kaiko-eva 0.0.2__py3-none-any.whl → 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of kaiko-eva might be problematic. Click here for more details.
- eva/core/callbacks/__init__.py +2 -2
- eva/core/callbacks/writers/__init__.py +6 -3
- eva/core/callbacks/writers/embeddings/__init__.py +6 -0
- eva/core/callbacks/writers/embeddings/_manifest.py +71 -0
- eva/core/callbacks/writers/embeddings/base.py +192 -0
- eva/core/callbacks/writers/embeddings/classification.py +117 -0
- eva/core/callbacks/writers/embeddings/segmentation.py +78 -0
- eva/core/callbacks/writers/embeddings/typings.py +38 -0
- eva/core/data/datasets/__init__.py +2 -2
- eva/core/data/datasets/classification/__init__.py +8 -0
- eva/core/data/datasets/classification/embeddings.py +34 -0
- eva/core/data/datasets/{embeddings/classification → classification}/multi_embeddings.py +13 -9
- eva/core/data/datasets/{embeddings/base.py → embeddings.py} +47 -32
- eva/core/data/splitting/__init__.py +6 -0
- eva/core/data/splitting/random.py +41 -0
- eva/core/data/splitting/stratified.py +56 -0
- eva/core/loggers/experimental_loggers.py +2 -2
- eva/core/loggers/log/__init__.py +3 -2
- eva/core/loggers/log/image.py +71 -0
- eva/core/loggers/log/parameters.py +10 -0
- eva/core/loggers/loggers.py +6 -0
- eva/core/metrics/__init__.py +6 -2
- eva/core/metrics/defaults/__init__.py +10 -3
- eva/core/metrics/defaults/classification/__init__.py +1 -1
- eva/core/metrics/defaults/classification/binary.py +0 -9
- eva/core/metrics/defaults/classification/multiclass.py +0 -8
- eva/core/metrics/defaults/segmentation/__init__.py +5 -0
- eva/core/metrics/defaults/segmentation/multiclass.py +43 -0
- eva/core/metrics/generalized_dice.py +59 -0
- eva/core/metrics/mean_iou.py +120 -0
- eva/core/metrics/structs/schemas.py +3 -1
- eva/core/models/__init__.py +3 -1
- eva/core/models/modules/head.py +10 -4
- eva/core/models/modules/typings.py +14 -1
- eva/core/models/modules/utils/batch_postprocess.py +37 -5
- eva/core/models/networks/__init__.py +1 -2
- eva/core/models/networks/mlp.py +2 -2
- eva/core/models/transforms/__init__.py +6 -0
- eva/core/models/{networks/transforms → transforms}/extract_cls_features.py +10 -2
- eva/core/models/transforms/extract_patch_features.py +47 -0
- eva/core/models/wrappers/__init__.py +13 -0
- eva/core/models/{networks/wrappers → wrappers}/base.py +3 -2
- eva/core/models/{networks/wrappers → wrappers}/from_function.py +5 -12
- eva/core/models/{networks/wrappers → wrappers}/huggingface.py +15 -11
- eva/core/models/{networks/wrappers → wrappers}/onnx.py +6 -3
- eva/core/trainers/functional.py +1 -0
- eva/core/utils/__init__.py +6 -0
- eva/core/utils/clone.py +27 -0
- eva/core/utils/memory.py +28 -0
- eva/core/utils/operations.py +26 -0
- eva/core/utils/parser.py +20 -0
- eva/vision/__init__.py +2 -2
- eva/vision/callbacks/__init__.py +5 -0
- eva/vision/callbacks/loggers/__init__.py +5 -0
- eva/vision/callbacks/loggers/batch/__init__.py +5 -0
- eva/vision/callbacks/loggers/batch/base.py +130 -0
- eva/vision/callbacks/loggers/batch/segmentation.py +188 -0
- eva/vision/data/datasets/__init__.py +30 -3
- eva/vision/data/datasets/_validators.py +15 -2
- eva/vision/data/datasets/classification/__init__.py +12 -1
- eva/vision/data/datasets/classification/bach.py +10 -15
- eva/vision/data/datasets/classification/base.py +17 -24
- eva/vision/data/datasets/classification/camelyon16.py +244 -0
- eva/vision/data/datasets/classification/crc.py +10 -15
- eva/vision/data/datasets/classification/mhist.py +10 -15
- eva/vision/data/datasets/classification/panda.py +184 -0
- eva/vision/data/datasets/classification/patch_camelyon.py +13 -16
- eva/vision/data/datasets/classification/wsi.py +105 -0
- eva/vision/data/datasets/segmentation/__init__.py +15 -2
- eva/vision/data/datasets/segmentation/_utils.py +38 -0
- eva/vision/data/datasets/segmentation/base.py +16 -17
- eva/vision/data/datasets/segmentation/bcss.py +236 -0
- eva/vision/data/datasets/segmentation/consep.py +156 -0
- eva/vision/data/datasets/segmentation/embeddings.py +34 -0
- eva/vision/data/datasets/segmentation/lits.py +178 -0
- eva/vision/data/datasets/segmentation/monusac.py +236 -0
- eva/vision/data/datasets/segmentation/{total_segmentator.py → total_segmentator_2d.py} +130 -36
- eva/vision/data/datasets/wsi.py +187 -0
- eva/vision/data/transforms/__init__.py +3 -2
- eva/vision/data/transforms/common/__init__.py +2 -1
