kailash 0.1.1__py3-none-any.whl → 0.1.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (51) hide show
  1. kailash/api/__init__.py +7 -0
  2. kailash/api/workflow_api.py +383 -0
  3. kailash/nodes/__init__.py +2 -1
  4. kailash/nodes/ai/__init__.py +26 -0
  5. kailash/nodes/ai/ai_providers.py +1272 -0
  6. kailash/nodes/ai/embedding_generator.py +853 -0
  7. kailash/nodes/ai/llm_agent.py +1166 -0
  8. kailash/nodes/api/auth.py +3 -3
  9. kailash/nodes/api/graphql.py +2 -2
  10. kailash/nodes/api/http.py +391 -48
  11. kailash/nodes/api/rate_limiting.py +2 -2
  12. kailash/nodes/api/rest.py +465 -57
  13. kailash/nodes/base.py +71 -12
  14. kailash/nodes/code/python.py +2 -1
  15. kailash/nodes/data/__init__.py +7 -0
  16. kailash/nodes/data/readers.py +28 -26
  17. kailash/nodes/data/retrieval.py +178 -0
  18. kailash/nodes/data/sharepoint_graph.py +7 -7
  19. kailash/nodes/data/sources.py +65 -0
  20. kailash/nodes/data/sql.py +7 -5
  21. kailash/nodes/data/vector_db.py +2 -2
  22. kailash/nodes/data/writers.py +6 -3
  23. kailash/nodes/logic/__init__.py +2 -1
  24. kailash/nodes/logic/operations.py +2 -1
  25. kailash/nodes/logic/workflow.py +439 -0
  26. kailash/nodes/mcp/__init__.py +11 -0
  27. kailash/nodes/mcp/client.py +558 -0
  28. kailash/nodes/mcp/resource.py +682 -0
  29. kailash/nodes/mcp/server.py +577 -0
  30. kailash/nodes/transform/__init__.py +16 -1
  31. kailash/nodes/transform/chunkers.py +78 -0
  32. kailash/nodes/transform/formatters.py +96 -0
  33. kailash/nodes/transform/processors.py +5 -3
  34. kailash/runtime/docker.py +8 -6
  35. kailash/sdk_exceptions.py +24 -10
  36. kailash/tracking/metrics_collector.py +2 -1
  37. kailash/tracking/models.py +0 -20
  38. kailash/tracking/storage/database.py +4 -4
  39. kailash/tracking/storage/filesystem.py +0 -1
  40. kailash/utils/templates.py +6 -6
  41. kailash/visualization/performance.py +7 -7
  42. kailash/visualization/reports.py +1 -1
  43. kailash/workflow/graph.py +4 -4
  44. kailash/workflow/mock_registry.py +1 -1
  45. {kailash-0.1.1.dist-info → kailash-0.1.3.dist-info}/METADATA +441 -47
  46. kailash-0.1.3.dist-info/RECORD +83 -0
  47. kailash-0.1.1.dist-info/RECORD +0 -69
  48. {kailash-0.1.1.dist-info → kailash-0.1.3.dist-info}/WHEEL +0 -0
  49. {kailash-0.1.1.dist-info → kailash-0.1.3.dist-info}/entry_points.txt +0 -0
  50. {kailash-0.1.1.dist-info → kailash-0.1.3.dist-info}/licenses/LICENSE +0 -0
  51. {kailash-0.1.1.dist-info → kailash-0.1.3.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,7 @@
1
+ """
2
+ Kailash API module for exposing workflows as REST APIs.
3
+ """
4
+
5
+ from .workflow_api import HierarchicalRAGAPI, WorkflowAPI, create_workflow_api
6
+
7
+ __all__ = ["WorkflowAPI", "HierarchicalRAGAPI", "create_workflow_api"]
@@ -0,0 +1,383 @@
1
+ """
2
+ Lean API wrapper for Kailash workflows using FastAPI.
3
+
4
+ This module provides a general-purpose API wrapper that can expose any Kailash
5
+ workflow as a REST API with minimal configuration.
