kailash 0.1.3__py3-none-any.whl → 0.1.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -7,7 +7,7 @@ from kailash.nodes.base import Node, NodeParameter, register_node
7
7
 
8
8
 
9
9
  @register_node()
10
- class EmbeddingGenerator(Node):
10
+ class EmbeddingGeneratorNode(Node):
11
11
  """
12
12
  Vector embedding generator for RAG systems and semantic similarity operations.
13
13
 
@@ -61,46 +61,42 @@ class EmbeddingGenerator(Node):
61
61
  - Updates usage statistics and cost tracking
62
62
 
63
63
  Examples:
64
-
65
- Single text embedding::
66
-
67
- embedder = EmbeddingGenerator()
68
- result = embedder.run(
69
- provider="openai",
70
- model="text-embedding-3-large",
71
- input_text="This is a sample document to embed",
72
- operation="embed_text"
73
- )
74
-
75
- Batch document embedding:
76
-
77
- batch_embedder = EmbeddingGenerator()
78
- result = batch_embedder.run(
79
- provider="huggingface",
80
- model="sentence-transformers/all-MiniLM-L6-v2",
81
- input_texts=[
82
- "First document content...",
83
- "Second document content...",
84
- "Third document content..."
85
- ],
86
- operation="embed_batch",
87
- batch_size=32,
88
- cache_enabled=True
89
- )
90
-
91
- Similarity calculation:
92
-
93
- similarity = EmbeddingGenerator()
94
- result = similarity.run(
95
- operation="calculate_similarity",
96
- embedding_1=[0.1, 0.2, 0.3, ...],
97
- embedding_2=[0.15, 0.25, 0.35, ...],
98
- similarity_metric="cosine"
99
- )
64
+ >>> # Single text embedding
65
+ >>> embedder = EmbeddingGeneratorNode()
66
+ >>> result = embedder.run(
67
+ ... provider="openai",
68
+ ... model="text-embedding-3-large",
69
+ ... input_text="This is a sample document to embed",
70
+ ... operation="embed_text"
71
+ ... )
72
+
73
+ >>> # Batch document embedding
74
+ >>> batch_embedder = EmbeddingGeneratorNode()
75
+ >>> result = batch_embedder.run(
76
+ ... provider="huggingface",
77
+ ... model="sentence-transformers/all-MiniLM-L6-v2",
78
+ ... input_texts=[
79
+ ... "First document content...",
80
+ ... "Second document content...",
81
+ ... "Third document content..."
82
+ ... ],
83
+ ... operation="embed_batch",
84
+ ... batch_size=32,
85
+ ... cache_enabled=True
86
+ ... )
87
+
88
+ >>> # Similarity calculation
89
+ >>> similarity = EmbeddingGeneratorNode()
90
+ >>> result = similarity.run(
91
+ ... operation="calculate_similarity",
92
+ ... embedding_1=[0.1, 0.2, 0.3], # ... removed for doctest
93
+ ... embedding_2=[0.15, 0.25, 0.35], # ... removed for doctest
94
+ ... similarity_metric="cosine"
95
+ ... )
100
96
 
101
97
  Cached embedding with MCP integration:
102
98
 
103
- mcp_embedder = EmbeddingGenerator()
99
+ mcp_embedder = EmbeddingGeneratorNode()
104
100
  result = mcp_embedder.run(
105
101
  provider="azure",
106
102
  model="text-embedding-3-small",