- eva/vision/data/transforms/common/resize_and_clamp.py +51 -0
- eva/vision/data/transforms/common/resize_and_crop.py +6 -7
- eva/vision/data/transforms/normalization/__init__.py +6 -0
- eva/vision/data/transforms/normalization/clamp.py +43 -0
- eva/vision/data/transforms/normalization/functional/__init__.py +5 -0
- eva/vision/data/transforms/normalization/functional/rescale_intensity.py +28 -0
- eva/vision/data/transforms/normalization/rescale_intensity.py +53 -0
- eva/vision/data/wsi/__init__.py +16 -0
- eva/vision/data/wsi/backends/__init__.py +69 -0
- eva/vision/data/wsi/backends/base.py +115 -0
- eva/vision/data/wsi/backends/openslide.py +73 -0
- eva/vision/data/wsi/backends/pil.py +52 -0
- eva/vision/data/wsi/backends/tiffslide.py +42 -0
- eva/vision/data/wsi/patching/__init__.py +6 -0
- eva/vision/data/wsi/patching/coordinates.py +98 -0
- eva/vision/data/wsi/patching/mask.py +123 -0
- eva/vision/data/wsi/patching/samplers/__init__.py +14 -0
- eva/vision/data/wsi/patching/samplers/_utils.py +50 -0
- eva/vision/data/wsi/patching/samplers/base.py +48 -0
- eva/vision/data/wsi/patching/samplers/foreground_grid.py +99 -0
- eva/vision/data/wsi/patching/samplers/grid.py +47 -0
- eva/vision/data/wsi/patching/samplers/random.py +41 -0
- eva/vision/losses/__init__.py +5 -0
- eva/vision/losses/dice.py +40 -0
- eva/vision/models/__init__.py +4 -2
- eva/vision/models/modules/__init__.py +5 -0
- eva/vision/models/modules/semantic_segmentation.py +161 -0
- eva/vision/models/networks/__init__.py +1 -2
- eva/vision/models/networks/backbones/__init__.py +6 -0
- eva/vision/models/networks/backbones/_utils.py +39 -0
- eva/vision/models/networks/backbones/pathology/__init__.py +31 -0
- eva/vision/models/networks/backbones/pathology/bioptimus.py +34 -0
- eva/vision/models/networks/backbones/pathology/gigapath.py +33 -0
- eva/vision/models/networks/backbones/pathology/histai.py +46 -0
- eva/vision/models/networks/backbones/pathology/kaiko.py +123 -0
- eva/vision/models/networks/backbones/pathology/lunit.py +68 -0
- eva/vision/models/networks/backbones/pathology/mahmood.py +62 -0
- eva/vision/models/networks/backbones/pathology/owkin.py +22 -0
- eva/vision/models/networks/backbones/registry.py +47 -0
- eva/vision/models/networks/backbones/timm/__init__.py +5 -0
- eva/vision/models/networks/backbones/timm/backbones.py +54 -0
- eva/vision/models/networks/backbones/universal/__init__.py +8 -0
- eva/vision/models/networks/backbones/universal/vit.py +54 -0
- eva/vision/models/networks/decoders/__init__.py +6 -0
- eva/vision/models/networks/decoders/decoder.py +7 -0
- eva/vision/models/networks/decoders/segmentation/__init__.py +11 -0
- eva/vision/models/networks/decoders/segmentation/common.py +74 -0
- eva/vision/models/networks/decoders/segmentation/conv2d.py +114 -0
- eva/vision/models/networks/decoders/segmentation/linear.py +125 -0
- eva/vision/models/wrappers/__init__.py +6 -0
- eva/vision/models/wrappers/from_registry.py +48 -0
- eva/vision/models/wrappers/from_timm.py +68 -0
- eva/vision/utils/colormap.py +77 -0
- eva/vision/utils/convert.py +56 -13
- eva/vision/utils/io/__init__.py +10 -4
- eva/vision/utils/io/image.py +21 -2
- eva/vision/utils/io/mat.py +36 -0
- eva/vision/utils/io/nifti.py +33 -12
- eva/vision/utils/io/text.py +10 -3
- kaiko_eva-0.1.0.dist-info/METADATA +553 -0
- kaiko_eva-0.1.0.dist-info/RECORD +205 -0
- {kaiko_eva-0.0.2.dist-info → kaiko_eva-0.1.0.dist-info}/WHEEL +1 -1
- {kaiko_eva-0.0.2.dist-info → kaiko_eva-0.1.0.dist-info}/entry_points.txt +2 -0
- eva/.DS_Store +0 -0
- eva/core/callbacks/writers/embeddings.py +0 -169
- eva/core/callbacks/writers/typings.py +0 -23
- eva/core/data/datasets/embeddings/__init__.py +0 -13
- eva/core/data/datasets/embeddings/classification/__init__.py +0 -10
- eva/core/data/datasets/embeddings/classification/embeddings.py +0 -66
- eva/core/models/networks/transforms/__init__.py +0 -5
- eva/core/models/networks/wrappers/__init__.py +0 -8
- eva/vision/models/.DS_Store +0 -0
- eva/vision/models/networks/.DS_Store +0 -0
- eva/vision/models/networks/postprocesses/__init__.py +0 -5
- eva/vision/models/networks/postprocesses/cls.py +0 -25
- kaiko_eva-0.0.2.dist-info/METADATA +0 -431
- kaiko_eva-0.0.2.dist-info/RECORD +0 -127
- /eva/core/models/{networks → wrappers}/_utils.py +0 -0
- {kaiko_eva-0.0.2.dist-info → kaiko_eva-0.1.0.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,114 @@
|
|
|
1
|
+
"""Convolutional based semantic segmentation decoder."""
