kaiko-eva 0.0.2__py3-none-any.whl → 0.1.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of kaiko-eva might be problematic. Click here for more details.
- eva/core/callbacks/__init__.py +2 -2
- eva/core/callbacks/writers/__init__.py +6 -3
- eva/core/callbacks/writers/embeddings/__init__.py +6 -0
- eva/core/callbacks/writers/embeddings/_manifest.py +71 -0
- eva/core/callbacks/writers/embeddings/base.py +192 -0
- eva/core/callbacks/writers/embeddings/classification.py +117 -0
- eva/core/callbacks/writers/embeddings/segmentation.py +78 -0
- eva/core/callbacks/writers/embeddings/typings.py +38 -0
- eva/core/data/datasets/__init__.py +2 -2
- eva/core/data/datasets/classification/__init__.py +8 -0
- eva/core/data/datasets/classification/embeddings.py +34 -0
- eva/core/data/datasets/{embeddings/classification → classification}/multi_embeddings.py +13 -9
- eva/core/data/datasets/{embeddings/base.py → embeddings.py} +47 -32
- eva/core/data/splitting/__init__.py +6 -0
- eva/core/data/splitting/random.py +41 -0
- eva/core/data/splitting/stratified.py +56 -0
- eva/core/loggers/experimental_loggers.py +2 -2
- eva/core/loggers/log/__init__.py +3 -2
- eva/core/loggers/log/image.py +71 -0
- eva/core/loggers/log/parameters.py +10 -0
- eva/core/loggers/loggers.py +6 -0
- eva/core/metrics/__init__.py +6 -2
- eva/core/metrics/defaults/__init__.py +10 -3
- eva/core/metrics/defaults/classification/__init__.py +1 -1
- eva/core/metrics/defaults/classification/binary.py +0 -9
- eva/core/metrics/defaults/classification/multiclass.py +0 -8
- eva/core/metrics/defaults/segmentation/__init__.py +5 -0
- eva/core/metrics/defaults/segmentation/multiclass.py +43 -0
- eva/core/metrics/generalized_dice.py +59 -0
- eva/core/metrics/mean_iou.py +120 -0
- eva/core/metrics/structs/schemas.py +3 -1
- eva/core/models/__init__.py +3 -1
- eva/core/models/modules/head.py +10 -4
- eva/core/models/modules/typings.py +14 -1
- eva/core/models/modules/utils/batch_postprocess.py +37 -5
- eva/core/models/networks/__init__.py +1 -2
- eva/core/models/networks/mlp.py +2 -2
- eva/core/models/transforms/__init__.py +6 -0
- eva/core/models/{networks/transforms → transforms}/extract_cls_features.py +10 -2
- eva/core/models/transforms/extract_patch_features.py +47 -0
- eva/core/models/wrappers/__init__.py +13 -0
- eva/core/models/{networks/wrappers → wrappers}/base.py +3 -2
- eva/core/models/{networks/wrappers → wrappers}/from_function.py +5 -12
- eva/core/models/{networks/wrappers → wrappers}/huggingface.py +15 -11
- eva/core/models/{networks/wrappers → wrappers}/onnx.py +6 -3
- eva/core/trainers/functional.py +1 -0
- eva/core/utils/__init__.py +6 -0
- eva/core/utils/clone.py +27 -0
- eva/core/utils/memory.py +28 -0
- eva/core/utils/operations.py +26 -0
- eva/core/utils/parser.py +20 -0
- eva/vision/__init__.py +2 -2
- eva/vision/callbacks/__init__.py +5 -0
- eva/vision/callbacks/loggers/__init__.py +5 -0
- eva/vision/callbacks/loggers/batch/__init__.py +5 -0
- eva/vision/callbacks/loggers/batch/base.py +130 -0
- eva/vision/callbacks/loggers/batch/segmentation.py +188 -0
- eva/vision/data/datasets/__init__.py +30 -3
- eva/vision/data/datasets/_validators.py +15 -2
- eva/vision/data/datasets/classification/__init__.py +12 -1
- eva/vision/data/datasets/classification/bach.py +10 -15
- eva/vision/data/datasets/classification/base.py +17 -24