6
+ """
7
+
8
+ import asyncio
9
+ from contextlib import asynccontextmanager
10
+ from enum import Enum
11
+ from typing import Any, Dict, List, Optional, Union
12
+
13
+ import uvicorn
14
+ from fastapi import BackgroundTasks, FastAPI, HTTPException
15
+ from fastapi.responses import StreamingResponse
16
+ from pydantic import BaseModel, Field
17
+
18
+ from kailash.runtime.local import LocalRuntime
19
+ from kailash.workflow.builder import WorkflowBuilder
20
+ from kailash.workflow.graph import Workflow
21
+
22
+
23
+ class ExecutionMode(str, Enum):
24
+ """Execution modes for workflow API."""
25
+
26
+ SYNC = "sync"
27
+ ASYNC = "async"
28
+ STREAM = "stream"
29
+
30
+
31
+ class WorkflowRequest(BaseModel):
32
+ """Base request model for workflow execution."""
33
+
34
+ inputs: Dict[str, Any] = Field(..., description="Input data for workflow nodes")
35
+ config: Optional[Dict[str, Any]] = Field(
36
+ None, description="Node configuration overrides"
37
+ )
38
+ mode: ExecutionMode = Field(ExecutionMode.SYNC, description="Execution mode")
39
+
40
+
41
+ class WorkflowResponse(BaseModel):
42
+ """Base response model for workflow execution."""
43
+
44
+ outputs: Dict[str, Any] = Field(..., description="Output data from workflow nodes")
45
+ execution_time: float = Field(..., description="Execution time in seconds")
46
+ workflow_id: str = Field(..., description="Workflow identifier")
47
+ version: str = Field(..., description="Workflow version")
48
+
49
+
50
+ class WorkflowAPI:
51
+ """
52
+ Lean API wrapper for Kailash workflows.
53
+
54
+ This class provides a minimal, efficient way to expose any Kailash workflow
55
+ as a REST API with support for synchronous, asynchronous, and streaming execution.
56
+
57
+ Example:
58
+ >>> # For any workflow
59
+ >>> from my_workflows import rag_workflow
60
+ >>> api = WorkflowAPI(rag_workflow)
61
+ >>> api.run(port=8000)
62
+ """
63
+
64
+ def __init__(
65
+ self,
66
+ workflow: Union[WorkflowBuilder, Workflow],
67
+ app_name: str = "Kailash Workflow API",
68
+ version: str = "1.0.0",
69
+ description: str = "API wrapper for Kailash workflow execution",
70
+ ):
71
+ """
72
+ Initialize the API wrapper.
73
+
74
+ Args:
75
+ workflow: The WorkflowBuilder or Workflow instance to expose
76
+ app_name: Name of the API application
77
+ version: API version
78
+ description: API description
79
+ """
80
+ if isinstance(workflow, WorkflowBuilder):
81
+ self.workflow = workflow
82
+ self.workflow_graph = workflow.build()
83
+ self.workflow_id = getattr(workflow, "workflow_id", "unnamed")
84
+ self.version = getattr(workflow, "version", "1.0.0")
85
+ else: # Workflow instance
86
+ self.workflow = workflow
87
+ self.workflow_graph = workflow
88
+ self.workflow_id = workflow.workflow_id
89
+ self.version = workflow.version
90
+
91
+ self.runtime = LocalRuntime()
92
+
93
+ # Create FastAPI app with lifespan management
94
+ self.app = FastAPI(
95
+ title=app_name,
96
+ version=version,
97
+ description=description,
98
+ lifespan=self._lifespan,
99
+ )
100
+
101
+ # Setup routes
102
+ self._setup_routes()
103
+
104
+ # Cache for async executions
105
+ self._execution_cache: Dict[str, Dict[str, Any]] = {}
106
+
107
+ @asynccontextmanager
108
+ async def _lifespan(self, app: FastAPI):
109
+ """Manage app lifecycle."""