|
|
2
|
+
|
|
3
|
+
from typing import List, Tuple
|
|
4
|
+
|
|
5
|
+
import torch
|
|
6
|
+
from torch import nn
|
|
7
|
+
from torch.nn import functional
|
|
8
|
+
|
|
9
|
+
from eva.vision.models.networks.decoders import decoder
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class ConvDecoder(decoder.Decoder):
|
|
13
|
+
"""Convolutional segmentation decoder."""
|
|
14
|
+
|
|
15
|
+
def __init__(self, layers: nn.Module) -> None:
|
|
16
|
+
"""Initializes the convolutional based decoder head.
|
|
17
|
+
|
|
18
|
+
Here the input nn layers will be directly applied to the
|
|
19
|
+
features of shape (batch_size, hidden_size, n_patches_height,
|
|
20
|
+
n_patches_width), where n_patches is image_size / patch_size.
|
|
21
|
+
Note the n_patches is also known as grid_size.
|
|
22
|
+
|
|
23
|
+
Args:
|
|
24
|
+
layers: The convolutional layers to be used as the decoder head.
|
|
25
|
+
"""
|
|
26
|
+
super().__init__()
|
|
27
|
+
|
|
28
|
+
self._layers = layers
|
|
29
|
+
|
|
30
|
+
def _forward_features(self, features: List[torch.Tensor]) -> torch.Tensor:
|
|
31
|
+
"""Forward function for multi-level feature maps to a single one.
|
|
32
|
+
|
|
33
|
+
It will interpolate the features and concat them into a single tensor
|
|
34
|
+
on the dimension axis of the hidden size.
|
|
35
|
+
|
|
36
|
+
Example:
|
|
37
|
+
>>> features = [torch.Tensor(16, 384, 14, 14), torch.Size(16, 384, 14, 14)]
|
|
38
|
+
>>> output = self._forward_features(features)
|
|
39
|
+
>>> assert output.shape == torch.Size([16, 768, 14, 14])
|
|
40
|
+
|
|
41
|
+
Args:
|
|
42
|
+
features: List of multi-level image features of shape (batch_size,
|
|
43
|
+
hidden_size, n_patches_height, n_patches_width).
|
|
44
|
+
|
|
45
|
+
Returns:
|
|
46
|
+
A tensor of shape (batch_size, hidden_size, n_patches_height,
|
|
47
|
+
n_patches_width) which is feature map of the decoder head.
|
|
48
|
+
"""
|
|
49
|
+
if not isinstance(features, list) or features[0].ndim != 4:
|
|
50
|
+
raise ValueError(
|
|
51
|
+
"Input features should be a list of four (4) dimensional inputs of "
|
|
52
|
+
"shape (batch_size, hidden_size, n_patches_height, n_patches_width)."
|
|
53
|
+
)
|
|
54
|
+
|
|
55
|
+
upsampled_features = [
|
|
56
|
+
functional.interpolate(
|
|
57
|
+
input=embeddings,
|
|
58
|
+
size=features[0].shape[2:],
|
|
59
|
+
mode="bilinear",
|
|
60
|
+
align_corners=False,
|
|
61
|
+
)
|
|
62
|
+
for embeddings in features
|
|
63
|
+
]
|
|
64
|
+
return torch.cat(upsampled_features, dim=1)
|
|
65
|
+
|
|
66
|
+
def _forward_head(self, patch_embeddings: torch.Tensor) -> torch.Tensor:
|
|
67
|
+
"""Forward of the decoder head.
|
|
68
|
+
|
|
69
|
+
Args:
|
|
70
|
+
patch_embeddings: The patch embeddings tensor of shape
|
|
71
|
+
(batch_size, hidden_size, n_patches_height, n_patches_width).
|
|
72
|
+
|
|
73
|
+
Returns:
|
|
74
|
+
The logits as a tensor (batch_size, n_classes, upscale_height, upscale_width).
|
|
75
|
+
"""
|
|
76
|
+
return self._layers(patch_embeddings)
|
|
77
|
+
|
|
78
|
+
def _cls_seg(
|
|
79
|
+
self,
|
|
80
|
+
logits: torch.Tensor,
|
|
81
|
+
image_size: Tuple[int, int],
|
|
82
|
+
) -> torch.Tensor:
|
|
83
|
+
"""Classify each pixel of the image.
|
|
84
|
+
|
|
85
|
+
Args:
|
|
86
|
+
logits: The decoder outputs of shape (batch_size, n_classes,
|
|
87
|
+
height, width).
|
|
88
|
+
image_size: The target image size (height, width).
|
|
89
|
+
|
|
90
|
+
Returns:
|
|
91
|
+
Tensor containing scores for all of the classes with shape
|
|
92
|
+
(batch_size, n_classes, image_height, image_width).
|
|
93
|
+
"""
|
|
94
|
+
return functional.interpolate(logits, image_size, mode="bilinear")
|
|
95
|
+
|
|
96
|
+
def forward(
|
|
97
|
+
self,
|
|
98
|
+
features: List[torch.Tensor],
|
|
99
|
+
image_size: Tuple[int, int],
|
|
100
|
+
) -> torch.Tensor:
|
|
101
|
+
"""Maps the patch embeddings to a segmentation mask of the image size.
|
|
102
|
+
|
|
103
|
+
Args:
|
|
104
|
+
features: List of multi-level image features of shape (batch_size,
|
|
105
|
+
hidden_size, n_patches_height, n_patches_width).
|
|
106
|
+
image_size: The target image size (height, width).