- eva/vision/data/datasets/classification/camelyon16.py +244 -0
- eva/vision/data/datasets/classification/crc.py +10 -15
- eva/vision/data/datasets/classification/mhist.py +10 -15
- eva/vision/data/datasets/classification/panda.py +184 -0
- eva/vision/data/datasets/classification/patch_camelyon.py +13 -16
- eva/vision/data/datasets/classification/wsi.py +105 -0
- eva/vision/data/datasets/segmentation/__init__.py +15 -2
- eva/vision/data/datasets/segmentation/_utils.py +38 -0
- eva/vision/data/datasets/segmentation/base.py +16 -17
- eva/vision/data/datasets/segmentation/bcss.py +236 -0
- eva/vision/data/datasets/segmentation/consep.py +156 -0
- eva/vision/data/datasets/segmentation/embeddings.py +34 -0
- eva/vision/data/datasets/segmentation/lits.py +178 -0
- eva/vision/data/datasets/segmentation/monusac.py +236 -0
- eva/vision/data/datasets/segmentation/{total_segmentator.py → total_segmentator_2d.py} +130 -36
- eva/vision/data/datasets/wsi.py +187 -0
- eva/vision/data/transforms/__init__.py +3 -2
- eva/vision/data/transforms/common/__init__.py +2 -1
- eva/vision/data/transforms/common/resize_and_clamp.py +51 -0
- eva/vision/data/transforms/common/resize_and_crop.py +6 -7
- eva/vision/data/transforms/normalization/__init__.py +6 -0
- eva/vision/data/transforms/normalization/clamp.py +43 -0
- eva/vision/data/transforms/normalization/functional/__init__.py +5 -0
- eva/vision/data/transforms/normalization/functional/rescale_intensity.py +28 -0
- eva/vision/data/transforms/normalization/rescale_intensity.py +53 -0
- eva/vision/data/wsi/__init__.py +16 -0
- eva/vision/data/wsi/backends/__init__.py +69 -0
- eva/vision/data/wsi/backends/base.py +115 -0
- eva/vision/data/wsi/backends/openslide.py +73 -0
- eva/vision/data/wsi/backends/pil.py +52 -0
- eva/vision/data/wsi/backends/tiffslide.py +42 -0
- eva/vision/data/wsi/patching/__init__.py +6 -0
- eva/vision/data/wsi/patching/coordinates.py +98 -0
- eva/vision/data/wsi/patching/mask.py +123 -0
- eva/vision/data/wsi/patching/samplers/__init__.py +14 -0
- eva/vision/data/wsi/patching/samplers/_utils.py +50 -0
- eva/vision/data/wsi/patching/samplers/base.py +48 -0
- eva/vision/data/wsi/patching/samplers/foreground_grid.py +99 -0
- eva/vision/data/wsi/patching/samplers/grid.py +47 -0
- eva/vision/data/wsi/patching/samplers/random.py +41 -0
- eva/vision/losses/__init__.py +5 -0
- eva/vision/losses/dice.py +40 -0
- eva/vision/models/__init__.py +4 -2
- eva/vision/models/modules/__init__.py +5 -0
- eva/vision/models/modules/semantic_segmentation.py +161 -0
- eva/vision/models/networks/__init__.py +1 -2
- eva/vision/models/networks/backbones/__init__.py +6 -0
- eva/vision/models/networks/backbones/_utils.py +39 -0
- eva/vision/models/networks/backbones/pathology/__init__.py +31 -0
- eva/vision/models/networks/backbones/pathology/bioptimus.py +34 -0
- eva/vision/models/networks/backbones/pathology/gigapath.py +33 -0
- eva/vision/models/networks/backbones/pathology/histai.py +46 -0
- eva/vision/models/networks/backbones/pathology/kaiko.py +123 -0
- eva/vision/models/networks/backbones/pathology/lunit.py +68 -0
- eva/vision/models/networks/backbones/pathology/mahmood.py +62 -0
- eva/vision/models/networks/backbones/pathology/owkin.py +22 -0
- eva/vision/models/networks/backbones/registry.py +47 -0