110
+ # Startup
111
+ yield
112
+ # Shutdown - cleanup cache
113
+ self._execution_cache.clear()
114
+
115
+ def _setup_routes(self):
116
+ """Setup API routes dynamically based on workflow."""
117
+
118
+ # Main execution endpoint
119
+ @self.app.post("/execute", response_model=WorkflowResponse)
120
+ async def execute_workflow(
121
+ request: WorkflowRequest, background_tasks: BackgroundTasks
122
+ ):
123
+ """Execute the workflow with provided inputs."""
124
+
125
+ if request.mode == ExecutionMode.SYNC:
126
+ return await self._execute_sync(request)
127
+ elif request.mode == ExecutionMode.ASYNC:
128
+ return await self._execute_async(request, background_tasks)
129
+ else: # STREAM
130
+ return StreamingResponse(
131
+ self._execute_stream(request), media_type="application/json"
132
+ )
133
+
134
+ # Status endpoint for async executions
135
+ @self.app.get("/status/{execution_id}")
136
+ async def get_execution_status(execution_id: str):
137
+ """Get status of async execution."""
138
+ if execution_id not in self._execution_cache:
139
+ raise HTTPException(status_code=404, detail="Execution not found")
140
+ return self._execution_cache[execution_id]
141
+
142
+ # Workflow metadata endpoint
143
+ @self.app.get("/workflow/info")
144
+ async def get_workflow_info():
145
+ """Get workflow metadata and structure."""
146
+ graph_data = self.workflow_graph
147
+ return {
148
+ "id": self.workflow_id,
149
+ "version": self.version,
150
+ "nodes": list(graph_data.nodes()),
151
+ "edges": list(graph_data.edges()),
152
+ "input_nodes": [
153
+ n for n in graph_data.nodes() if graph_data.in_degree(n) == 0
154
+ ],
155
+ "output_nodes": [
156
+ n for n in graph_data.nodes() if graph_data.out_degree(n) == 0
157
+ ],
158
+ }
159
+
160
+ # Health check
161
+ @self.app.get("/health")
162
+ async def health_check():
163
+ """Check API health."""
164
+ return {"status": "healthy", "workflow": self.workflow_id}
165
+
166
+ async def _execute_sync(self, request: WorkflowRequest) -> WorkflowResponse:
167
+ """Execute workflow synchronously."""
168
+ import time
169
+
170
+ start_time = time.time()
171
+
172
+ try:
173
+ # Apply configuration overrides if provided
174
+ if request.config:
175
+ for node_id, config in request.config.items():
176
+ # This would need workflow builder enhancement to support
177
+ # dynamic config updates
178
+ pass
179
+
180
+ # Execute workflow with inputs
181
+ results = await asyncio.to_thread(
182
+ self.runtime.execute, self.workflow_graph, request.inputs
183
+ )
184
+
185
+ # Handle tuple return from runtime
186
+ if isinstance(results, tuple):
187
+ results = results[0] if results else {}
188
+
189
+ execution_time = time.time() - start_time
190
+
191
+ return WorkflowResponse(
192
+ outputs=results,
193
+ execution_time=execution_time,
194
+ workflow_id=self.workflow_id,
195
+ version=self.version,
196
+ )
197
+
198
+ except Exception as e:
199
+ raise HTTPException(status_code=500, detail=str(e))
200
+
201
+ async def _execute_async(
202
+ self, request: WorkflowRequest, background_tasks: BackgroundTasks
203
+ ):
204
+ """Execute workflow asynchronously."""
205
+ import uuid
206
+
207
+ execution_id = str(uuid.uuid4())
208
+
209
+ # Initialize cache entry
210
+ self._execution_cache[execution_id] = {
211
+ "status": "pending",
212
+ "workflow_id": self.workflow_id,
213
+ "version": self.version,
214
+ }
215
+
216
+ # Schedule background execution
217
+ background_tasks.add_task(self._run_async_execution, execution_id, request)
218
+
219
+ return {
220
+ "execution_id": execution_id,
221
+ "status": "pending",
222
+ "message": f"Execution started. Check status at /status/{execution_id}",
223
+ }
224
+
225
+ async def _run_async_execution(self, execution_id: str, request: WorkflowRequest):
226
+ """Run async execution in background."""