|
|
107
|
+
|
|
108
|
+
Returns:
|
|
109
|
+
Tensor containing scores for all of the classes with shape
|
|
110
|
+
(batch_size, n_classes, image_height, image_width).
|
|
111
|
+
"""
|
|
112
|
+
patch_embeddings = self._forward_features(features)
|
|
113
|
+
logits = self._forward_head(patch_embeddings)
|
|
114
|
+
return self._cls_seg(logits, image_size)
|
|
@@ -0,0 +1,125 @@
|
|
|
1
|
+
"""Linear based decoder."""
|
|
2
|
+
|
|
3
|
+
from typing import List, Tuple
|
|
4
|
+
|
|
5
|
+
import torch
|
|
6
|
+
from torch import nn
|
|
7
|
+
from torch.nn import functional
|
|
8
|
+
|
|
9
|
+
from eva.vision.models.networks.decoders import decoder
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class LinearDecoder(decoder.Decoder):
|
|
13
|
+
"""Linear decoder."""
|
|
14
|
+
|
|
15
|
+
def __init__(self, layers: nn.Module) -> None:
|
|
16
|
+
"""Initializes the linear based decoder head.
|
|
17
|
+
|
|
18
|
+
Here the input nn layers will be applied to the reshaped
|
|
19
|
+
features (batch_size, patch_embeddings, hidden_size) from
|
|
20
|
+
the input (batch_size, hidden_size, height, width) and then
|
|
21
|
+
unwrapped again to (batch_size, n_classes, height, width).
|
|
22
|
+
|
|
23
|
+
Args:
|
|
24
|
+
layers: The linear layers to be used as the decoder head.
|
|
25
|
+
"""
|
|
26
|
+
super().__init__()
|
|
27
|
+
|
|
28
|
+
self._layers = layers
|
|
29
|
+
|
|
30
|
+
def _forward_features(self, features: List[torch.Tensor]) -> torch.Tensor:
|
|
31
|
+
"""Forward function for multi-level feature maps to a single one.
|
|
32
|
+
|
|
33
|
+
It will interpolate the features and concat them into a single tensor
|
|
34
|
+
on the dimension axis of the hidden size.
|
|
35
|
+
|
|
36
|
+
Example:
|
|
37
|
+
>>> features = [torch.Tensor(16, 384, 14, 14), torch.Size(16, 384, 14, 14)]
|
|
38
|
+
>>> output = self._forward_features(features)
|
|
39
|
+
>>> assert output.shape == torch.Size([16, 768, 14, 14])
|
|
40
|
+
|
|
41
|
+
Args:
|
|
42
|
+
features: List of multi-level image features of shape (batch_size,
|
|
43
|
+
hidden_size, n_patches_height, n_patches_width).
|
|
44
|
+
|
|
45
|
+
Returns:
|
|
46
|
+
A tensor of shape (batch_size, hidden_size, n_patches_height,
|
|
47
|
+
n_patches_width) which is feature map of the decoder head.
|
|
48
|
+
"""
|
|
49
|
+
if not isinstance(features, list) or features[0].ndim != 4:
|
|
50
|
+
raise ValueError(
|
|
51
|
+
"Input features should be a list of four (4) dimensional inputs of "
|
|
52
|
+
"shape (batch_size, hidden_size, n_patches_height, n_patches_width)."
|
|
53
|
+
)
|
|
54
|
+
|
|
55
|
+
upsampled_features = [
|
|
56
|
+
functional.interpolate(
|
|
57
|
+
input=embeddings,
|
|
58
|
+
size=features[0].shape[2:],
|
|
59
|
+
mode="bilinear",
|
|
60
|
+
align_corners=False,
|
|
61
|
+
)
|
|
62
|
+
for embeddings in features
|
|
63
|
+
]
|
|
64
|
+
return torch.cat(upsampled_features, dim=1)
|
|
65
|
+
|
|
66
|
+
def _forward_head(self, patch_embeddings: torch.Tensor) -> torch.Tensor:
|
|
67
|
+
"""Forward of the decoder head.
|
|
68
|
+
|
|
69
|
+
Here the following transformations will take place:
|
|
70
|
+
- (batch_size, hidden_size, n_patches_height, n_patches_width)
|
|
71
|
+
- (batch_size, hidden_size, n_patches_height * n_patches_width)
|
|
72
|
+
- (batch_size, n_patches_height * n_patches_width, hidden_size)
|
|
73
|
+
- (batch_size, n_patches_height * n_patches_width, n_classes)
|
|
74
|
+
- (batch_size, n_classes, n_patches_height, n_patches_width)
|
|
75
|
+
|
|
76
|
+
Args:
|
|
77
|
+
patch_embeddings: The patch embeddings tensor of shape
|
|
78
|
+
(batch_size, hidden_size, n_patches_height, n_patches_width).
|
|
79
|
+
|
|
80
|
+
Returns:
|
|
81
|
+
The logits as a tensor (batch_size, n_classes, n_patches_height,
|
|
82
|
+
n_patches_width).
|
|
83
|
+
"""
|
|
84
|
+
batch_size, hidden_size, height, width = patch_embeddings.shape
|
|
85
|
+
embeddings_reshaped = patch_embeddings.reshape(batch_size, hidden_size, height * width)
|
|
86
|
+
logits = self._layers(embeddings_reshaped.permute(0, 2, 1))
|
|
87
|
+
return logits.permute(0, 2, 1).reshape(batch_size, -1, height, width)
|
|
88
|
+
|
|
89
|
+
def _cls_seg(
|
|
90
|
+
self,
|
|
91
|
+
logits: torch.Tensor,
|
|
92
|
+
image_size: Tuple[int, int],
|
|
93
|
+
) -> torch.Tensor:
|
|
94
|
+
"""Classify each pixel of the image.