- eva/vision/models/networks/backbones/timm/__init__.py +5 -0
- eva/vision/models/networks/backbones/timm/backbones.py +54 -0
- eva/vision/models/networks/backbones/universal/__init__.py +8 -0
- eva/vision/models/networks/backbones/universal/vit.py +54 -0
- eva/vision/models/networks/decoders/__init__.py +6 -0
- eva/vision/models/networks/decoders/decoder.py +7 -0
- eva/vision/models/networks/decoders/segmentation/__init__.py +11 -0
- eva/vision/models/networks/decoders/segmentation/common.py +74 -0
- eva/vision/models/networks/decoders/segmentation/conv2d.py +114 -0
- eva/vision/models/networks/decoders/segmentation/linear.py +125 -0
- eva/vision/models/wrappers/__init__.py +6 -0
- eva/vision/models/wrappers/from_registry.py +48 -0
- eva/vision/models/wrappers/from_timm.py +68 -0
- eva/vision/utils/colormap.py +77 -0
- eva/vision/utils/convert.py +56 -13
- eva/vision/utils/io/__init__.py +10 -4
- eva/vision/utils/io/image.py +21 -2
- eva/vision/utils/io/mat.py +36 -0
- eva/vision/utils/io/nifti.py +33 -12
- eva/vision/utils/io/text.py +10 -3
- kaiko_eva-0.1.1.dist-info/METADATA +553 -0
- kaiko_eva-0.1.1.dist-info/RECORD +205 -0
- {kaiko_eva-0.0.2.dist-info → kaiko_eva-0.1.1.dist-info}/WHEEL +1 -1
- {kaiko_eva-0.0.2.dist-info → kaiko_eva-0.1.1.dist-info}/entry_points.txt +2 -0
- eva/.DS_Store +0 -0
- eva/core/callbacks/writers/embeddings.py +0 -169
- eva/core/callbacks/writers/typings.py +0 -23
- eva/core/data/datasets/embeddings/__init__.py +0 -13
- eva/core/data/datasets/embeddings/classification/__init__.py +0 -10
- eva/core/data/datasets/embeddings/classification/embeddings.py +0 -66
- eva/core/models/networks/transforms/__init__.py +0 -5
- eva/core/models/networks/wrappers/__init__.py +0 -8
- eva/vision/models/.DS_Store +0 -0
- eva/vision/models/networks/.DS_Store +0 -0
- eva/vision/models/networks/postprocesses/__init__.py +0 -5
- eva/vision/models/networks/postprocesses/cls.py +0 -25
- kaiko_eva-0.0.2.dist-info/METADATA +0 -431
- kaiko_eva-0.0.2.dist-info/RECORD +0 -127
- /eva/core/models/{networks → wrappers}/_utils.py +0 -0
- {kaiko_eva-0.0.2.dist-info → kaiko_eva-0.1.1.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,178 @@
|
|
|
1
|
+
"""LiTS dataset."""
|
|
2
|
+
|
|
3
|
+
import functools
|
|
4
|
+
import glob
|
|
5
|
+
import os
|
|
6
|
+
from typing import Any, Callable, Dict, List, Literal, Tuple
|
|
7
|
+
|
|
8
|
+
import torch
|
|
9
|
+
from torchvision import tv_tensors
|
|
10
|
+
from typing_extensions import override
|
|
11
|
+
|
|
12
|
+
from eva.core import utils
|
|
13
|
+
from eva.vision.data.datasets import _utils as data_utils
|
|
14
|
+
from eva.vision.data.datasets import _validators
|
|
15
|
+
from eva.vision.data.datasets.segmentation import base
|
|
16
|
+
from eva.vision.utils import io
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class LiTS(base.ImageSegmentation):
|
|
20
|
+
"""LiTS - Liver Tumor Segmentation Challenge.
|
|
21
|
+
|
|
22
|
+
Webpage: https://competitions.codalab.org/competitions/17094
|
|
23
|
+
|
|
24
|
+
For the splits we follow: https://arxiv.org/pdf/2010.01663v2
|
|
25
|
+
"""
|
|
26
|
+
|
|
27
|
+
_train_index_ranges: List[Tuple[int, int]] = [(0, 102)]
|
|
28
|
+
_val_index_ranges: List[Tuple[int, int]] = [(102, 117)]
|
|
29
|
+
_test_index_ranges: List[Tuple[int, int]] = [(117, 131)]
|
|
30
|
+
"""Index ranges per split."""