227
+ try:
228
+ self._execution_cache[execution_id]["status"] = "running"
229
+
230
+ result = await self._execute_sync(request)
231
+
232
+ self._execution_cache[execution_id].update(
233
+ {"status": "completed", "result": result.dict()}
234
+ )
235
+
236
+ except Exception as e:
237
+ self._execution_cache[execution_id].update(
238
+ {"status": "failed", "error": str(e)}
239
+ )
240
+
241
+ async def _execute_stream(self, request: WorkflowRequest):
242
+ """Execute workflow with streaming response."""
243
+ import json
244
+ import time
245
+
246
+ try:
247
+ # For streaming, we'd need workflow runner enhancement
248
+ # to support progress callbacks. For now, simulate with
249
+ # start/end events
250
+
251
+ yield json.dumps(
252
+ {
253
+ "event": "start",
254
+ "workflow_id": self.workflow_id,
255
+ "timestamp": time.time(),
256
+ }
257
+ ) + "\n"
258
+
259
+ result = await self._execute_sync(request)
260
+
261
+ yield json.dumps(
262
+ {"event": "complete", "result": result.dict(), "timestamp": time.time()}
263
+ ) + "\n"
264
+
265
+ except Exception as e:
266
+ yield json.dumps(
267
+ {"event": "error", "error": str(e), "timestamp": time.time()}
268
+ ) + "\n"
269
+
270
+ def run(self, host: str = "0.0.0.0", port: int = 8000, **kwargs):
271
+ """Run the API server."""
272
+ uvicorn.run(self.app, host=host, port=port, **kwargs)
273
+
274
+
275
+ # Specialized API wrapper for Hierarchical RAG workflows
276
+ class HierarchicalRAGAPI(WorkflowAPI):
277
+ """
278
+ Specialized API wrapper for Hierarchical RAG workflows.
279
+
280
+ Provides RAG-specific endpoints and models for better developer experience.
281
+ """
282
+
283
+ def __init__(self, workflow: WorkflowBuilder, **kwargs):
284
+ super().__init__(workflow, **kwargs)
285
+ self._setup_rag_routes()
286
+
287
+ def _setup_rag_routes(self):
288
+ """Setup RAG-specific routes."""
289
+
290
+ class Document(BaseModel):
291
+ id: str
292
+ title: str
293
+ content: str
294
+
295
+ class RAGQuery(BaseModel):
296
+ query: str
297
+ top_k: int = 3
298
+ similarity_method: str = "cosine"
299
+ temperature: float = 0.7
300
+ max_tokens: int = 500
301
+
302
+ class RAGResponse(BaseModel):
303
+ answer: str
304
+ sources: List[Dict[str, Any]]
305
+ query: str
306
+ execution_time: float
307
+
308
+ @self.app.post("/documents")
309
+ async def add_documents(documents: List[Document]):
310
+ """Add documents to the knowledge base."""
311
+ # This would integrate with document storage
312
+ return {"message": f"Added {len(documents)} documents"}
313
+
314
+ @self.app.post("/query", response_model=RAGResponse)
315
+ async def query_rag(request: RAGQuery):
316
+ """Query the RAG system."""