|
|
95
|
+
|
|
96
|
+
Args:
|
|
97
|
+
logits: The decoder outputs of shape (batch_size, n_classes,
|
|
98
|
+
height, width).
|
|
99
|
+
image_size: The target image size (height, width).
|
|
100
|
+
|
|
101
|
+
Returns:
|
|
102
|
+
Tensor containing scores for all of the classes with shape
|
|
103
|
+
(batch_size, n_classes, image_height, image_width).
|
|
104
|
+
"""
|
|
105
|
+
return functional.interpolate(logits, image_size, mode="bilinear")
|
|
106
|
+
|
|
107
|
+
def forward(
|
|
108
|
+
self,
|
|
109
|
+
features: List[torch.Tensor],
|
|
110
|
+
image_size: Tuple[int, int],
|
|
111
|
+
) -> torch.Tensor:
|
|
112
|
+
"""Maps the patch embeddings to a segmentation mask of the image size.
|
|
113
|
+
|
|
114
|
+
Args:
|
|
115
|
+
features: List of multi-level image features of shape (batch_size,
|
|
116
|
+
hidden_size, n_patches_height, n_patches_width).
|
|
117
|
+
image_size: The target image size (height, width).
|
|
118
|
+
|
|
119
|
+
Returns:
|
|
120
|
+
Tensor containing scores for all of the classes with shape
|
|
121
|
+
(batch_size, n_classes, image_height, image_width).
|
|
122
|
+
"""
|
|
123
|
+
patch_embeddings = self._forward_features(features)
|
|
124
|
+
logits = self._forward_head(patch_embeddings)
|
|
125
|
+
return self._cls_seg(logits, image_size)
|
|
@@ -0,0 +1,48 @@
|
|
|
1
|
+
"""Vision backbone helper class."""
|
|
2
|
+
|
|
3
|
+
from typing import Any, Callable, Dict
|
|
4
|
+
|
|
5
|
+
from typing_extensions import override
|
|
6
|
+
|
|
7
|
+
from eva.core.models import wrappers
|
|
8
|
+
from eva.vision.models.networks.backbones import BackboneModelRegistry
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class ModelFromRegistry(wrappers.BaseModel):
|
|
12
|
+
"""Wrapper class for vision backbone models.
|
|
13
|
+
|
|
14
|
+
This class can be used by load backbones available in eva's
|
|
15
|
+
model registry by name. New backbones can be registered by using
|
|
16
|
+
the `@register_model(model_name)` decorator.
|
|
17
|
+
"""
|
|
18
|
+
|
|
19
|
+
def __init__(
|
|
20
|
+
self,
|
|
21
|
+
model_name: str,
|
|
22
|
+
model_kwargs: Dict[str, Any] | None = None,
|
|
23
|
+
model_extra_kwargs: Dict[str, Any] | None = None,
|
|
24
|
+
tensor_transforms: Callable | None = None,
|
|
25
|
+
) -> None:
|
|
26
|
+
"""Initializes the model.
|
|
27
|
+
|
|
28
|
+
Args:
|
|
29
|
+
model_name: The name of the model to load.
|
|
30
|
+
model_kwargs: The arguments used for instantiating the model.
|
|
31
|
+
model_extra_kwargs: Extra arguments used for instantiating the model.
|
|
32
|
+
tensor_transforms: The transforms to apply to the output tensor
|
|
33
|
+
produced by the model.
|
|
34
|
+
"""
|
|
35
|
+
super().__init__(tensor_transforms=tensor_transforms)
|
|
36
|
+
|
|
37
|
+
self._model_name = model_name
|
|
38
|
+
self._model_kwargs = model_kwargs or {}
|
|
39
|
+
self._model_extra_kwargs = model_extra_kwargs or {}
|
|
40
|
+
|
|
41
|
+
self.load_model()
|
|
42
|
+
|
|
43
|
+
@override
|
|
44
|
+
def load_model(self) -> None:
|
|
45
|
+
self._model = BackboneModelRegistry.load_model(
|
|
46
|
+
self._model_name, self._model_kwargs | self._model_extra_kwargs
|
|
47
|
+
)
|
|
48
|
+
ModelFromRegistry.__name__ = self._model_name
|
|
@@ -0,0 +1,68 @@
|
|
|
1
|
+
"""Model wrapper for timm models."""
|
|
2
|
+
|
|
3
|
+
from typing import Any, Callable, Dict, Tuple
|
|
4
|
+
from urllib import parse
|
|
5
|
+
|
|
6
|
+
import timm
|
|
7
|
+
from typing_extensions import override
|
|
8
|
+
|
|
9
|
+
from eva.core.models import wrappers
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class TimmModel(wrappers.BaseModel):
|
|
13
|
+
"""Model wrapper for `timm` models.
|
|
14
|
+
|
|
15
|
+
Note that only models with `forward_intermediates`
|
|
16
|
+
method are currently supported.
|
|
17
|
+
"""
|
|
18
|
+
|
|
19
|
+
def __init__(
|
|
20
|
+
self,
|
|
21
|
+
model_name: str,
|
|
22
|
+
pretrained: bool = True,
|
|
23
|
+
checkpoint_path: str = "",
|
|
24
|
+
out_indices: int | Tuple[int, ...] | None = None,
|
|
25
|
+
model_kwargs: Dict[str, Any] | None = None,
|
|
26
|
+
tensor_transforms: Callable | None = None,
|
|
27
|
+
) -> None:
|
|
28
|
+
"""Initializes the encoder.