|
|
31
|
+
|
|
32
|
+
_sample_every_n_slices: int | None = None
|
|
33
|
+
"""The amount of slices to sub-sample per 3D CT scan image."""
|
|
34
|
+
|
|
35
|
+
_expected_dataset_lengths: Dict[str | None, int] = {
|
|
36
|
+
"train": 39307,
|
|
37
|
+
"val": 12045,
|
|
38
|
+
"test": 7286,
|
|
39
|
+
None: 58638,
|
|
40
|
+
}
|
|
41
|
+
"""Dataset version and split to the expected size."""
|
|
42
|
+
|
|
43
|
+
_license: str = (
|
|
44
|
+
"Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License "
|
|
45
|
+
"(https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en)"
|
|
46
|
+
)
|
|
47
|
+
"""Dataset license."""
|
|
48
|
+
|
|
49
|
+
def __init__(
|
|
50
|
+
self,
|
|
51
|
+
root: str,
|
|
52
|
+
split: Literal["train", "val", "test"] | None = None,
|
|
53
|
+
transforms: Callable | None = None,
|
|
54
|
+
) -> None:
|
|
55
|
+
"""Initialize dataset.
|
|
56
|
+
|
|
57
|
+
Args:
|
|
58
|
+
root: Path to the root directory of the dataset. The dataset will
|
|
59
|
+
be downloaded and extracted here, if it does not already exist.
|
|
60
|
+
split: Dataset split to use.
|
|
61
|
+
transforms: A function/transforms that takes in an image and a target
|
|
62
|
+
mask and returns the transformed versions of both.
|
|
63
|
+
"""
|
|
64
|
+
super().__init__(transforms=transforms)
|
|
65
|
+
|
|
66
|
+
self._root = root
|
|
67
|
+
self._split = split
|
|
68
|
+
|
|
69
|
+
self._indices: List[Tuple[int, int]] = []
|
|
70
|
+
|
|
71
|
+
@property
|
|
72
|
+
@override
|
|
73
|
+
def classes(self) -> List[str]:
|
|
74
|
+
return ["liver", "tumor"]
|
|
75
|
+
|
|
76
|
+
@functools.cached_property
|
|
77
|
+
@override
|
|
78
|
+
def class_to_idx(self) -> Dict[str, int]:
|
|
79
|
+
return {label: index for index, label in enumerate(self.classes)}
|
|
80
|
+
|
|
81
|
+
@override
|
|
82
|
+
def filename(self, index: int) -> str:
|
|
83
|
+
sample_index, _ = self._indices[index]
|
|
84
|
+
volume_file_path = self._volume_files[sample_index]
|
|
85
|
+
return os.path.relpath(volume_file_path, self._root)
|
|
86
|
+
|
|
87
|
+
@override
|
|
88
|
+
def configure(self) -> None:
|
|
89
|
+
self._indices = self._create_indices()
|
|
90
|
+
|
|
91
|
+
@override
|
|
92
|
+
def validate(self) -> None:
|
|
93
|
+
if len(self._volume_files) != len(self._segmentation_files):
|
|
94
|
+
raise ValueError(
|
|
95
|
+
"The number of volume files does not match the number of the segmentation ones."