317
+ import time
318
+
319
+ start_time = time.time()
320
+
321
+ # Transform to workflow format
322
+ workflow_request = WorkflowRequest(
323
+ inputs={
324
+ "query": request.query,
325
+ "config": {
326
+ "relevance_scorer": {
327
+ "top_k": request.top_k,
328
+ "similarity_method": request.similarity_method,
329
+ },
330
+ "llm_agent": {
331
+ "temperature": request.temperature,
332
+ "max_tokens": request.max_tokens,
333
+ },
334
+ },
335
+ }
336
+ )
337
+
338
+ result = await self._execute_sync(workflow_request)
339
+
340
+ # Extract RAG-specific outputs
341
+ outputs = result.outputs
342
+ answer = (
343
+ outputs.get("llm_response", {})
344
+ .get("choices", [{}])[0]
345
+ .get("message", {})
346
+ .get("content", "")
347
+ )
348
+ sources = outputs.get("relevant_chunks", [])
349
+
350
+ return RAGResponse(
351
+ answer=answer,
352
+ sources=sources,
353
+ query=request.query,
354
+ execution_time=time.time() - start_time,
355
+ )
356
+
357
+
358
+ # Factory function for creating API wrappers
359
+ def create_workflow_api(
360
+ workflow: WorkflowBuilder, api_type: str = "generic", **kwargs
361
+ ) -> WorkflowAPI:
362
+ """
363
+ Factory function to create appropriate API wrapper.
364
+
365
+ Args:
366
+ workflow: The workflow to wrap
367
+ api_type: Type of API wrapper ("generic", "rag", etc.)
368
+ **kwargs: Additional arguments for API initialization
369
+
370
+ Returns:
371
+ Configured WorkflowAPI instance
372
+
373
+ Example:
374
+ >>> api = create_workflow_api(my_workflow, api_type="rag")
375
+ >>> api.run(port=8000)
376
+ """
377
+ api_classes = {
378
+ "generic": WorkflowAPI,
379
+ "rag": HierarchicalRAGAPI,
380
+ }
381
+
382
+ api_class = api_classes.get(api_type, WorkflowAPI)
383
+ return api_class(workflow, **kwargs)
kailash/nodes/__init__.py CHANGED
@@ -1,7 +1,7 @@
1
1
  """Node system for the Kailash SDK."""
2
2
 
3
3
  # Import all node modules to ensure registration
4
- from kailash.nodes import ai, api, code, data, logic, transform
4
+ from kailash.nodes import ai, api, code, data, logic, mcp, transform
5
5
  from kailash.nodes.base import Node, NodeParameter, NodeRegistry, register_node
6
6
  from kailash.nodes.base_async import AsyncNode
7
7
  from kailash.nodes.code import PythonCodeNode
@@ -19,5 +19,6 @@ __all__ = [
19
19
  "code",
20
20
  "data",
21
21
  "logic",
22
+ "mcp",
22
23
  "transform",
23
24
  ]
@@ -1,6 +1,20 @@
1
1
  """AI and ML nodes for the Kailash SDK."""
2
2
 
3
3
  from .agents import ChatAgent, FunctionCallingAgent, PlanningAgent, RetrievalAgent
4
+
5
+ # Import from unified ai_providers module
6
+ from .ai_providers import (
7
+ PROVIDERS,
8
+ AnthropicProvider,
9
+ LLMProvider,
10
+ MockProvider,
11
+ OllamaProvider,
12
+ OpenAIProvider,
13
+ get_available_providers,
14
+ get_provider,
15
+ )
16
+ from .embedding_generator import EmbeddingGenerator
17
+ from .llm_agent import LLMAgent
4
18
  from .models import (
5
19
  ModelPredictor,
6
20
  NamedEntityRecognizer,
@@ -16,6 +30,18 @@ __all__ = [
16
30
  "RetrievalAgent",
17
31
  "FunctionCallingAgent",
18
32
  "PlanningAgent",
33
+ "LLMAgent",
34
+ # Embedding and Vector Operations
35
+ "EmbeddingGenerator",
36
+ # Provider Infrastructure
37
+ "LLMProvider",
38
+ "OllamaProvider",
39
+ "OpenAIProvider",
40
+ "AnthropicProvider",
41
+ "MockProvider",
42
+ "get_provider",
43
+ "get_available_providers",
44
+ "PROVIDERS",
19
45
  # Models
20
46
  "TextClassifier",
21
47
  "TextEmbedder",