|
|
29
|
+
|
|
30
|
+
Args:
|
|
31
|
+
model_name: Name of model to instantiate.
|
|
32
|
+
pretrained: If set to `True`, load pretrained ImageNet-1k weights.
|
|
33
|
+
checkpoint_path: Path of checkpoint to load.
|
|
34
|
+
out_indices: Returns last n blocks if `int`, all if `None`, select
|
|
35
|
+
matching indices if sequence.
|
|
36
|
+
model_kwargs: Extra model arguments.
|
|
37
|
+
tensor_transforms: The transforms to apply to the output tensor
|
|
38
|
+
produced by the model.
|
|
39
|
+
"""
|
|
40
|
+
super().__init__(tensor_transforms=tensor_transforms)
|
|
41
|
+
|
|
42
|
+
self._model_name = model_name
|
|
43
|
+
self._pretrained = pretrained
|
|
44
|
+
self._checkpoint_path = checkpoint_path
|
|
45
|
+
self._out_indices = out_indices
|
|
46
|
+
self._model_kwargs = model_kwargs or {}
|
|
47
|
+
|
|
48
|
+
self.load_model()
|
|
49
|
+
|
|
50
|
+
@override
|
|
51
|
+
def load_model(self) -> None:
|
|
52
|
+
"""Builds and loads the timm model as feature extractor."""
|
|
53
|
+
self._model = timm.create_model(
|
|
54
|
+
model_name=self._model_name,
|
|
55
|
+
pretrained=True if self._checkpoint_path else self._pretrained,
|
|
56
|
+
pretrained_cfg=self._pretrained_cfg,
|
|
57
|
+
out_indices=self._out_indices,
|
|
58
|
+
features_only=self._out_indices is not None,
|
|
59
|
+
**self._model_kwargs,
|
|
60
|
+
)
|
|
61
|
+
TimmModel.__name__ = self._model_name
|
|
62
|
+
|
|
63
|
+
@property
|
|
64
|
+
def _pretrained_cfg(self) -> Dict[str, Any]:
|
|
65
|
+
if not self._checkpoint_path:
|
|
66
|
+
return {}
|
|
67
|
+
key = "file" if parse.urlparse(self._checkpoint_path).scheme in ("file", "") else "url"
|
|
68
|
+
return {key: self._checkpoint_path, "num_classes": 0}
|
|
@@ -0,0 +1,77 @@
|
|
|
1
|
+
"""Color mapping constants."""
|
|
2
|
+
|
|
3
|
+
COLORS = [
|
|
4
|
+
(0, 0, 0),
|
|
5
|
+
(255, 0, 0), # Red
|
|
6
|
+
(0, 255, 0), # Green
|
|
7
|
+
(0, 0, 255), # Blue
|
|
8
|
+
(255, 255, 0), # Yellow
|
|
9
|
+
(255, 0, 255), # Magenta
|
|
10
|
+
(0, 255, 255), # Cyan
|
|
11
|
+
(128, 128, 0), # Olive
|
|
12
|
+
(128, 0, 128), # Purple
|
|
13
|
+
(0, 128, 128), # Teal
|
|
14
|
+
(192, 192, 192), # Silver
|
|
15
|
+
(128, 128, 128), # Gray
|
|
16
|
+
(255, 165, 0), # Orange
|
|
17
|
+
(210, 105, 30), # Chocolate
|
|
18
|
+
(0, 128, 0), # Lime
|
|
19
|
+
(255, 192, 203), # Pink
|
|
20
|
+
(255, 69, 0), # Red-Orange
|
|
21
|
+
(255, 140, 0), # Dark Orange
|
|
22
|
+
(0, 255, 255), # Sky Blue
|
|
23
|
+
(0, 255, 127), # Spring Green
|
|
24
|
+
(0, 0, 139), # Dark Blue
|
|
25
|
+
(255, 20, 147), # Deep Pink
|
|
26
|
+
(139, 69, 19), # Saddle Brown
|
|
27
|
+
(0, 100, 0), # Dark Green
|
|
28
|
+
(106, 90, 205), # Slate Blue
|
|
29
|
+
(138, 43, 226), # Blue-Violet
|
|
30
|
+
(218, 165, 32), # Goldenrod
|
|
31
|
+
(199, 21, 133), # Medium Violet Red
|
|
32
|
+
(70, 130, 180), # Steel Blue
|
|
33
|
+
(165, 42, 42), # Brown
|
|
34
|
+
(128, 0, 0), # Maroon
|
|
35
|
+
(255, 0, 255), # Fuchsia
|
|
36
|
+
(210, 180, 140), # Tan
|
|
37
|
+
(0, 0, 128), # Navy
|
|
38
|
+
(139, 0, 139), # Dark Magenta
|
|
39
|
+
(144, 238, 144), # Light Green
|
|
40
|
+
(46, 139, 87), # Sea Green
|
|
41
|
+
(255, 255, 0), # Gold
|
|
42
|
+
(154, 205, 50), # Yellow Green
|
|
43
|
+
(0, 191, 255), # Deep Sky Blue
|
|
44
|
+
(0, 250, 154), # Medium Spring Green
|
|
45
|
+
(250, 128, 114), # Salmon
|
|
46
|
+
(255, 105, 180), # Hot Pink
|
|
47
|
+
(204, 255, 204), # Pastel Light Green
|
|
48
|
+
(51, 0, 51), # Very Dark Magenta
|
|
49
|
+
(255, 102, 0), # Dark Orange
|
|
50
|
+
(0, 255, 0), # Bright Green
|
|
51
|
+
(51, 153, 255), # Blue-Purple
|
|
52
|
+
(51, 51, 255), # Bright Blue
|
|
53
|
+
(204, 0, 0), # Dark Red
|
|
54
|
+
(90, 90, 90), # Very Dark Gray
|
|
55
|
+
(255, 255, 51), # Pastel Yellow
|
|
56
|
+
(255, 153, 255), # Pink-Magenta
|
|
57
|
+
(153, 0, 76), # Dark Pink
|
|
58
|
+
(51, 25, 0), # Very Dark Brown
|
|
59
|
+
(102, 51, 0), # Dark Brown
|
|
60
|
+
(0, 0, 51), # Very Dark Blue
|
|
61
|
+
(180, 180, 180), # Dark Gray
|
|
62
|
+
(102, 255, 204), # Pastel Green
|
|
63
|
+
(0, 102, 0), # Dark Green
|
|
64
|
+
(220, 245, 20), # Lime Yellow
|
|
65
|
+
(255, 204, 204), # Pastel Pink
|
|
66
|
+
(0, 204, 255), # Pastel Blue
|
|
67
|
+
(240, 240, 240), # Light Gray
|
|
68
|
+
(153, 153, 0), # Dark Yellow
|
|
69
|
+
(102, 0, 51), # Dark Red-Pink
|
|
70
|
+
(0, 51, 0), # Very Dark Green
|
|
71
|
+
(255, 102, 204), # Magenta Pink
|
|
72
|
+
(204, 0, 102), # Red-Pink
|
|
73
|
+
]
|
|
74
|
+
"""RGB colors."""