|
|
96
|
+
)
|
|
97
|
+
|
|
98
|
+
_validators.check_dataset_integrity(
|
|
99
|
+
self,
|
|
100
|
+
length=self._expected_dataset_lengths.get(self._split, 0),
|
|
101
|
+
n_classes=2,
|
|
102
|
+
first_and_last_labels=("liver", "tumor"),
|
|
103
|
+
)
|
|
104
|
+
|
|
105
|
+
@override
|
|
106
|
+
def load_image(self, index: int) -> tv_tensors.Image:
|
|
107
|
+
sample_index, slice_index = self._indices[index]
|
|
108
|
+
volume_path = self._volume_files[sample_index]
|
|
109
|
+
image_array = io.read_nifti(volume_path, slice_index)
|
|
110
|
+
return tv_tensors.Image(image_array.transpose(2, 0, 1))
|
|
111
|
+
|
|
112
|
+
@override
|
|
113
|
+
def load_mask(self, index: int) -> tv_tensors.Mask:
|
|
114
|
+
sample_index, slice_index = self._indices[index]
|
|
115
|
+
segmentation_path = self._segmentation_files[sample_index]
|
|
116
|
+
semantic_labels = io.read_nifti(segmentation_path, slice_index)
|
|
117
|
+
return tv_tensors.Mask(semantic_labels.squeeze(), dtype=torch.int64) # type: ignore[reportCallIssue]
|
|
118
|
+
|
|
119
|
+
@override
|
|
120
|
+
def load_metadata(self, index: int) -> Dict[str, Any]:
|
|
121
|
+
_, slice_index = self._indices[index]
|
|
122
|
+
return {"slice_index": slice_index}
|
|
123
|
+
|
|
124
|
+
@override
|
|
125
|
+
def __len__(self) -> int:
|
|
126
|
+
return len(self._indices)
|
|
127
|
+
|
|
128
|
+
def _get_number_of_slices_per_volume(self, sample_index: int) -> int:
|
|
129
|
+
"""Returns the total amount of slices of a volume."""
|
|
130
|
+
file_path = self._volume_files[sample_index]
|
|
131
|
+
volume_shape = io.fetch_nifti_shape(file_path)
|
|
132
|
+
return volume_shape[-1]
|
|
133
|
+
|
|
134
|
+
@functools.cached_property
|
|
135
|
+
def _volume_files(self) -> List[str]:
|
|
136
|
+
files_pattern = os.path.join(self._root, "**", "volume-*.nii")
|
|
137
|
+
files = glob.glob(files_pattern, recursive=True)
|
|
138
|
+
return utils.numeric_sort(files)
|
|
139
|
+
|
|
140
|
+
@functools.cached_property
|
|
141
|
+
def _segmentation_files(self) -> List[str]:
|
|
142
|
+
files_pattern = os.path.join(self._root, "**", "segmentation-*.nii")
|
|
143
|
+
files = glob.glob(files_pattern, recursive=True)
|
|
144
|
+
return utils.numeric_sort(files)
|
|
145
|
+
|
|
146
|
+
def _create_indices(self) -> List[Tuple[int, int]]:
|
|
147
|
+
"""Builds the dataset indices for the specified split.
|
|
148
|
+
|
|
149
|
+
Returns:
|
|
150
|
+
A list of tuples, where the first value indicates the
|
|
151
|
+
sample index which the second its corresponding slice
|
|
152
|
+
index.
|
|
153
|
+
"""
|
|
154
|
+
indices = [
|
|
155
|
+
(sample_idx, slide_idx)
|
|
156
|
+
for sample_idx in self._get_split_indices()
|
|
157
|
+
for slide_idx in range(self._get_number_of_slices_per_volume(sample_idx))
|
|
158
|
+
if slide_idx % (self._sample_every_n_slices or 1) == 0
|
|
159
|
+
]
|
|
160
|
+
return indices
|
|
161
|
+
|
|
162
|
+
def _get_split_indices(self) -> List[int]:
|
|
163
|
+
"""Returns the sample indices for the specified dataset split."""
|
|
164
|
+
split_index_ranges = {
|
|
165
|
+
"train": self._train_index_ranges,
|
|
166
|
+
"val": self._val_index_ranges,
|
|
167
|
+
"test": self._test_index_ranges,
|
|
168
|
+
None: [(0, len(self._volume_files))],
|
|
169
|
+
}
|
|
170
|
+
index_ranges = split_index_ranges.get(self._split)
|
|
171
|
+
if index_ranges is None:
|
|
172
|
+
raise ValueError("Invalid data split. Use 'train', 'val', 'test' or `None`.")
|
|
173
|
+
|
|
174
|
+
return data_utils.ranges_to_indices(index_ranges)
|
|
175
|
+
|
|
176
|
+
def _print_license(self) -> None:
|
|
177
|
+
"""Prints the dataset license."""
|
|
178
|
+
print(f"Dataset license: {self._license}")
|
|
@@ -0,0 +1,236 @@
|
|
|
1
|
+
"""MoNuSAC dataset."""
