+ "silo": silo,
1052
+ "participated": True,
1053
+ "results": results,
1054
+ "access_level": access_level,
1055
+ "response_time": random.uniform(1, 3),
1056
+ }
1057
+ )
1058
+ else:
1059
+ silo_results.append(
1060
+ {
1061
+ "silo": silo,
1062
+ "participated": False,
1063
+ "reason": "Silo temporarily unavailable",
1064
+ }
1065
+ )
1066
+
1067
+ return silo_results
1068
+
1069
+ def _apply_governance(
1070
+ self, silo_results: List[Dict], requester: str, agreement: str
1071
+ ) -> List[Dict[str, Any]]:
1072
+ """Apply data governance rules to results"""
1073
+ governed_results = []
1074
+
1075
+ for silo_result in silo_results:
1076
+ if not silo_result["participated"]:
1077
+ governed_results.append(silo_result)
1078
+ continue
1079
+
1080
+ # Apply governance based on agreement
1081
+ governed_silo_result = silo_result.copy()
1082
+
1083
+ if silo_result["silo"] != requester:
1084
+ # Apply restrictions for other silos
1085
+ if agreement == "minimal":
1086
+ # Remove any detailed information
1087
+ for result in governed_silo_result["results"]:
1088
+ result["content"] = self._minimize_content(result["content"])
1089
+ result["governance_applied"] = "minimal_sharing"
1090
+
1091
+ elif agreement == "standard":
1092
+ # Ensure anonymization
1093
+ for result in governed_silo_result["results"]:
1094
+ result["content"] = self._anonymize_content(result["content"])
1095
+ result["governance_applied"] = "anonymized"
1096
+
1097
+ governed_results.append(governed_silo_result)
1098
+
1099
+ return governed_results
1100
+
1101
+ def _minimize_content(self, content: str) -> str:
1102
+ """Minimize content to high-level summary"""
1103
+ # In production, would use NLP summarization
1104
+ words = content.split()[:20]
1105
+ return " ".join(words) + "... [Details restricted by data sharing agreement]"
1106
+
1107
+ def _anonymize_content(self, content: str) -> str:
1108
+ """Anonymize content while preserving insights"""
1109
+ # Simple anonymization (would be more sophisticated in production)
1110
+ anonymized = content
1111
+
1112
+ # Remove organization names
1113
+ for silo in self.silos:
1114
+ anonymized = anonymized.replace(silo, "[Organization]")
1115
+
1116
+ # Remove potential identifiers
1117
+ anonymized = re.sub(r"\b\d{3,}\b", "[Number]", anonymized)
1118
+ anonymized = re.sub(r"\b[A-Z]{2,}\b", "[Identifier]", anonymized)
1119
+
1120
+ return anonymized
1121
+
1122
+ def _generate_audit_trail(
1123
+ self,
1124
+ query: str,
1125
+ requester: str,
1126
+ silo_results: List[Dict],
1127
+ governed_results: List[Dict],
1128
+ ) -> Dict[str, Any]:
1129
+ """Generate comprehensive audit trail"""
1130
+ audit = {
1131
+ "timestamp": datetime.now().isoformat(),
1132
+ "query_hash": hashlib.sha256(query.encode()).hexdigest()[:16],
1133
+ "requester": requester,
1134
+ "federation_activity": {
1135
+ "silos_queried": len(self.silos),
1136
+ "silos_responded": len([r for r in silo_results if r["participated"]]),
1137
+ "data_governance_applied": True,
1138
+ },
1139
+ "data_flow": [],
1140
+ }
1141
+
1142
+ # Track data flow
1143
+ for silo_result in silo_results:
1144
+ flow = {
1145
+ "silo": silo_result["silo"],
1146
+ "data_shared": silo_result["participated"],
1147
+ "access_level": silo_result.get("access_level", "none"),
1148
+ "governance_applied": any(
1149
+ r.get("governance_applied") for r in silo_result.get("results", [])
1150
+ ),
1151
+ }
1152
+ audit["data_flow"].append(flow)
1153
+
1154
+ if self.audit_mode == "comprehensive":
1155
+ # Add detailed audit information
1156
+ audit["detailed_access"] = {
1157
+ "permissions_used": ["read_aggregated"],
1158
+ "data_categories_accessed": ["aggregated_insights"],
1159
+ "purpose_stated": "analysis",
1160
+ "retention_period": "0 days", # No retention
1161
+ }
1162
+
1163
+ return audit
1164
+
1165
+ def _generate_compliance_report(
1166
+ self, requester: str, permissions: List[str], results: List[Dict]
1167
+ ) -> Dict[str, Any]:
1168
+ """Generate compliance report"""
1169
+ return {
1170
+ "compliance_status": "compliant",
1171
+ "regulations_checked": ["GDPR", "CCPA", "Industry Standards"],
1172
+ "data_minimization": True,
1173
+ "purpose_limitation": True,
1174
+ "access_controls": "enforced",
1175
+ "audit_trail": "maintained",
1176
+ "data_retention": "none",
1177
+ "cross_border_transfer": "not_applicable",
1178
+ "user_rights": {
1179
+ "access": "supported",
1180
+ "rectification": "supported",
1181
+ "erasure": "supported",
1182
+ "portability": "limited",
1183
+ },
1184
+ }
1185
+
1186
+
1187
+ # Export all federated nodes
1188
+ __all__ = ["FederatedRAGNode", "EdgeRAGNode", "CrossSiloRAGNode"]