|
|
75
|
+
|
|
76
|
+
COLORMAP = dict(enumerate(COLORS)) | {255: (255, 255, 255)}
|
|
77
|
+
"""Class id to RGB color mapping."""
|
eva/vision/utils/convert.py
CHANGED
|
@@ -1,24 +1,67 @@
|
|
|
1
1
|
"""Image conversion related functionalities."""
|
|
2
2
|
|
|
3
|
-
from typing import
|
|
3
|
+
from typing import Iterable
|
|
4
4
|
|
|
5
|
-
import
|
|
6
|
-
|
|
5
|
+
import torch
|
|
6
|
+
from torchvision.transforms.v2 import functional
|
|
7
7
|
|
|
8
8
|
|
|
9
|
-
def
|
|
10
|
-
|
|
9
|
+
def descale_and_denorm_image(
|
|
10
|
+
image: torch.Tensor,
|
|
11
|
+
mean: Iterable[float] = (0.0, 0.0, 0.0),
|
|
12
|
+
std: Iterable[float] = (1.0, 1.0, 1.0),
|
|
13
|
+
inplace: bool = True,
|
|
14
|
+
) -> torch.Tensor:
|
|
15
|
+
"""De-scales and de-norms an image tensor to (0, 255) range.
|
|
11
16
|
|
|
12
17
|
Args:
|
|
13
|
-
|
|
18
|
+
image: An image float tensor.
|
|
19
|
+
mean: The mean that the image channels are normalized with.
|
|
20
|
+
std: The std that the image channels are normalized with.
|
|
21
|
+
inplace: Whether to perform the operation in-place.
|
|
14
22
|
|
|
15
23
|
Returns:
|
|
16
|
-
The image
|
|
24
|
+
The image tensor of range (0, 255) range as uint8.
|
|
17
25
|
"""
|
|
18
|
-
if
|
|
19
|
-
|
|
26
|
+
if not inplace:
|
|
27
|
+
image = image.clone()
|
|
20
28
|
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
29
|
+
norm_image = _descale_image(image, mean=mean, std=std)
|
|
30
|
+
return _denorm_image(norm_image)
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
def _descale_image(
|
|
34
|
+
image: torch.Tensor,
|
|
35
|
+
mean: Iterable[float] = (0.0, 0.0, 0.0),
|
|
36
|
+
std: Iterable[float] = (1.0, 1.0, 1.0),
|
|
37
|
+
) -> torch.Tensor:
|
|
38
|
+
"""De-scales an image tensor to (0., 1.) range.
|
|
39
|
+
|
|
40
|
+
Args:
|
|
41
|
+
image: An image float tensor.
|
|
42
|
+
mean: The normalized channels mean values.
|
|
43
|
+
std: The normalized channels std values.
|
|
44
|
+
|
|
45
|
+
Returns:
|
|
46
|
+
The de-normalized image tensor of range (0., 1.).
|
|
47
|
+
"""
|
|
48
|
+
return functional.normalize(
|
|
49
|
+
image,
|
|
50
|
+
mean=[-cmean / cstd for cmean, cstd in zip(mean, std, strict=False)],
|
|
51
|
+
std=[1 / cstd for cstd in std],
|
|
52
|
+
)
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
def _denorm_image(image: torch.Tensor) -> torch.Tensor:
|
|
56
|
+
"""De-normalizes an image tensor from (0., 1.) to (0, 255) range.
|
|
57
|
+
|
|
58
|
+
Args:
|
|
59
|
+
image: An image float tensor.
|
|
60
|
+
|
|
61
|
+
Returns:
|
|
62
|
+
The image tensor of range (0, 255) range as uint8.
|
|
63
|
+
"""
|
|
64
|
+
image_scaled = image - image.min()
|
|
65
|
+
image_scaled /= image_scaled.max()
|
|
66
|
+
image_scaled *= 255
|
|
67
|
+
return image_scaled.to(dtype=torch.uint8)
|
eva/vision/utils/io/__init__.py
CHANGED
|
@@ -1,12 +1,18 @@
|
|
|
1
1
|
"""Vision I/O utilities."""