|
|
2
|
+
|
|
3
|
+
import functools
|
|
4
|
+
import glob
|
|
5
|
+
import os
|
|
6
|
+
from typing import Any, Callable, Dict, List, Literal
|
|
7
|
+
from xml.etree import ElementTree # nosec
|
|
8
|
+
|
|
9
|
+
import imagesize
|
|
10
|
+
import numpy as np
|
|
11
|
+
import numpy.typing as npt
|
|
12
|
+
import torch
|
|
13
|
+
import tqdm
|
|
14
|
+
from skimage import draw
|
|
15
|
+
from torchvision import tv_tensors
|
|
16
|
+
from torchvision.datasets import utils
|
|
17
|
+
from typing_extensions import override
|
|
18
|
+
|
|
19
|
+
from eva.vision.data.datasets import _validators, structs
|
|
20
|
+
from eva.vision.data.datasets.segmentation import base
|
|
21
|
+
from eva.vision.utils import io
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
class MoNuSAC(base.ImageSegmentation):
|
|
25
|
+
"""MoNuSAC2020: A Multi-organ Nuclei Segmentation and Classification Challenge.
|
|
26
|
+
|
|
27
|
+
Webpage: https://monusac-2020.grand-challenge.org/
|
|
28
|
+
"""
|
|
29
|
+
|
|
30
|
+
_expected_dataset_lengths: Dict[str, int] = {
|
|
31
|
+
"train": 209,
|
|
32
|
+
"test": 85,
|
|
33
|
+
}
|
|
34
|
+
"""Dataset version and split to the expected size."""
|
|
35
|
+
|
|
36
|
+
_resources: List[structs.DownloadResource] = [
|
|
37
|
+
structs.DownloadResource(
|
|
38
|
+
filename="MoNuSAC_images_and_annotations.zip",
|
|
39
|
+
url="https://drive.google.com/file/d/1lxMZaAPSpEHLSxGA9KKMt_r-4S8dwLhq/view?usp=sharing",
|
|
40
|
+
),
|
|
41
|
+
structs.DownloadResource(
|
|
42
|
+
filename="MoNuSAC Testing Data and Annotations.zip",
|
|
43
|
+
url="https://drive.google.com/file/d/1G54vsOdxWY1hG7dzmkeK3r0xz9s-heyQ/view?usp=sharing",
|
|
44
|
+
),
|
|
45
|
+
]
|
|
46
|
+
"""Resources for the full dataset version."""
|
|
47
|
+
|
|
48
|
+
_license: str = (
|
|
49
|
+
"Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International "
|
|
50
|
+
"(https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode)"
|
|
51
|
+
)
|
|
52
|
+
"""Dataset license."""
|
|
53
|
+
|
|
54
|
+
def __init__(
|
|
55
|
+
self,
|
|
56
|
+
root: str,
|
|
57
|
+
split: Literal["train", "test"],
|
|
58
|
+
export_masks: bool = True,
|
|
59
|
+
download: bool = False,
|
|
60
|
+
transforms: Callable | None = None,
|
|
61
|
+
) -> None:
|
|
62
|
+
"""Initialize dataset.
|
|
63
|
+
|
|
64
|
+
Args:
|
|
65
|
+
root: Path to the root directory of the dataset. The dataset will
|
|
66
|
+
be downloaded and extracted here, if it does not already exist.
|
|
67
|
+
split: Dataset split to use.
|
|
68
|
+
export_masks: Whether to export, save and use the semantic label masks
|
|
69
|
+
from disk.
|
|
70
|
+
download: Whether to download the data for the specified split.
|
|
71
|
+
Note that the download will be executed only by additionally
|
|
72
|
+
calling the :meth:`prepare_data` method and if the data does not
|
|
73
|
+
exist yet on disk.
|
|
74
|
+
transforms: A function/transforms that takes in an image and a target
|
|
75
|
+
mask and returns the transformed versions of both.
|
|
76
|
+
"""
|
|
77
|
+
super().__init__(transforms=transforms)
|
|
78
|
+
|
|
79
|
+
self._root = root
|
|
80
|
+
self._split = split
|
|
81
|
+
self._export_masks = export_masks
|
|
82
|
+
self._download = download
|
|
83
|
+
|
|
84
|
+
@property
|
|
85
|
+
@override
|
|
86
|
+
def classes(self) -> List[str]:
|
|
87
|
+
return ["Epithelial", "Lymphocyte", "Neutrophil", "Macrophage"]
|
|
88
|
+
|
|
89
|
+
@functools.cached_property
|
|
90
|
+
@override
|
|
91
|
+
def class_to_idx(self) -> Dict[str, int]:
|
|
92
|
+
return {label: index for index, label in enumerate(self.classes)}
|
|
93
|
+
|
|
94
|
+
@override
|
|
95
|
+
def filename(self, index: int) -> str:
|
|
96
|
+
return os.path.relpath(self._image_files[index], self._root)
|
|
97
|
+
|
|
98
|
+
@override
|
|
99
|
+
def prepare_data(self) -> None:
|
|
100
|
+
if self._download:
|
|
101
|
+
self._download_dataset()
|
|
102
|
+
if self._export_masks:
|
|
103
|
+
self._export_semantic_label_masks()
|
|
104
|
+
|
|
105
|
+
@override
|
|
106
|
+
def validate(self) -> None:
|
|
107
|
+
_validators.check_dataset_integrity(
|
|
108
|
+
self,
|
|
109
|
+
length=self._expected_dataset_lengths.get(self._split, 0),
|
|
110
|
+
n_classes=4,
|
|
111
|
+
first_and_last_labels=("Epithelial", "Macrophage"),
|
|
112
|
+
)
|
|
113
|
+
|
|
114
|
+
@override
|
|
115
|
+
def load_image(self, index: int) -> tv_tensors.Image:
|
|
116
|
+
image_path = self._image_files[index]
|
|
117
|
+
image_rgb_array = io.read_image(image_path)
|
|
118
|
+
return tv_tensors.Image(image_rgb_array.transpose(2, 0, 1))
|
|
119
|
+
|
|
120
|
+
@override
|
|
121
|
+
def load_mask(self, index: int) -> tv_tensors.Mask:
|
|
122
|
+
semantic_labels = (
|
|
123
|
+
self._load_semantic_mask_file(index)
|
|
124
|
+
if self._export_masks
|
|
125
|
+
else self._get_semantic_mask(index)
|
|
126
|
+
)
|
|
127
|
+
return tv_tensors.Mask(semantic_labels.squeeze(), dtype=torch.int64) # type: ignore[reportCallIssue]
|
|
128
|
+
|
|
129
|
+
@override
|
|
130
|
+
def __len__(self) -> int:
|
|
131
|
+
return len(self._image_files)
|
|
132
|
+
|
|
133
|
+
@functools.cached_property
|
|
134
|
+
def _image_files(self) -> List[str]:
|
|
135
|
+
"""Return the list of image files in the dataset.
|
|
136
|
+
|
|
137
|
+
Returns:
|
|
138
|
+
List of image file paths.
|
|
139
|
+
"""
|
|
140
|
+
files_pattern = os.path.join(self._data_directory, "**", "*.tif")
|
|
141
|
+
image_files = glob.glob(files_pattern, recursive=True)
|
|
142
|
+
return sorted(image_files)
|
|
143
|
+
|
|
144
|
+
@functools.cached_property
|
|
145
|
+
def _data_directory(self) -> str:
|
|
146
|
+
"""Returns the data directory of the dataset."""
|
|
147
|
+
match self._split:
|
|
148
|
+
case "train":
|
|
149
|
+
directory = "MoNuSAC_images_and_annotations"
|
|
150
|
+
case "test":
|
|
151
|
+
directory = "MoNuSAC Testing Data and Annotations"
|
|
152
|
+
case _:
|
|
153
|
+
raise ValueError(f"Invalid 'split' value '{self._split}'.")
|
|
154
|
+
|
|
155
|
+
return os.path.join(self._root, directory)
|
|
156
|
+
|
|
157
|
+
def _export_semantic_label_masks(self) -> None:
|
|
158
|
+
"""Export semantic label masks to disk."""