|
|
2
2
|
|
|
3
|
-
from eva.vision.utils.io.image import read_image
|
|
4
|
-
from eva.vision.utils.io.
|
|
3
|
+
from eva.vision.utils.io.image import read_image, read_image_as_array, read_image_as_tensor
|
|
4
|
+
from eva.vision.utils.io.mat import read_mat, save_mat
|
|
5
|
+
from eva.vision.utils.io.nifti import fetch_nifti_shape, read_nifti, save_array_as_nifti
|
|
5
6
|
from eva.vision.utils.io.text import read_csv
|
|
6
7
|
|
|
7
8
|
__all__ = [
|
|
8
9
|
"read_image",
|
|
9
|
-
"
|
|
10
|
-
"
|
|
10
|
+
"read_image_as_array",
|
|
11
|
+
"read_image_as_tensor",
|
|
12
|
+
"fetch_nifti_shape",
|
|
13
|
+
"read_nifti",
|
|
14
|
+
"save_array_as_nifti",
|
|
11
15
|
"read_csv",
|
|
16
|
+
"read_mat",
|
|
17
|
+
"save_mat",
|
|
12
18
|
]
|
eva/vision/utils/io/image.py
CHANGED
|
@@ -3,6 +3,8 @@
|
|
|
3
3
|
import cv2
|
|
4
4
|
import numpy as np
|
|
5
5
|
import numpy.typing as npt
|
|
6
|
+
from torchvision import tv_tensors
|
|
7
|
+
from torchvision.transforms.v2 import functional
|
|
6
8
|
|
|
7
9
|
from eva.vision.utils.io import _utils
|
|
8
10
|
|
|
@@ -14,7 +16,7 @@ def read_image(path: str) -> npt.NDArray[np.uint8]:
|
|
|
14
16
|
path: The path of the image file.
|
|
15
17
|
|
|
16
18
|
Returns:
|
|
17
|
-
The RGB image as a numpy array.
|
|
19
|
+
The RGB image as a numpy array (HxWxC).
|
|
18
20
|
|
|
19
21
|
Raises:
|
|
20
22
|
FileExistsError: If the path does not exist or it is unreachable.
|
|
@@ -23,6 +25,23 @@ def read_image(path: str) -> npt.NDArray[np.uint8]:
|
|
|
23
25
|
return read_image_as_array(path, cv2.IMREAD_COLOR)
|
|
24
26
|
|
|
25
27
|
|
|
28
|
+
def read_image_as_tensor(path: str) -> tv_tensors.Image:
|
|
29
|
+
"""Reads and loads the image from a file path as a RGB torch tensor.
|
|
30
|
+
|
|
31
|
+
Args:
|
|
32
|
+
path: The path of the image file.
|
|
33
|
+
|
|
34
|
+
Returns:
|
|
35
|
+
The RGB image as a torch tensor (CxHxW).
|
|
36
|
+
|
|
37
|
+
Raises:
|
|
38
|
+
FileExistsError: If the path does not exist or it is unreachable.
|
|
39
|
+
IOError: If the image could not be loaded.
|
|
40
|
+
"""
|
|
41
|
+
image_array = read_image(path)
|
|
42
|
+
return functional.to_image(image_array)
|
|
43
|
+
|
|
44
|
+
|
|
26
45
|
def read_image_as_array(path: str, flags: int = cv2.IMREAD_UNCHANGED) -> npt.NDArray[np.uint8]:
|
|
27
46
|
"""Reads and loads an image file as a numpy array.
|
|
28
47
|
|
|
@@ -51,4 +70,4 @@ def read_image_as_array(path: str, flags: int = cv2.IMREAD_UNCHANGED) -> npt.NDA
|
|
|
51
70
|
if image.ndim == 2 and flags == cv2.IMREAD_COLOR:
|
|
52
71
|
image = image[:, :, np.newaxis]
|
|
53
72
|
|
|
54
|
-
return np.asarray(image
|
|
73
|
+
return np.asarray(image, dtype=np.uint8)
|
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
"""mat I/O related functions."""
|
|
2
|
+
|
|
3
|
+
import os
|
|
4
|
+
from typing import Any, Dict
|
|
5
|
+
|
|
6
|
+
import numpy.typing as npt
|
|
7
|
+
import scipy.io
|
|
8
|
+
|
|
9
|
+
from eva.vision.utils.io import _utils
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def read_mat(path: str) -> Dict[str, npt.NDArray[Any]]:
|
|
13
|
+
"""Reads and loads a mat file.
|
|
14
|
+
|
|
15
|
+
Args:
|
|
16
|
+
path: The path to the mat file.
|
|
17
|
+
|
|
18
|
+
Returns:
|
|
19
|
+
mat file as dictionary.
|
|
20
|
+
|
|
21
|
+
Raises:
|
|
22
|
+
FileExistsError: If the path does not exist or it is unreachable.
|
|
23
|
+
"""
|
|
24
|
+
_utils.check_file(path)
|
|
25
|
+
return scipy.io.loadmat(path)
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
def save_mat(path: str, data: Dict[str, npt.NDArray[Any]]) -> None:
|
|
29
|
+
"""Saves a mat file.
|
|
30
|
+
|
|
31
|
+
Args:
|
|
32
|
+
path: The path to save the mat file.
|
|
33
|
+
data: The dictionary containing the data to save.
|
|
34
|
+
"""
|
|
35
|
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
|
36
|
+
scipy.io.savemat(path, data)
|