|
|
159
|
+
mask_files = [
|
|
160
|
+
(index, filename.replace(".tif", ".npy"))
|
|
161
|
+
for index, filename in enumerate(self._image_files)
|
|
162
|
+
]
|
|
163
|
+
to_export = filter(lambda x: not os.path.isfile(x[1]), mask_files)
|
|
164
|
+
for sample_index, filename in tqdm.tqdm(
|
|
165
|
+
list(to_export),
|
|
166
|
+
desc=">> Exporting semantic masks",
|
|
167
|
+
leave=False,
|
|
168
|
+
):
|
|
169
|
+
semantic_labels = self._get_semantic_mask(sample_index)
|
|
170
|
+
np.save(filename, semantic_labels)
|
|
171
|
+
|
|
172
|
+
def _load_semantic_mask_file(self, index: int) -> npt.NDArray[Any]:
|
|
173
|
+
"""Load a semantic mask file from disk.
|
|
174
|
+
|
|
175
|
+
Args:
|
|
176
|
+
index: Index of the mask file to load.
|
|
177
|
+
|
|
178
|
+
Returns:
|
|
179
|
+
Loaded mask as a numpy array.
|
|
180
|
+
"""
|
|
181
|
+
mask_filename = self._image_files[index].replace(".tif", ".npy")
|
|
182
|
+
return np.load(mask_filename)
|
|
183
|
+
|
|
184
|
+
def _get_semantic_mask(self, index: int) -> npt.NDArray[Any]:
|
|
185
|
+
"""Builds and loads the semantic label mask from the XML annotations.
|
|
186
|
+
|
|
187
|
+
Args:
|
|
188
|
+
index: Index of the image file.
|
|
189
|
+
|
|
190
|
+
Returns:
|
|
191
|
+
Semantic label mask as a numpy array.
|
|
192
|
+
"""
|
|
193
|
+
image_path = self._image_files[index]
|
|
194
|
+
width, height = imagesize.get(image_path)
|
|
195
|
+
annotation_path = image_path.replace(".tif", ".xml")
|
|
196
|
+
element_tree = ElementTree.parse(annotation_path) # nosec
|
|
197
|
+
root = element_tree.getroot()
|
|
198
|
+
|
|
199
|
+
semantic_labels = np.zeros((height, width), "uint8") # type: ignore[reportCallIssue]
|
|
200
|
+
for level in range(len(root)):
|
|
201
|
+
label = [item.attrib["Name"] for item in root[level][0]][0]
|
|
202
|
+
class_id = self.class_to_idx.get(label, 254) + 1
|
|
203
|
+
# for the test dataset an additional class 'Ambiguous' was added for
|
|
204
|
+
# difficult regions with fuzzy boundaries - we return it as 255
|
|
205
|
+
regions = [item for child in root[level] for item in child if item.tag == "Region"]
|
|
206
|
+
for region in regions:
|
|
207
|
+
vertices = np.array(
|
|
208
|
+
[(vertex.attrib["X"], vertex.attrib["Y"]) for vertex in region[1]],
|
|
209
|
+
dtype=np.dtype(float),
|
|
210
|
+
)
|
|
211
|
+
fill_row_coords, fill_col_coords = draw.polygon(
|
|
212
|
+
vertices[:, 0],
|
|
213
|
+
vertices[:, 1],
|
|
214
|
+
(width, height),
|
|
215
|
+
)
|
|
216
|
+
semantic_labels[fill_col_coords, fill_row_coords] = class_id
|
|
217
|
+
|
|
218
|
+
return semantic_labels
|
|
219
|
+
|
|
220
|
+
def _download_dataset(self) -> None:
|
|
221
|
+
"""Downloads the dataset."""
|
|
222
|
+
self._print_license()
|
|
223
|
+
for resource in self._resources:
|
|
224
|
+
if os.path.isdir(self._data_directory):
|
|
225
|
+
continue
|
|
226
|
+
|
|
227
|
+
utils.download_and_extract_archive(
|
|
228
|
+
resource.url,
|
|
229
|
+
download_root=self._root,
|
|
230
|
+
filename=resource.filename,
|
|
231
|
+
remove_finished=True,
|
|
232
|
+
)
|
|
233
|
+
|
|
234
|
+
def _print_license(self) -> None:
|
|
235
|
+
"""Prints the dataset license."""
|
|
236
|
+
print(f"Dataset license: {self._license}")
|